BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Feng Y, Feng YM, Lu C, Han Y, Liu L, Sun X, Dai J, Xia X. Tree shrew, a potential animal model for hepatitis C, supports the infection and replication of HCV in vitro and in vivo. J Gen Virol 2017;98:2069-78. [PMID: 28758632 DOI: 10.1099/jgv.0.000869] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
Number Citing Articles
1 Li D, Baloch Z, Zhao Y, Bai L, Wang X, Wang G, Zhang AM, Lan K, Xia X. Establishment of Tree Shrew Animal Model for Kaposi's Sarcoma-Associated Herpesvirus (HHV-8) Infection. Front Microbiol 2021;12:710067. [PMID: 34603235 DOI: 10.3389/fmicb.2021.710067] [Reference Citation Analysis]
2 Zhang L, Shen ZL, Feng Y, Li DQ, Zhang NN, Deng YQ, Qi XP, Sun XM, Dai JJ, Yang CG, Yang ZF, Qin CF, Xia XS. Infectivity of Zika virus on primary cells support tree shrew as animal model. Emerg Microbes Infect 2019;8:232-41. [PMID: 30866776 DOI: 10.1080/22221751.2018.1559707] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
3 Kemming J, Thimme R, Neumann-Haefelin C. Adaptive Immune Response against Hepatitis C Virus. Int J Mol Sci 2020;21:E5644. [PMID: 32781731 DOI: 10.3390/ijms21165644] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
4 Qiu D, Kui X, Wang W, Li N, Tong P, Sun X, Lu C, Dai J. Identification of SEC14 like lipid binding 2(SEC14L2) sequence and expression profiles in the Chinese tree shrew (Tupaia belangeri chinensis). Mol Biol Rep 2022. [PMID: 35767108 DOI: 10.1007/s11033-022-07518-7] [Reference Citation Analysis]
5 Gu W, Wang W, Tong P, Liu C, Jia J, Lu C, Han Y, Sun X, Kuang D, Li N, Dai J. Comparative genomic analysis of Proteus spp. isolated from tree shrews indicated unexpectedly high genetic diversity. PLoS One 2020;15:e0229125. [PMID: 32084183 DOI: 10.1371/journal.pone.0229125] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
6 Bestion E, Halfon P, Mezouar S, Mège JL. Cell and Animal Models for SARS-CoV-2 Research. Viruses 2022;14:1507. [PMID: 35891487 DOI: 10.3390/v14071507] [Reference Citation Analysis]
7 Kayesh MEH, Sanada T, Kohara M, Tsukiyama-Kohara K. Tree Shrew as an Emerging Small Animal Model for Human Viral Infection: A Recent Overview. Viruses 2021;13:1641. [PMID: 34452505 DOI: 10.3390/v13081641] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
8 Zhang J, Xiao H, Bi Y, Long Q, Gong Y, Dai J, Sun M, Cun W. Characteristics of the tree shrew humoral immune system. Mol Immunol 2020;127:175-85. [PMID: 32992149 DOI: 10.1016/j.molimm.2020.09.009] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Xu S, Li X, Yang J, Wang Z, Jia Y, Han L, Wang L, Zhu Q. Comparative Pathogenicity and Transmissibility of Pandemic H1N1, Avian H5N1, and Human H7N9 Influenza Viruses in Tree Shrews. Front Microbiol 2019;10:2955. [PMID: 31921093 DOI: 10.3389/fmicb.2019.02955] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
10 Kui X, Qiu D, Wang W, Li N, Tong P, Sun X, Jin L, Deng W, Dai J, Lu C. Molecular cloning and characterization of NPC1L1 in the Chinese tree shrew (Tupaia belangeri chinensis). Mol Biol Rep 2021;48:7975-84. [PMID: 34716864 DOI: 10.1007/s11033-021-06829-5] [Reference Citation Analysis]
11 Lu C, Sun X, Li N, Wang W, Kuang D, Tong P, Han Y, Dai J. CircRNAs in the tree shrew (Tupaia belangeri) brain during postnatal development and aging. Aging (Albany NY) 2018;10:833-52. [PMID: 29723158 DOI: 10.18632/aging.101437] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 6.7] [Reference Citation Analysis]
