BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Southwell R, Baumann A, Gal C, Barascud N, Friston K, Chait M. Is predictability salient? A study of attentional capture by auditory patterns. Philos Trans R Soc Lond B Biol Sci 2017;372:20160105. [PMID: 28044016 DOI: 10.1098/rstb.2016.0105] [Cited by in Crossref: 72] [Cited by in F6Publishing: 83] [Article Influence: 12.0] [Reference Citation Analysis]
Number Citing Articles
1 Ringer H, Schröger E, Grimm S. Perceptual learning of random acoustic patterns: Impact of temporal regularity and attention.. [DOI: 10.1101/2023.03.13.532336] [Reference Citation Analysis]
2 Ringer H, Schröger E, Grimm S. Within- and between-subject consistency of perceptual segmentation in periodic noise: A combined behavioral tapping and EEG study. Psychophysiology 2023;60:e14174. [PMID: 36106761 DOI: 10.1111/psyp.14174] [Reference Citation Analysis]
3 Herrmann B, Maess B, Johnsrude IS. Sustained responses and neural synchronization to amplitude and frequency modulation in sound change with age. Hear Res 2023;428:108677. [PMID: 36580732 DOI: 10.1016/j.heares.2022.108677] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
4 Bouvier B, Susini P, Marquis-favre C, Misdariis N. Revealing the stimulus-driven component of attention through modulations of auditory salience by timbre attributes.. [DOI: 10.21203/rs.3.rs-2406084/v1] [Reference Citation Analysis]
5 Szalárdy O, Tóth B, Farkas D, Orosz G, Winkler I. Do we parse the background into separate streams in the cocktail party? Front Hum Neurosci 2022;16. [DOI: 10.3389/fnhum.2022.952557] [Reference Citation Analysis]
6 Chao ZC, Huang YT, Wu CT. A quantitative model reveals a frequency ordering of prediction and prediction-error signals in the human brain. Commun Biol 2022;5:1076. [PMID: 36216885 DOI: 10.1038/s42003-022-04049-6] [Reference Citation Analysis]
7 Symons A, Dick F, Tierney A. Salient sounds distort time perception and production.. [DOI: 10.1101/2022.07.04.498704] [Reference Citation Analysis]
8 Mencke I, Omigie D, Quiroga-martinez DR, Brattico E. Atonal Music as a Model for Investigating Exploratory Behavior. Front Neurosci 2022;16:793163. [DOI: 10.3389/fnins.2022.793163] [Reference Citation Analysis]
9 Chen C, Xu S, Wang Y, Wang X. Location-Specific Facilitation in Primate Auditory Cortex.. [DOI: 10.1101/2022.06.19.496736] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Herrmann B, Maess B, Johnsrude IS. Sustained responses and neural synchronization to amplitude and frequency modulation in sound change with age.. [DOI: 10.1101/2022.04.28.489911] [Reference Citation Analysis]
11 Szalárdy O, Tóth B, Farkas D, Orosz G, Winkler I. Do we parse the background into separate streams in the cocktail party?. [DOI: 10.1101/2022.02.21.480990] [Reference Citation Analysis]
12 Lecaignard F, Bertrand R, Brunner P, Caclin A, Schalk G, Mattout J. Dynamics of Oddball Sound Processing: Trial-by-Trial Modeling of ECoG Signals. Front Hum Neurosci 2022;15:794654. [DOI: 10.3389/fnhum.2021.794654] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Soltanparast S, Toufan R, Talebian S, Pourbakht A. Regularity of background auditory scene and selective attention: a brain oscillatory study. Neuroscience Letters 2022. [DOI: 10.1016/j.neulet.2022.136465] [Reference Citation Analysis]
14 Kothinti SR, Huang N, Elhilali M. Auditory salience using natural scenes: An online study. J Acoust Soc Am 2021;150:2952. [PMID: 34717500 DOI: 10.1121/10.0006750] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
15 Dheerendra P, Barascud N, Kumar S, Overath T, Griffiths TD. Dynamics underlying auditory-object-boundary detection in primary auditory cortex. Eur J Neurosci 2021;54:7274-88. [PMID: 34549472 DOI: 10.1111/ejn.15471] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
