BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zimmermann Y, Forino A, Riener R, Hutter M. ANYexo: A Versatile and Dynamic Upper-Limb Rehabilitation Robot. IEEE Robot Autom Lett 2019;4:3649-56. [DOI: 10.1109/lra.2019.2926958] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 10.0] [Reference Citation Analysis]
Number Citing Articles
1 Sommerhalder M, Zimmermann Y, Knecht M, Suter Z, Riener R, Wolf P. Score rectification for online assessments in robot-assisted arm rehabilitation. at - Automatisierungstechnik 2022;70:935-946. [DOI: 10.1515/auto-2022-0113] [Reference Citation Analysis]
2 Ning Y, Wang H, Tian J, Yan H, Tian Y, Yang C, Wei J, Niu J. An eight-degree-of-freedom upper extremity exoskeleton rehabilitation robot: design, optimization, and validation. J Mech Sci Technol 2022. [DOI: 10.1007/s12206-022-1034-5] [Reference Citation Analysis]
3 Wang H, Guo S, Li H, Bu D. MYO Armband-based a Master-Slave Heterolateral Elbow Joint Rehabilitation Robot System. 2022 IEEE International Conference on Mechatronics and Automation (ICMA) 2022. [DOI: 10.1109/icma54519.2022.9855965] [Reference Citation Analysis]
4 Georgarakis A, Zimmermann Y, Wolf P, Hutter M, Riener R. Supporting and Stabilizing the Scapulohumeral Rhythm With a Body- or Robot-Powered Orthosis. IEEE Trans Med Robot Bionics 2022;4:729-743. [DOI: 10.1109/tmrb.2022.3176728] [Reference Citation Analysis]
5 Zimmermann Y, Sommerhalder M, Song J, Etter B, Kucuktabak EB, Riener R, Wolf P. Digital Guinea Pig: Merits and Methods of Human-in-the-Loop Simulation for Upper-Limb Exoskeletons. 2022 International Conference on Rehabilitation Robotics (ICORR) 2022. [DOI: 10.1109/icorr55369.2022.9896520] [Reference Citation Analysis]
6 Sommerhalder M, Kurth N, Song J, Riener R. ARMStick - An Intuitive Therapist Interface for Upper-Limb Rehabilitation Robots. 2022 International Conference on Rehabilitation Robotics (ICORR) 2022. [DOI: 10.1109/icorr55369.2022.9896409] [Reference Citation Analysis]
7 Gil JJ, Ugartemendia A, Diaz I. Rendering Virtual Inertia in Haptic Interfaces: Analysis and Limitations. 2022 International Conference on Robotics and Automation (ICRA) 2022. [DOI: 10.1109/icra46639.2022.9812207] [Reference Citation Analysis]
8 Kim B, Ahn K, Nam S, Hyun DJ. Upper extremity exoskeleton system to generate customized therapy motions for stroke survivors. Robotics and Autonomous Systems 2022. [DOI: 10.1016/j.robot.2022.104128] [Reference Citation Analysis]
9 Zeiaee A, Zarrin RS, Eib A, Langari R, Tafreshi R. CLEVERarm: A Lightweight and Compact Exoskeleton for Upper-Limb Rehabilitation. IEEE Robot Autom Lett 2022;7:1880-7. [DOI: 10.1109/lra.2021.3138326] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
10 Buccelli S, Tessari F, Fanin F, De Guglielmo L, Capitta G, Piezzo C, Bruschi A, Van Son F, Scarpetta S, Succi A, Rossi P, Maludrottu S, Barresi G, Creatini I, Taglione E, Laffranchi M, De Michieli L. A Gravity-Compensated Upper-Limb Exoskeleton for Functional Rehabilitation of the Shoulder Complex. Applied Sciences 2022;12:3364. [DOI: 10.3390/app12073364] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
11 Meng Q, Fei C, Jiao Z, Xie Q, Dai Y, Fan Y, Shen Z, Yu H. Design and kinematical performance analysis of the 7-DOF upper-limb exoskeleton toward improving human-robot interface in active and passive movement training. Technol Health Care 2022. [PMID: 35342067 DOI: 10.3233/THC-213573] [Reference Citation Analysis]
12 Gherman B, Tucan P, Vaida C, Carbone G, Pisla D. Novel Design of the ParReEx-Elbow Parallel Robot for the Rehabilitation of Brachial Monoparesis. Mechanisms and Machine Science 2022. [DOI: 10.1007/978-3-030-76147-9_5] [Reference Citation Analysis]
