BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Schüttler A, Reiche K, Altenburger R, Busch W. The Transcriptome of the Zebrafish Embryo After Chemical Exposure: A Meta-Analysis. Toxicol Sci 2017;157:291-304. [PMID: 28329862 DOI: 10.1093/toxsci/kfx045] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 6.8] [Reference Citation Analysis]
Number Citing Articles
1 Samrani LM, Pennings JL, Hallmark N, Bars R, Tinwell H, Pallardy M, Piersma AH. Dynamic regulation of gene expression and morphogenesis in the zebrafish embryo test after exposure to all-trans retinoic acid. Reproductive Toxicology 2022. [DOI: 10.1016/j.reprotox.2022.11.001] [Reference Citation Analysis]
2 Gazo I, Naraine R, Lebeda I, Tomčala A, Dietrich M, Franěk R, Pšenička M, Šindelka R. Transcriptome and Proteome Analyses Reveal Stage-Specific DNA Damage Response in Embryos of Sturgeon (Acipenser ruthenus). Int J Mol Sci 2022;23:6392. [PMID: 35742841 DOI: 10.3390/ijms23126392] [Reference Citation Analysis]
3 Meador JP. The fish early-life stage sublethal toxicity syndrome - A high-dose baseline toxicity response. Environ Pollut 2021;291:118201. [PMID: 34740289 DOI: 10.1016/j.envpol.2021.118201] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Reinwald H, Alvincz J, Salinas G, Schäfers C, Hollert H, Eilebrecht S. Toxicogenomic profiling after sublethal exposure to nerve- and muscle-targeting insecticides reveals cardiac and neuronal developmental effects in zebrafish embryos. Chemosphere 2021;:132746. [PMID: 34748799 DOI: 10.1016/j.chemosphere.2021.132746] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
5 Saiki P, Mello-Andrade F, Gomes T, Rocha TL. Sediment toxicity assessment using zebrafish (Danio rerio) as a model system: Historical review, research gaps and trends. Sci Total Environ 2021;793:148633. [PMID: 34182436 DOI: 10.1016/j.scitotenv.2021.148633] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
6 Schüttler A, Jakobs G, Fix JM, Krauss M, Krüger J, Leuthold D, Altenburger R, Busch W. Transcriptome-Wide Prediction and Measurement of Combined Effects Induced by Chemical Mixture Exposure in Zebrafish Embryos. Environ Health Perspect 2021;129:47006. [PMID: 33826412 DOI: 10.1289/EHP7773] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Wu H, Wang J, Xiang Y, Li L, Qie H, Ren M, Lin A, Qi F. Effects of tetrabromobisphenol A (TBBPA) on the reproductive health of male rodents: A systematic review and meta-analysis. Sci Total Environ 2021;781:146745. [PMID: 33794456 DOI: 10.1016/j.scitotenv.2021.146745] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
8 McGruer V, Tanabe P, Vliet SMF, Dasgupta S, Qian L, Volz DC, Schlenk D. Effects of Phenanthrene Exposure on Cholesterol Homeostasis and Cardiotoxicity in Zebrafish Embryos. Environ Toxicol Chem 2021;40:1586-95. [PMID: 33523501 DOI: 10.1002/etc.5002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Lai KP, Gong Z, Tse WKF. Zebrafish as the toxicant screening model: Transgenic and omics approaches. Aquat Toxicol 2021;234:105813. [PMID: 33812311 DOI: 10.1016/j.aquatox.2021.105813] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 14.0] [Reference Citation Analysis]
10 Larras F, Billoir E, Scholz S, Tarkka M, Wubet T, Delignette-muller M, Schmitt-jansen M. A multi-omics concentration-response framework uncovers novel understanding of triclosan effects in the chlorophyte Scenedesmus vacuolatus. Journal of Hazardous Materials 2020;397:122727. [DOI: 10.1016/j.jhazmat.2020.122727] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 5.5] [Reference Citation Analysis]
11 Li R, Zupanic A, Talikka M, Belcastro V, Madan S, Dörpinghaus J, Berg CV, Szostak J, Martin F, Peitsch MC, Hoeng J. Systems Toxicology Approach for Testing Chemical Cardiotoxicity in Larval Zebrafish. Chem Res Toxicol 2020;33:2550-64. [PMID: 32638588 DOI: 10.1021/acs.chemrestox.0c00095] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
12 Sohrabi SS, Sohrabi SM, Rashidipour M, Mohammadi M, Khalili Fard J, Mirzaei Najafgholi H. Identification of common key regulators in rat hepatocyte cell lines under exposure of different pesticides. Gene 2020;739:144508. [DOI: 10.1016/j.gene.2020.144508] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
13 Krämer S, Busch W, Schüttler A. A Self-Organizing Map of the Fathead Minnow Liver Transcriptome to Identify Consistent Toxicogenomic Patterns across Chemical Fingerprints. Environ Toxicol Chem 2020;39:526-37. [PMID: 31820487 DOI: 10.1002/etc.4646] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Schüttler A, Altenburger R, Ammar M, Bader-Blukott M, Jakobs G, Knapp J, Krüger J, Reiche K, Wu GM, Busch W. Map and model-moving from observation to prediction in toxicogenomics. Gigascience 2019;8:giz057. [PMID: 31140561 DOI: 10.1093/gigascience/giz057] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