16 Herrmann B, Maess B, Johnsrude IS. A neural signature of regularity in sound is reduced in older adults. Neurobiol Aging 2021;109:1-10. [PMID: 34634748 DOI: 10.1016/j.neurobiolaging.2021.09.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 Benhamou E, Zhao S, Sivasathiaseelan H, Johnson JCS, Requena-Komuro MC, Bond RL, van Leeuwen JEP, Russell LL, Greaves CV, Nelson A, Nicholas JM, Hardy CJD, Rohrer JD, Warren JD. Decoding expectation and surprise in dementia: the paradigm of music. Brain Commun 2021;3:fcab173. [PMID: 34423301 DOI: 10.1093/braincomms/fcab173] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Clayton KK, Asokan MM, Watanabe Y, Hancock KE, Polley DB. Behavioral Approaches to Study Top-Down Influences on Active Listening. Front Neurosci 2021;15:666627. [PMID: 34305516 DOI: 10.3389/fnins.2021.666627] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
19 Herrmann B, Araz K, Johnsrude IS. Sustained neural activity correlates with rapid perceptual learning of auditory patterns. Neuroimage 2021;238:118238. [PMID: 34098064 DOI: 10.1016/j.neuroimage.2021.118238] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
20 Schneider F, Balezeau F, Distler C, Kikuchi Y, van Kempen J, Gieselmann A, Petkov CI, Thiele A, Griffiths TD. Neuronal figure-ground responses in primate primary auditory cortex. Cell Rep 2021;35:109242. [PMID: 34133935 DOI: 10.1016/j.celrep.2021.109242] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
21 Milne A, Zhao S, Tampakaki C, Bury G, Chait M. Sustained pupil responses are modulated by predictability of auditory sequences. J Neurosci 2021:JN-RM-2879-20. [PMID: 34083259 DOI: 10.1523/JNEUROSCI.2879-20.2021] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
22 Lutz ND, Admard M, Genzoni E, Born J, Rauss K. Occipital sleep spindles predict sequence learning in a visuo-motor task. Sleep 2021:zsab056. [PMID: 33743012 DOI: 10.1093/sleep/zsab056] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
23 Herrmann B, Maess B, Johnsrude IS. A Neural Signature of Regularity in Sound is Reduced in Older Adults.. [DOI: 10.1101/2021.02.18.431898] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
24 Montes-Lourido P, Kar M, Kumbam I, Sadagopan S. Pupillometry as a reliable metric of auditory detection and discrimination across diverse stimulus paradigms in animal models. Sci Rep 2021;11:3108. [PMID: 33542266 DOI: 10.1038/s41598-021-82340-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
25 Planton S, van Kerkoerle T, Abbih L, Maheu M, Meyniel F, Sigman M, Wang L, Figueira S, Romano S, Dehaene S. A theory of memory for binary sequences: Evidence for a mental compression algorithm in humans. PLoS Comput Biol 2021;17:e1008598. [PMID: 33465081 DOI: 10.1371/journal.pcbi.1008598] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
26 Hsu YF, Hämäläinen JA. Both contextual regularity and selective attention affect the reduction of precision-weighted prediction errors but in distinct manners. Psychophysiology 2021;58:e13753. [PMID: 33340115 DOI: 10.1111/psyp.13753] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
27 Montes-lourido P, Kar M, Kumbam I, Sadagopan S. Pupillometry as a reliable metric of auditory detection and discrimination across diverse stimulus paradigms in animal models.. [DOI: 10.1101/2020.11.16.385286] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
28 Aman L, Picken S, Andreou LV, Chait M. Sensitivity to temporal structure facilitates perceptual analysis of complex auditory scenes. Hear Res 2021;400:108111. [PMID: 33333425 DOI: 10.1016/j.heares.2020.108111] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
