1 |
Wang X, Sela-Donenfeld D, Wang Y. Axonal and presynaptic FMRP: Localization, signal, and functional implications. Hear Res 2023;430:108720. [PMID: 36809742 DOI: 10.1016/j.heares.2023.108720] [Reference Citation Analysis]
|
2 |
Liu P, Zhao Y, Xiong W, Pan Y, Zhu M, Zhu X. Degradation of Perineuronal Nets in the Cerebellar Interpositus Nucleus Ameliorated Social Deficits in Shank3-deficient Mice. Neuroscience 2023;511:29-38. [PMID: 36587867 DOI: 10.1016/j.neuroscience.2022.12.024] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
3 |
Tao X, Newman-Tancredi A, Varney MA, Razak KA. Acute and Repeated Administration of NLX-101, a Selective Serotonin-1A Receptor Biased Agonist, Reduces Audiogenic Seizures in Developing Fmr1 Knockout Mice. Neuroscience 2023;509:113-24. [PMID: 36410632 DOI: 10.1016/j.neuroscience.2022.11.014] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
4 |
Talvio K, Minkeviciene R, Townsley KG, Achuta VS, Huckins LM, Corcoran P, Brennand KJ, Castrén ML. Reduced LYNX1 expression in transcriptome of human iPSC-derived neural progenitors modeling fragile X syndrome. Front Cell Dev Biol 2022;10:1034679. [PMID: 36506088 DOI: 10.3389/fcell.2022.1034679] [Reference Citation Analysis]
|
5 |
John U, Patro N, Patro I. Perineuronal nets: Cruise from a honeycomb to the safety nets. Brain Research Bulletin 2022;190:179-194. [DOI: 10.1016/j.brainresbull.2022.10.004] [Reference Citation Analysis]
|
6 |
Tewari BP, Chaunsali L, Prim CE, Sontheimer H. A glial perspective on the extracellular matrix and perineuronal net remodeling in the central nervous system. Front Cell Neurosci 2022;16:1022754. [DOI: 10.3389/fncel.2022.1022754] [Reference Citation Analysis]
|
7 |
Rexrode L, Hartley J, Showmaker KC, Vandewege MW, Martin BE, Blair E, Bollavarapu R, Antonyraj RB, Hilton K, Gardiner A, Valeri J, Gisabella B, Garrett M, Theoharides TC, Pantazopoulos H. Molecular Profiling of the Hippocampus of Children with Autism Spectrum Disorder.. [DOI: 10.1101/2022.10.13.22281011] [Reference Citation Analysis]
|
8 |
Pintér P, Alpár A. The Role of Extracellular Matrix in Human Neurodegenerative Diseases. IJMS 2022;23:11085. [DOI: 10.3390/ijms231911085] [Reference Citation Analysis]
|
9 |
Emery BA, Everett M, Lau BYB, Krishnan K. CDKL5 deficiency results in atypical subregion-specific expression of perineuronal nets in the mouse primary visual cortex.. [DOI: 10.1101/2022.08.31.505900] [Reference Citation Analysis]
|
10 |
Wilde M, Constantin L, Thorne PR, Montgomery JM, Scott EK, Cheyne JE. Auditory processing in rodent models of autism: a systematic review. J Neurodev Disord 2022;14:48. [PMID: 36042393 DOI: 10.1186/s11689-022-09458-6] [Reference Citation Analysis]
|
11 |
Carceller H, Gramuntell Y, Klimczak P, Nacher J. Perineuronal Nets: Subtle Structures with Large Implications. Neuroscientist. [DOI: 10.1177/10738584221106346] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
12 |
Kourdougli N, Suresh A, Liu B, Juarez P, Lin A, Chung DT, Graven Sams A, Gandal M, Martínez-cerdeño V, Buonomano DV, Hall BJ, Mombereau C, Portera-cailliau C. Improvement of sensory deficits in Fragile X mice by increasing cortical interneuron activity after the critical period.. [DOI: 10.1101/2022.05.17.492368] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
13 |
Rupert DD, Shea SD. Parvalbumin-Positive Interneurons Regulate Cortical Sensory Plasticity in Adulthood and Development Through Shared Mechanisms. Front Neural Circuits 2022;16:886629. [DOI: 10.3389/fncir.2022.886629] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
