BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: HD iPSC Consortium. Bioenergetic deficits in Huntington's disease iPSC-derived neural cells and rescue with glycolytic metabolites. Hum Mol Genet 2020;29:1757-71. [PMID: 30768179 DOI: 10.1093/hmg/ddy430] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 10.0] [Reference Citation Analysis]
Number Citing Articles
1 Beatriz M, Lopes C, Ribeiro ACS, Rego ACC. Revisiting cell and gene therapies in Huntington's disease. J Neurosci Res 2021;99:1744-62. [PMID: 33881180 DOI: 10.1002/jnr.24845] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
2 Petersen MH, Willert CW, Andersen JV, Madsen M, Waagepetersen HS, Skotte NH, Nørremølle A. Progressive Mitochondrial Dysfunction of Striatal Synapses in R6/2 Mouse Model of Huntington's Disease. J Huntingtons Dis 2022;11:121-40. [PMID: 35311711 DOI: 10.3233/JHD-210518] [Reference Citation Analysis]
3 Lopes C, Tang Y, Anjo SI, Manadas B, Onofre I, de Almeida LP, Daley GQ, Schlaeger TM, Rego ACC. Mitochondrial and Redox Modifications in Huntington Disease Induced Pluripotent Stem Cells Rescued by CRISPR/Cas9 CAGs Targeting. Front Cell Dev Biol 2020;8:576592. [PMID: 33072759 DOI: 10.3389/fcell.2020.576592] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
4 Gkekas I, Gioran A, Boziki MK, Grigoriadis N, Chondrogianni N, Petrakis S. Oxidative Stress and Neurodegeneration: Interconnected Processes in PolyQ Diseases. Antioxidants (Basel) 2021;10:1450. [PMID: 34573082 DOI: 10.3390/antiox10091450] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Zhang X, Alshakhshir N, Zhao L. Glycolytic Metabolism, Brain Resilience, and Alzheimer's Disease. Front Neurosci 2021;15:662242. [PMID: 33994936 DOI: 10.3389/fnins.2021.662242] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
6 Garcia-Gil M, Camici M, Allegrini S, Pesi R, Tozzi MG. Metabolic Aspects of Adenosine Functions in the Brain. Front Pharmacol 2021;12:672182. [PMID: 34054547 DOI: 10.3389/fphar.2021.672182] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
7 Grekhnev DA, Kaznacheyeva EV, Vigont VA. Patient-Specific iPSCs-Based Models of Neurodegenerative Diseases: Focus on Aberrant Calcium Signaling. Int J Mol Sci 2022;23:624. [PMID: 35054808 DOI: 10.3390/ijms23020624] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Monk R, Connor B. Cell Reprogramming to Model Huntington's Disease: A Comprehensive Review. Cells 2021;10:1565. [PMID: 34206228 DOI: 10.3390/cells10071565] [Reference Citation Analysis]
9 Finkbeiner S. Functional genomics, genetic risk profiling and cell phenotypes in neurodegenerative disease. Neurobiol Dis 2020;146:105088. [PMID: 32977020 DOI: 10.1016/j.nbd.2020.105088] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Klinkmueller P, Kronenbuerger M, Miao X, Bang J, Ultz KE, Paez A, Zhang X, Duan W, Margolis RL, Zijl PCV, Ross CA, Hua J. Impaired response of cerebral oxygen metabolism to visual stimulation in Huntington's disease. J Cereb Blood Flow Metab 2021;41:1119-30. [PMID: 32807001 DOI: 10.1177/0271678X20949286] [Reference Citation Analysis]