29 Milne A, Zhao S, Tampakaki C, Bury G, Chait M. Sustained pupil responses are modulated by predictability of auditory sequences.. [DOI: 10.1101/2020.11.10.376699] [Reference Citation Analysis]
30 Andermann M, Günther M, Patterson RD, Rupp A. Early cortical processing of pitch height and the role of adaptation and musicality. Neuroimage 2021;225:117501. [PMID: 33169697 DOI: 10.1016/j.neuroimage.2020.117501] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
31 Yasmin S, Purcell DW, Veeranna SA, Johnsrude IS, Herrmann B. A novel approach to investigate subcortical and cortical sensitivity to temporal structure simultaneously. Hear Res 2020;398:108080. [PMID: 33038827 DOI: 10.1016/j.heares.2020.108080] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
32 Herrmann B, Araz K, Johnsrude IS. Sustained neural activity correlates with rapid perceptual learning of auditory patterns.. [DOI: 10.1101/2020.09.13.295568] [Reference Citation Analysis]
33 Turoman N, Tivadar RI, Retsa C, Murray MM, Matusz PJ. Towards understanding how we pay attention in naturalistic visual search settings.. [DOI: 10.1101/2020.07.30.229617] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
34 Cai H, Dent ML. Attention capture in birds performing an auditory streaming task. PLoS One 2020;15:e0235420. [PMID: 32589692 DOI: 10.1371/journal.pone.0235420] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
35 Bianco R, Harrison PM, Hu M, Bolger C, Picken S, Pearce MT, Chait M. Long-term implicit memory for sequential auditory patterns in humans. Elife 2020;9:e56073. [PMID: 32420868 DOI: 10.7554/eLife.56073] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
36 Szalárdy O, Tóth B, Farkas D, Orosz G, Honbolygó F, Winkler I. Linguistic predictability influences auditory stimulus classification within two concurrent speech streams. Psychophysiology 2020;57. [DOI: 10.1111/psyp.13547] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
37 Varma SY, Purcell D, Veeranna SA, Johnsrude IS, Herrmann B. A Novel Approach to Investigate Subcortical and Cortical Sensitivity to Temporal Structure Simultaneously.. [DOI: 10.1101/2020.03.03.968404] [Reference Citation Analysis]
38 Anikin A. The link between auditory salience and emotion intensity. Cogn Emot 2020;34:1246-59. [PMID: 32126893 DOI: 10.1080/02699931.2020.1736992] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
39 Kim SG, Poeppel D, Overath T. Modulation change detection in human auditory cortex: Evidence for asymmetric, non-linear edge detection. Eur J Neurosci 2020;52:2889-904. [PMID: 32080939 DOI: 10.1111/ejn.14707] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
40 Al Jaja A, Grahn JA, Herrmann B, MacDonald PA. The effect of aging, Parkinson's disease, and exogenous dopamine on the neural response associated with auditory regularity processing. Neurobiol Aging 2020;89:71-82. [PMID: 32057529 DOI: 10.1016/j.neurobiolaging.2020.01.002] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
41 Bianco R, Ptasczynski LE, Omigie D. Pupil responses to pitch deviants reflect predictability of melodic sequences. Brain and Cognition 2020;138:103621. [DOI: 10.1016/j.bandc.2019.103621] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
42 Hsu Y, Xu W, Parviainen T, Hämäläinen JA. Context-dependent minimisation of prediction errors involves temporal-frontal activation. NeuroImage 2020;207:116355. [DOI: 10.1016/j.neuroimage.2019.116355] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
43 Chait M. How the brain discovers structure in sound sequences. Acoust Sci & Tech 2020;41:48-53. [DOI: 10.1250/ast.41.48] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
44 de Cheveigné A, Nelken I. Filters: When, Why, and How (Not) to Use Them. Neuron 2019;102:280-93. [PMID: 30998899 DOI: 10.1016/j.neuron.2019.02.039] [Cited by in Crossref: 89] [Cited by in F6Publishing: 97] [Article Influence: 22.3] [Reference Citation Analysis]