14 |
Castro AC, Monteiro P. Auditory Dysfunction in Animal Models of Autism Spectrum Disorder. Front Mol Neurosci 2022;15:845155. [DOI: 10.3389/fnmol.2022.845155] [Reference Citation Analysis]
|
15 |
Brandenburg C, Blatt GJ. Region-Specific Alterations of Perineuronal Net Expression in Postmortem Autism Brain Tissue. Front Mol Neurosci 2022;15:838918. [DOI: 10.3389/fnmol.2022.838918] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
16 |
Bermudez Echeverry M, Honda Takada S, Petrucelli Arruda B, Sterzeck Cardoso D, Pinheiro Martins P, Midori Ikebara J, V. Sousa-santos A, R.c. Torres da Silva V. Vitamins D and B12, Altered Synaptic Plasticity and Extracellular Matrix. B-Complex Vitamins - Sources, Intakes and Novel Applications 2022. [DOI: 10.5772/intechopen.100055] [Reference Citation Analysis]
|
17 |
Rais M, Kulinich AO, Wagner V, Woodard W, Shuai XS, Sutley SN, Kokash J, Piepponen TP, Castren M, Razak KA, Ethell IM. Astrocytes regulate inhibition in Fragile X Syndrome.. [DOI: 10.1101/2022.02.08.479618] [Reference Citation Analysis]
|
18 |
Chen CC, Brumberg JC. Sensory Experience as a Regulator of Structural Plasticity in the Developing Whisker-to-Barrel System. Front Cell Neurosci 2021;15:770453. [PMID: 35002626 DOI: 10.3389/fncel.2021.770453] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
19 |
Liu X, Kumar V, Tsai N, Auerbach BD. Hyperexcitability and Homeostasis in Fragile X Syndrome. Front Mol Neurosci 2022;14:805929. [DOI: 10.3389/fnmol.2021.805929] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
|
20 |
Brandenburg C, Blatt GJ. Region-specific alterations of perineuronal net expression in postmortem autism brain tissue.. [DOI: 10.1101/2021.12.31.474655] [Reference Citation Analysis]
|
21 |
Umbricht D. Matrix metalloproteinase 9 levels and parvalbumin positive interneuron dysfunction. Neuropsychopharmacology 2022;47:429. [PMID: 34099866 DOI: 10.1038/s41386-021-01048-9] [Reference Citation Analysis]
|
22 |
Rais M, Lovelace JW, Shuai XS, Woodard W, Bishay S, Estrada L, Sharma AR, Nguy A, Kulinich A, Pirbhoy PS, Palacios AR, Nelson DL, Razak KA, Ethell IM. Functional consequences of postnatal interventions in a mouse model of Fragile X syndrome. Neurobiol Dis 2022;162:105577. [PMID: 34871737 DOI: 10.1016/j.nbd.2021.105577] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
23 |
Contractor A, Ethell IM, Portera-Cailliau C. Cortical interneurons in autism. Nat Neurosci 2021;24:1648-59. [PMID: 34848882 DOI: 10.1038/s41593-021-00967-6] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 15.0] [Reference Citation Analysis]
|
24 |
Crapser JD, Arreola MA, Tsourmas KI, Green KN. Microglia as hackers of the matrix: sculpting synapses and the extracellular space. Cell Mol Immunol 2021;18:2472-88. [PMID: 34413489 DOI: 10.1038/s41423-021-00751-3] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 12.0] [Reference Citation Analysis]
|
25 |
Pirbhoy PS, Jonak CR, Syed R, Argueta DA, Perez PA, Wiley MB, Hessamian K, Lovelace JW, Razak KA, DiPatrizio NV, Ethell IM, Binder DK. Increased 2-arachidonoyl-sn-glycerol levels normalize cortical responses to sound and improve behaviors in Fmr1 KO mice. J Neurodev Disord 2021;13:47. [PMID: 34645383 DOI: 10.1186/s11689-021-09394-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
26 |