15 Burkard M, Betz A, Schirmer K, Zupanic A. Common Gene Expression Patterns in Environmental Model Organisms Exposed to Engineered Nanomaterials: A Meta-Analysis. Environ Sci Technol 2020;54:335-44. [PMID: 31752483 DOI: 10.1021/acs.est.9b05170] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
16 Brack W, Ait-aissa S, Backhaus T, Birk S, Barceló D, Burgess R, Cousins I, Dulio V, Escher BI, Focks A, van Gils J, Ginebreda A, Hering D, Hewitt LM, Hilscherová K, Hollender J, Hollert H, Köck M, Kortenkamp A, de Alda ML, Müller C, Posthuma L, Schüürmann G, Schymanski E, Segner H, Sleeuwaert F, Slobodnik J, Teodorovic I, Umbuzeiro G, Voulvoulis N, van Wezel A, Altenburger R. Strengthen the European collaborative environmental research to meet European policy goals for achieving a sustainable, non-toxic environment. Environ Sci Eur 2019;31. [DOI: 10.1186/s12302-019-0232-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
17 Meador JP, Nahrgang J. Characterizing Crude Oil Toxicity to Early-Life Stage Fish Based On a Complex Mixture: Are We Making Unsupported Assumptions? Environ Sci Technol 2019;53:11080-92. [PMID: 31503459 DOI: 10.1021/acs.est.9b02889] [Cited by in Crossref: 35] [Cited by in F6Publishing: 40] [Article Influence: 11.7] [Reference Citation Analysis]
18 Talikka M, Belcastro V, Gubian S, Martin F, Peitsch MC, Hoeng J. Systems toxicology meta-analysis—From aerosol exposure to nanotoxicology. Current Opinion in Toxicology 2019;16:39-48. [DOI: 10.1016/j.cotox.2019.03.010] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
19 Postlethwait JH, Navajas Acedo J, Piotrowski T. Evolutionary Origin and Nomenclature of Vertebrate Wnt11-Family Genes. Zebrafish 2019;16:469-76. [PMID: 31295059 DOI: 10.1089/zeb.2019.1760] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
20 Hiki K, Nakajima F, Tobino T, Watanabe H, Yamamoto H. Whole transcriptome analysis of an estuarine amphipod exposed to highway road dust. Science of The Total Environment 2019;675:141-50. [DOI: 10.1016/j.scitotenv.2019.04.201] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
21 Balik-Meisner MR, Mav D, Phadke DP, Everett LJ, Shah RR, Tal T, Shepard PJ, Merrick BA, Paules RS. Development of a Zebrafish S1500+ Sentinel Gene Set for High-Throughput Transcriptomics. Zebrafish 2019;16:331-47. [PMID: 31188086 DOI: 10.1089/zeb.2018.1720] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
22 Velki M, Lackmann C, Barranco A, Ereño Artabe A, Rainieri S, Hollert H, Seiler T. Pesticides diazinon and diuron increase glutathione levels and affect multixenobiotic resistance activity and biomarker responses in zebrafish (Danio rerio) embryos and larvae. Environ Sci Eur 2019;31. [DOI: 10.1186/s12302-019-0186-0] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
23 Gomes SI, Gonçalves MF, Bicho RC, Roca CP, Soares AM, Scott-fordsmand JJ, Amorim MJ. High-throughput gene expression in soil invertebrate embryos – Mechanisms of Cd toxicity in Enchytraeus crypticus. Chemosphere 2018;212:87-94. [DOI: 10.1016/j.chemosphere.2018.08.068] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
24 Sarasquete C, Úbeda-manzanaro M, Ortiz-delgado JB. Toxicity and non-harmful effects of the soya isoflavones, genistein and daidzein, in embryos of the zebrafish, Danio rerio. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 2018;211:57-67. [DOI: 10.1016/j.cbpc.2018.05.012] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
25 de Abreu MS, Giacomini AC, Zanandrea R, dos Santos BE, Genario R, de Oliveira GG, Friend AJ, Amstislavskaya TG, Kalueff AV. Psychoneuroimmunology and immunopsychiatry of zebrafish. Psychoneuroendocrinology 2018;92:1-12. [DOI: 10.1016/j.psyneuen.2018.03.014] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
26 Zhang K, Zhao Y. Reduced Zebrafish Transcriptome Atlas toward Understanding Environmental Neurotoxicants. Environ Sci Technol 2018;52:7120-30. [DOI: 10.1021/acs.est.8b01350] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
27 Haggard DE, Noyes PD, Waters KM, Tanguay RL. Transcriptomic and phenotypic profiling in developing zebrafish exposed to thyroid hormone receptor agonists. Reprod Toxicol 2018;77:80-93. [PMID: 29458080 DOI: 10.1016/j.reprotox.2018.02.006] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 4.5] [Reference Citation Analysis]
28 Wang P, Xia P, Yang J, Wang Z, Peng Y, Shi W, Villeneuve DL, Yu H, Zhang X. A Reduced Transcriptome Approach to Assess Environmental Toxicants Using Zebrafish Embryo Test. Environ Sci Technol 2018;52:821-30. [PMID: 29224359 DOI: 10.1021/acs.est.7b04073] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 8.3] [Reference Citation Analysis]
29 Hebels DG, Carlier A, Coonen ML, Theunissen DH, de Boer J. cBiT: A transcriptomics database for innovative biomaterial engineering. Biomaterials 2017;149:88-97. [DOI: 10.1016/j.biomaterials.2017.10.008] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]