45 Herrmann B, Buckland C, Johnsrude IS. Neural signatures of temporal regularity processing in sounds differ between younger and older adults. Neurobiology of Aging 2019;83:73-85. [DOI: 10.1016/j.neurobiolaging.2019.08.028] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 5.3] [Reference Citation Analysis]
46 Zhao S, Chait M, Dick F, Dayan P, Furukawa S, Liao HI. Pupil-linked phasic arousal evoked by violation but not emergence of regularity within rapid sound sequences. Nat Commun 2019;10:4030. [PMID: 31492881 DOI: 10.1038/s41467-019-12048-1] [Cited by in Crossref: 37] [Cited by in F6Publishing: 40] [Article Influence: 9.3] [Reference Citation Analysis]
47 Huang N, Elhilali M. Auditory salience using natural soundscapes. J Acoust Soc Am 2017;141:2163. [PMID: 28372080 DOI: 10.1121/1.4979055] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 9.5] [Reference Citation Analysis]
48 Jaja AA, Grahn JA, Herrmann B, Macdonald PA. The Effect of Aging, Parkinson’s Disease, and Exogenous Dopamine on the Neural Response Associated with Auditory Regularity Processing.. [DOI: 10.1101/647628] [Reference Citation Analysis]
49 Carbajal GV, Malmierca MS. The Neuronal Basis of Predictive Coding Along the Auditory Pathway: From the Subcortical Roots to Cortical Deviance Detection. Trends Hear 2018;22:2331216518784822. [PMID: 30022729 DOI: 10.1177/2331216518784822] [Cited by in Crossref: 50] [Cited by in F6Publishing: 62] [Article Influence: 12.5] [Reference Citation Analysis]
50 Hsu YF, Waszak F, Hämäläinen JA. Prior Precision Modulates the Minimization of Auditory Prediction Error. Front Hum Neurosci 2019;13:30. [PMID: 30828293 DOI: 10.3389/fnhum.2019.00030] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
51 Lumaca M, Trusbak Haumann N, Brattico E, Grube M, Vuust P. Weighting of neural prediction error by rhythmic complexity: A predictive coding account using mismatch negativity. Eur J Neurosci 2019;49:1597-609. [DOI: 10.1111/ejn.14329] [Cited by in Crossref: 29] [Cited by in F6Publishing: 59] [Article Influence: 7.3] [Reference Citation Analysis]
52 Herrmann B, Buckland C, Johnsrude IS. The effects of aging on neural signatures of temporal regularity processing in sounds.. [DOI: 10.1101/522375] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
53 Motala A, Caceres LG. Disentangling Neural Synchronization and Sustained Neural Activity in the Processing of Auditory Temporal Patterns. Front Hum Neurosci 2018;12:497. [PMID: 30618679 DOI: 10.3389/fnhum.2018.00497] [Reference Citation Analysis]
54 Lecaignard F, Bertrand O, Caclin A, Mattout J. Neurocomputational underpinnings of expected surprise.. [DOI: 10.1101/501221] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
55 Gifford AM, Sperling MR, Sharan A, Gorniak RJ, Williams RB, Davis K, Kahana MJ, Cohen YE. Neuronal phase consistency tracks dynamic changes in acoustic spectral regularity. Eur J Neurosci 2019;49:1268-87. [PMID: 30402926 DOI: 10.1111/ejn.14263] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
56 de Cheveigné A, Di Liberto GM, Arzounian D, Wong DDE, Hjortkjær J, Fuglsang S, Parra LC. Multiway canonical correlation analysis of brain data. Neuroimage 2019;186:728-40. [PMID: 30496819 DOI: 10.1016/j.neuroimage.2018.11.026] [Cited by in Crossref: 39] [Cited by in F6Publishing: 43] [Article Influence: 7.8] [Reference Citation Analysis]
57 Zhao S, Chait M, Dick F, Dayan P, Furukawa S, Liao H. Phasic norepinephrine is a neural interrupt signal for unexpected events in rapidly unfolding sensory sequences – evidence from pupillometry.. [DOI: 10.1101/466367] [Reference Citation Analysis]