13 Grella F, Baldini G, Canale R, Sagar K, Wang SA, Albini A, Jilich M, Cannata G, Zoppi M. A Tactile Sensor-Based Architecture for Collaborative Assembly Tasks with Heavy-Duty Robots. 2021 20th International Conference on Advanced Robotics (ICAR) 2021. [DOI: 10.1109/icar53236.2021.9659322] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Babič J, Laffranchi M, Tessari F, Verstraten T, Novak D, Šarabon N, Ugurlu B, Peternel L, Torricelli D, Veneman JF. Challenges and solutions for application and wider adoption of wearable robots. Wearable Technol 2021;2. [DOI: 10.1017/wtc.2021.13] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
15 Bilancia P, Berselli G. Conceptual design and virtual prototyping of a wearable upper limb exoskeleton for assisted operations. Int J Interact Des Manuf 2021;15:525-39. [DOI: 10.1007/s12008-021-00779-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
16 Zhao W, Wang J, Qian W, Xiao X, Guo Z. Design of a Compliant Upper-Limb Rehabilitation Exoskeleton based on Novel Series Elastic Actuators. 2021 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) 2021. [DOI: 10.1109/aim46487.2021.9517550] [Reference Citation Analysis]
17 Medina F, Perez K, Cruz-ortiz D, Ballesteros M, Chairez I. Control of a hybrid upper-limb orthosis device based on a data-driven artificial neural network classifier of electromyography signals. Biomedical Signal Processing and Control 2021;68:102624. [DOI: 10.1016/j.bspc.2021.102624] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
18 Ibrahim K, Faller L. Development of A Customized Rehabilitation Device Using Additive Manufacturing. The 14th PErvasive Technologies Related to Assistive Environments Conference 2021. [DOI: 10.1145/3453892.3461331] [Reference Citation Analysis]
19 He P, Kantu NT, Xu B, Swami CP, Saleem GT, Kang J. A Novel 3-RRR Spherical Parallel Instrument for Daily Living Emulation (SPINDLE) for Functional Rehabilitation of Patients with Stroke. International Journal of Advanced Robotic Systems 2021;18:172988142110123. [DOI: 10.1177/17298814211012325] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
20 Cornejo J, Huamanchahua D, Huaman-vizconde S, Terrazas-rodas D, Sierra-huertas J, Janampa-espinoza A, Gonzales J, Cardona M. Mechatronic Exoskeleton Systems for Supporting the Biomechanics of Shoulder-Elbow-Wrist: An Innovative Review. 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS) 2021. [DOI: 10.1109/iemtronics52119.2021.9422660] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 22.0] [Reference Citation Analysis]
21 Chellal AA, Lima J, Fernandes FP, Gonçalves J, Pacheco MF, Monteiro FC. Overview of Robotic Based System for Rehabilitation and Healthcare. Communications in Computer and Information Science 2021. [DOI: 10.1007/978-3-030-91885-9_38] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Zimmermann Y, Kucuktabak EB, Farshidian F, Riener R, Hutter M. Towards Dynamic Transparency: Robust Interaction Force Tracking Using Multi-Sensory Control on an Arm Exoskeleton. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2020. [DOI: 10.1109/iros45743.2020.9341054] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
23 Sommerhalder M, Zimmermann Y, Cizmeci B, Riener R, Hutter M. Physical Human-Robot Interaction with Real Active Surfaces using Haptic Rendering on Point Clouds. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2020. [DOI: 10.1109/iros45743.2020.9341053] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]