BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sgro A, Blancafort P. Epigenome engineering: new technologies for precision medicine. Nucleic Acids Res. 2020;48:12453-12482. [PMID: 33196851 DOI: 10.1093/nar/gkaa1000] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 9.0] [Reference Citation Analysis]
Number Citing Articles
1 Mukherjee P, Park SH, Pathak N, Patino CA, Bao G, Espinosa HD. Integrating Micro and Nano Technologies for Cell Engineering and Analysis: Toward the Next Generation of Cell Therapy Workflows. ACS Nano 2022;16:15653-80. [PMID: 36154011 DOI: 10.1021/acsnano.2c05494] [Reference Citation Analysis]
2 Migliara A, Cappelluti MA, Valsoni S, Merelli I, Cittaro D, Lombardo A. In vitro selection of Engineered Transcriptional Repressors for targeted epigenetic silencing and initial evaluation of their specificity profile.. [DOI: 10.1101/2022.08.30.505942] [Reference Citation Analysis]
3 Moschner C, Wedd  C, Bakshi  S. The context matrix: Navigating biological complexity for advanced biodesign. Front Bioeng Biotechnol 2022;10:954707. [DOI: 10.3389/fbioe.2022.954707] [Reference Citation Analysis]
4 de Mendoza A, Nguyen TV, Ford E, Poppe D, Buckberry S, Pflueger J, Grimmer MR, Stolzenburg S, Bogdanovic O, Oshlack A, Farnham PJ, Blancafort P, Lister R. Large-scale manipulation of promoter DNA methylation reveals context-specific transcriptional responses and stability. Genome Biol 2022;23:163. [PMID: 35883107 DOI: 10.1186/s13059-022-02728-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
5 Zhao Y, He J, Qiu T, Zhang H, Liao L, Su X. Epigenetic therapy targeting bone marrow mesenchymal stem cells for age-related bone diseases. Stem Cell Res Ther 2022;13:201. [PMID: 35578312 DOI: 10.1186/s13287-022-02852-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Selvakumar SC, Preethi KA, Ross K, Tusubira D, Khan MWA, Mani P, Rao TN, Sekar D. CRISPR/Cas9 and next generation sequencing in the personalized treatment of Cancer. Mol Cancer 2022;21:83. [PMID: 35331236 DOI: 10.1186/s12943-022-01565-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
7 Ahmed Z. Multi-omics strategies for personalized and predictive medicine: past, current, and future translational opportunities. Emerg Top Life Sci 2022:ETLS20210244. [PMID: 35234253 DOI: 10.1042/ETLS20210244] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Ahmed Z. Precision medicine with multi-omics strategies, deep phenotyping, and predictive analysis. Progress in Molecular Biology and Translational Science 2022. [DOI: 10.1016/bs.pmbts.2022.02.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Guerra-resendez RS, Hilton IB. Harnessing CRISPR-Cas9 for Epigenetic Engineering. Riboregulator Design and Analysis 2022. [DOI: 10.1007/978-1-0716-2421-0_14] [Reference Citation Analysis]
10 Cortés-mancera FM, Sarno F, Goubert D, Rots MG. Gene-Targeted DNA Methylation: Towards Long-Lasting Reprogramming of Gene Expression? Advances in Experimental Medicine and Biology 2022. [DOI: 10.1007/978-3-031-11454-0_18] [Reference Citation Analysis]
11 Panasenko S, Kerbazh N, Panasenko T, Drabovskiy V. A LOOK AT MODERN ACHIEVEMENTS AND PROSPECTS FOR THE DEVELOPMENT OF HIGHER MEDICAL EDUCATION THROUGH THE PRISM OF BIOETHICS. VPBM 2022;1:344. [DOI: 10.29254/2077-4214-2022-2-1-164-344-353] [Reference Citation Analysis]
12 Kairuz D, Singh P, Smith T, Arbuthnot P, Ely A, Bloom K. Synthetic mRNA Gene Therapies and Hepatotropic Non-viral Vectors for the Treatment of Chronic HBV Infections. RNA Technologies 2022. [DOI: 10.1007/978-3-031-08415-7_8] [Reference Citation Analysis]
13 Janowski M, Milewska M, Zare P, Pękowska A. Chromatin Alterations in Neurological Disorders and Strategies of (Epi)Genome Rescue. Pharmaceuticals (Basel) 2021;14:765. [PMID: 34451862 DOI: 10.3390/ph14080765] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
14 Ślaska-Kiss K, Zsibrita N, Koncz M, Albert P, Csábrádi Á, Szentes S, Kiss A. Lowering DNA binding affinity of SssI DNA methyltransferase does not enhance the specificity of targeted DNA methylation in E. coli. Sci Rep 2021;11:15226. [PMID: 34315949 DOI: 10.1038/s41598-021-94528-3] [Reference Citation Analysis]
15 Singh P, Kairuz D, Arbuthnot P, Bloom K. Silencing hepatitis B virus covalently closed circular DNA: The potential of an epigenetic therapy approach. World J Gastroenterol 2021; 27(23): 3182-3207 [PMID: 34163105 DOI: 10.3748/wjg.v27.i23.3182] [Cited by in CrossRef: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
16 Ramzan F, Vickers MH, Mithen RF. Epigenetics, microRNA and Metabolic Syndrome: A Comprehensive Review. Int J Mol Sci 2021;22:5047. [PMID: 34068765 DOI: 10.3390/ijms22095047] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
17 Alves E, Taifour S, Dolcetti R, Chee J, Nowak AK, Gaudieri S, Blancafort P. Reprogramming the anti-tumor immune response via CRISPR genetic and epigenetic editing. Mol Ther Methods Clin Dev 2021;21:592-606. [PMID: 34095343 DOI: 10.1016/j.omtm.2021.04.009] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
18 Berjawi M, Bell CG. The Therapeutic Potential of Epigenome-Modifying Drugs in Cardiometabolic Disease. Curr Genet Med Rep 2021;9:22-36. [DOI: 10.1007/s40142-021-00198-y] [Reference Citation Analysis]