58 Meijs EL, Klaassen FH, Bokeria L, van Gaal S, de Lange FP. Cue predictability does not modulate bottom-up attentional capture. R Soc Open Sci 2018;5:180524. [PMID: 30473815 DOI: 10.1098/rsos.180524] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
59 Southwell R, Chait M. Enhanced deviant responses in patterned relative to random sound sequences. Cortex 2018;109:92-103. [PMID: 30312781 DOI: 10.1016/j.cortex.2018.08.032] [Cited by in Crossref: 47] [Cited by in F6Publishing: 31] [Article Influence: 9.4] [Reference Citation Analysis]
60 Hsu Y, Waszak F, Hämäläinen JA. Prior precision modulates the minimisation of prediction error in human auditory cortex.. [DOI: 10.1101/415083] [Reference Citation Analysis]
61 de Lange FP, Heilbron M, Kok P. How Do Expectations Shape Perception? Trends in Cognitive Sciences 2018;22:764-79. [DOI: 10.1016/j.tics.2018.06.002] [Cited by in Crossref: 339] [Cited by in F6Publishing: 379] [Article Influence: 67.8] [Reference Citation Analysis]
62 Barczak A, O'Connell MN, McGinnis T, Ross D, Mowery T, Falchier A, Lakatos P. Top-down, contextual entrainment of neuronal oscillations in the auditory thalamocortical circuit. Proc Natl Acad Sci U S A 2018;115:E7605-14. [PMID: 30037997 DOI: 10.1073/pnas.1714684115] [Cited by in Crossref: 42] [Cited by in F6Publishing: 43] [Article Influence: 8.4] [Reference Citation Analysis]
63 de Cheveigné A, Di Liberto GM, Arzounian D, Wong DD, Hjortkjær J, Fuglsang S, Parra LC. Multiway Canonical Correlation Analysis of Brain Signals.. [DOI: 10.1101/344960] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
64 Xie Z, Reetzke R, Chandrasekaran B. Taking Attention Away from the Auditory Modality: Context-dependent Effects on Early Sensory Encoding of Speech. Neuroscience 2018;384:64-75. [PMID: 29802881 DOI: 10.1016/j.neuroscience.2018.05.023] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
65 Herrmann B, Johnsrude IS. Neural Signatures of the Processing of Temporal Patterns in Sound. J Neurosci 2018;38:5466-77. [PMID: 29773757 DOI: 10.1523/JNEUROSCI.0346-18.2018] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 4.4] [Reference Citation Analysis]
66 Coffman BA, Haigh SM, Murphy TK, Leiter-Mcbeth J, Salisbury DF. Reduced auditory segmentation potentials in first-episode schizophrenia. Schizophr Res 2018;195:421-7. [PMID: 29070441 DOI: 10.1016/j.schres.2017.10.011] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
67 Wen W, Brann E, Di Costa S, Haggard P. Enhanced perceptual processing of self-generated motion: Evidence from steady-state visual evoked potentials. Neuroimage 2018;175:438-48. [PMID: 29654877 DOI: 10.1016/j.neuroimage.2018.04.019] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
68 Su Y, Wang J, Zhang K, Madani K. Computational modeling of environment deviant sound detection based on human auditory cognitive mechanism. Biologically Inspired Cognitive Architectures 2018;24:87-97. [DOI: 10.1016/j.bica.2018.04.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
69 Meijs EL, Klaassen FH, Bokeria L, Gaal SV, Lange FPD. Stimulus predictability does not modulate bottom-up attentional capture.. [DOI: 10.1101/292508] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
70 de Cheveigné A, Arzounian D. Robust detrending, rereferencing, outlier detection, and inpainting for multichannel data. Neuroimage 2018;172:903-12. [PMID: 29448077 DOI: 10.1016/j.neuroimage.2018.01.035] [Cited by in Crossref: 62] [Cited by in F6Publishing: 71] [Article Influence: 12.4] [Reference Citation Analysis]
71 Herrmann B, Johnsrude IS. Neural signatures of the processing of temporal patterns in sound.. [DOI: 10.1101/261271] [Reference Citation Analysis]
