BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wen Y, Dungan CM, Mobley CB, Valentino T, von Walden F, Murach KA. Nucleus Type-Specific DNA Methylomics Reveals Epigenetic "Memory" of Prior Adaptation in Skeletal Muscle. Function (Oxf) 2021;2:zqab038. [PMID: 34870208 DOI: 10.1093/function/zqab038] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 15.0] [Reference Citation Analysis]
Number Citing Articles
1 Stewart CE, Sharples AP. Aging, Skeletal Muscle, and Epigenetics. Plastic & Reconstructive Surgery 2022;150:27S-33S. [DOI: 10.1097/prs.0000000000009670] [Reference Citation Analysis]
2 Murach KA, Liu Z, Jude B, Figueiredo VC, Wen Y, Khadgi S, Lim S, Morena da Silva F, Greene NP, Lanner JT, McCarthy JJ, Vechetti IJ, von Walden F. Multi-transcriptome analysis following an acute skeletal muscle growth stimulus yields tools for discerning global and MYC regulatory networks. J Biol Chem 2022;:102515. [PMID: 36150502 DOI: 10.1016/j.jbc.2022.102515] [Reference Citation Analysis]
3 Gorski PP, Raastad T, Ullrich M, Turner DC, Hallén J, Savari SI, Nilsen TS, Sharples AP. Aerobic Exercise Training Rejuvenates the Human Skeletal Muscle Methylome Ten Years after Breast Cancer Treatment and Survival.. [DOI: 10.1101/2022.09.12.22279705] [Reference Citation Analysis]
4 Potter LA, Toro CA, Harlow L, Lavin KM, Cardozo CP, Wende AR, Graham ZA. Assessing the impact of boldine on the gastrocnemius using multiomic profiling at 7 and 28 days post-complete spinal cord injury in young male mice.. [DOI: 10.1101/2022.08.17.503230] [Reference Citation Analysis]
5 Murach KA, Dimet-Wiley AL, Wen Y, Brightwell CR, Latham CM, Dungan CM, Fry CS, Watowich SJ. Late-life exercise mitigates skeletal muscle epigenetic aging. Aging Cell 2022;21:e13527. [PMID: 34932867 DOI: 10.1111/acel.13527] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
6 Anderson JE. Key concepts in muscle regeneration: muscle "cellular ecology" integrates a gestalt of cellular cross-talk, motility, and activity to remodel structure and restore function. Eur J Appl Physiol 2021. [PMID: 34928395 DOI: 10.1007/s00421-021-04865-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
7 Willis CRG, Deane CS, Ames RM, Bass JJ, Wilkinson DJ, Smith K, Phillips BE, Szewczyk NJ, Atherton PJ, Etheridge T. Transcriptomic adaptation during skeletal muscle habituation to eccentric or concentric exercise training. Sci Rep 2021;11:23930. [PMID: 34907264 DOI: 10.1038/s41598-021-03393-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Murach KA, Fry CS, Dupont-Versteegden EE, McCarthy JJ, Peterson CA. Fusion and beyond: Satellite cell contributions to loading-induced skeletal muscle adaptation. FASEB J 2021;35:e21893. [PMID: 34480776 DOI: 10.1096/fj.202101096R] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 15.0] [Reference Citation Analysis]
9 Sharples AP. Skeletal Muscle Possesses an Epigenetic Memory of Exercise: Role of Nucleus Type-Specific DNA Methylation. Function 2021;2:zqab047. [DOI: 10.1093/function/zqab047] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]