12 Lu C, Feng Y, Sun X, Li N, Kuang D, Wang W, Tong P, Han Y, Xia X, Dai J. Tree shrew bone marrow-derived mesenchymal stem cells express CD81, OCLN, and miR-122, facilitating the entire hepatitis C virus life cycle. J Med Virol 2020. [PMID: 32056224 DOI: 10.1002/jmv.25710] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
13 Burm R, Collignon L, Mesalam AA, Meuleman P. Animal Models to Study Hepatitis C Virus Infection. Front Immunol 2018;9:1032. [PMID: 29867998 DOI: 10.3389/fimmu.2018.01032] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
14 Xia W, Chen H, Feng Y, Shi N, Huang Z, Feng Q, Jiang X, He G, Xie M, Lai Y, Wang Z, Yi X, Tang A. Tree Shrew Is a Suitable Animal Model for the Study of Epstein Barr Virus. Front Immunol 2021;12:789604. [PMID: 35111158 DOI: 10.3389/fimmu.2021.789604] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
15 Chen L, Gu W, Liu C, Wang W, Li N, Chen Y, Lu C, Sun X, Han Y, Kuang D, Tong P, Dai J. Characteristics of the tree shrew gut virome. PLoS One 2019;14:e0212774. [PMID: 30807598 DOI: 10.1371/journal.pone.0212774] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
16 Feng Y, Xia W, Zhao P, Yi X, Tang A. Survey anatomy and histological observation of the nasal cavity of Tupaia belangeri chinensis (Tupaiidae, Scandentia, Mammalia). Anat Rec (Hoboken) 2021. [PMID: 34605617 DOI: 10.1002/ar.24793] [Reference Citation Analysis]
17 Baloch Z, Shen Z, Zhang L, Feng Y, Li D, Zhang NN, Deng YQ, Yang C, Sun X, Dai J, Yang Z, Qin CF, Xia X. Recapitulating Zika Virus Infection in Vagina of Tree Shrew (Tupaia belangeri). Front Cell Infect Microbiol 2021;11:687338. [PMID: 34249779 DOI: 10.3389/fcimb.2021.687338] [Reference Citation Analysis]
18 Gu W, Tong P, Liu C, Wang W, Lu C, Han Y, Sun X, Kuang X, Li N, Dai J. The characteristics of gut microbiota and commensal Enterobacteriaceae isolates in tree shrew (Tupaia belangeri). BMC Microbiol 2019;19:203. [PMID: 31477004 DOI: 10.1186/s12866-019-1581-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
19 Lu C, Li M, Sun X, Li N, Wang W, Tong P, Dai J. Comparing the hippocampal miRNA expression profiles of wild and domesticated Chinese tree shrews (Tupaia belangeri chinensis). BMC Ecol Evol 2021;21:12. [PMID: 33514308 DOI: 10.1186/s12862-020-01740-2] [Reference Citation Analysis]
20 Shou S, Liu M, Yang Y, Kang N, Song Y, Tan D, Liu N, Wang F, Liu J, Xie Y. Animal Models for COVID-19: Hamsters, Mouse, Ferret, Mink, Tree Shrew, and Non-human Primates. Front Microbiol 2021;12:626553. [PMID: 34531831 DOI: 10.3389/fmicb.2021.626553] [Reference Citation Analysis]
21 Zhang X, Yu D, Wu Y, Gu T, Ma N, Dong S, Yao YG. Establishment and transcriptomic features of an immortalized hepatic cell line of the Chinese tree shrew. Appl Microbiol Biotechnol 2020;104:8813-23. [PMID: 32880691 DOI: 10.1007/s00253-020-10855-x] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
22 Feng Y, Xia W, Ji K, Lai Y, Feng Q, Chen H, Huang Z, Yi X, Tang A. Hemogram study of an artificially feeding tree shrew (Tupaia belangeri chinensis). Exp Anim 2020;69:80-91. [PMID: 31527336 DOI: 10.1538/expanim.19-0079] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]