72 Denham SL, Winkler I. Predictive coding in auditory perception: challenges and unresolved questions. Eur J Neurosci 2020;51:1151-60. [PMID: 29250827 DOI: 10.1111/ejn.13802] [Cited by in Crossref: 24] [Cited by in F6Publishing: 29] [Article Influence: 4.8] [Reference Citation Analysis]
73 Rodriguez-hidalgo A, Pelaez-moreno C, Gallardo-antolin A. The Robustness of Echoic Log-Surprise Auditory Saliency Detection. IEEE Access 2018;6:72083-72093. [DOI: 10.1109/access.2018.2882055] [Reference Citation Analysis]
74 de Cheveigné A, Arzounian D. Robust detrending, rereferencing, outlier detection, and inpainting for multichannel data.. [DOI: 10.1101/232892] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
75 Auksztulewicz R, Friston KJ, Nobre AC. Task relevance modulates the behavioural and neural effects of sensory predictions. PLoS Biol 2017;15:e2003143. [PMID: 29206225 DOI: 10.1371/journal.pbio.2003143] [Cited by in Crossref: 33] [Cited by in F6Publishing: 38] [Article Influence: 5.5] [Reference Citation Analysis]
76 Southwell R, Chait M. Enhanced deviant responses in patterned relative to random sound sequences.. [DOI: 10.1101/214031] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
77 Heilbron M, Chait M. Great Expectations: Is there Evidence for Predictive Coding in Auditory Cortex? Neuroscience 2018;389:54-73. [PMID: 28782642 DOI: 10.1016/j.neuroscience.2017.07.061] [Cited by in Crossref: 161] [Cited by in F6Publishing: 179] [Article Influence: 26.8] [Reference Citation Analysis]
78 Auksztulewicz R, Barascud N, Cooray G, Nobre AC, Chait M, Friston K. The Cumulative Effects of Predictability on Synaptic Gain in the Auditory Processing Stream. J Neurosci 2017;37:6751-60. [PMID: 28607165 DOI: 10.1523/JNEUROSCI.0291-17.2017] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 6.2] [Reference Citation Analysis]
79 Aman L, Picken S, Andreou L, Chait M. Sensitivity to statistical structure facilitates perceptual analysis of complex auditory scenes.. [DOI: 10.1101/126763] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
80 Kaya EM, Elhilali M. Modelling auditory attention. Philos Trans R Soc Lond B Biol Sci 2017;372:20160101. [PMID: 28044012 DOI: 10.1098/rstb.2016.0101] [Cited by in Crossref: 54] [Cited by in F6Publishing: 57] [Article Influence: 9.0] [Reference Citation Analysis]
81 Kondo HM, van Loon AM, Kawahara JI, Moore BC. Auditory and visual scene analysis: an overview. Philos Trans R Soc Lond B Biol Sci 2017;372:20160099. [PMID: 28044011 DOI: 10.1098/rstb.2016.0099] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
82 Dykstra AR, Cariani PA, Gutschalk A. A roadmap for the study of conscious audition and its neural basis. Philos Trans R Soc Lond B Biol Sci 2017;372:20160103. [PMID: 28044014 DOI: 10.1098/rstb.2016.0103] [Cited by in Crossref: 32] [Cited by in F6Publishing: 35] [Article Influence: 5.3] [Reference Citation Analysis]
83 Veale R, Hafed ZM, Yoshida M. How is visual salience computed in the brain? Insights from behaviour, neurobiology and modelling. Philos Trans R Soc Lond B Biol Sci 2017;372:20160113. [PMID: 28044023 DOI: 10.1098/rstb.2016.0113] [Cited by in Crossref: 89] [Cited by in F6Publishing: 92] [Article Influence: 14.8] [Reference Citation Analysis]
84 Southwell R, Baumann A, Gal C, Barascud N, Friston K, Chait M. Is predictability salient? A study of attentional capture by auditory patterns. Philos Trans R Soc Lond B Biol Sci 2017;372:20160105. [PMID: 28044016 DOI: 10.1098/rstb.2016.0105] [Cited by in Crossref: 72] [Cited by in F6Publishing: 83] [Article Influence: 12.0] [Reference Citation Analysis]
85 Petsas T, Harrison J, Kashino M, Furukawa S, Chait M. The effect of distraction on change detection in crowded acoustic scenes. Hear Res 2016;341:179-89. [PMID: 27598040 DOI: 10.1016/j.heares.2016.08.015] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]