Pinna A, Colasanti A. The Neurometabolic Basis of Mood Instability: The Parvalbumin Interneuron Link-A Systematic Review and Meta-Analysis. Front Pharmacol 2021;12:689473. [PMID: 34616292 DOI: 10.3389/fphar.2021.689473] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
27 |
Nomura T. Interneuron Dysfunction and Inhibitory Deficits in Autism and Fragile X Syndrome. Cells 2021;10:2610. [PMID: 34685590 DOI: 10.3390/cells10102610] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
28 |
Hooper AWM, Wong H, Niibori Y, Abdoli R, Karumuthil-Melethil S, Qiao C, Danos O, Bruder JT, Hampson DR. Gene therapy using an ortholog of human fragile X mental retardation protein partially rescues behavioral abnormalities and EEG activity. Mol Ther Methods Clin Dev 2021;22:196-209. [PMID: 34485605 DOI: 10.1016/j.omtm.2021.06.013] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
29 |
Peteri UK, Pitkonen J, de Toma I, Nieminen O, Utami KH, Strandin TM, Corcoran P, Roybon L, Vaheri A, Ethell I, Casarotto P, Pouladi MA, Castrén ML. Urokinase plasminogen activator mediates changes in human astrocytes modeling fragile X syndrome. Glia 2021;69:2947-62. [PMID: 34427356 DOI: 10.1002/glia.24080] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
30 |
Burket JA, Webb JD, Deutsch SI. Perineuronal Nets and Metal Cation Concentrations in the Microenvironments of Fast-Spiking, Parvalbumin-Expressing GABAergic Interneurons: Relevance to Neurodevelopment and Neurodevelopmental Disorders. Biomolecules 2021;11:1235. [PMID: 34439901 DOI: 10.3390/biom11081235] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
|
31 |
Carstens KE, Lustberg DJ, Shaughnessy EK, McCann KE, Alexander GM, Dudek SM. Perineuronal net degradation rescues CA2 plasticity in a mouse model of Rett syndrome. J Clin Invest 2021;131:137221. [PMID: 34228646 DOI: 10.1172/JCI137221] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
|
32 |
Wiera G, Mozrzymas JW. Extracellular Metalloproteinases in the Plasticity of Excitatory and Inhibitory Synapses. Cells 2021;10:2055. [PMID: 34440823 DOI: 10.3390/cells10082055] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
|
33 |
Gore SV, James EJ, Huang LC, Park JJ, Berghella A, Thompson AC, Cline HT, Aizenman CD. Role of matrix metalloproteinase-9 in neurodevelopmental deficits and experience-dependent plasticity in Xenopus laevis. Elife 2021;10:e62147. [PMID: 34282726 DOI: 10.7554/eLife.62147] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
34 |
Lovelace JW, Rais M, Palacios AR, Shuai XS, Bishay S, Popa O, Pirbhoy PS, Binder DK, Nelson DL, Ethell IM, Razak KA. Deletion of Fmr1 from Forebrain Excitatory Neurons Triggers Abnormal Cellular, EEG, and Behavioral Phenotypes in the Auditory Cortex of a Mouse Model of Fragile X Syndrome. Cereb Cortex 2020;30:969-88. [PMID: 31364704 DOI: 10.1093/cercor/bhz141] [Cited by in Crossref: 32] [Cited by in F6Publishing: 36] [Article Influence: 16.0] [Reference Citation Analysis]
|
35 |
Jakovljević A, Tucić M, Blažiková M, Korenić A, Missirlis Y, Stamenković V, Andjus P. Structural and Functional Modulation of Perineuronal Nets: In Search of Important Players with Highlight on Tenascins. Cells 2021;10:1345. [PMID: 34072323 DOI: 10.3390/cells10061345] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
|
36 |
Lee CH, Kim KW, Lee DH, Lee SM, Kim SY. Overexpression of the receptor for advanced glycation end-products in the auditory cortex of rats with noise-induced hearing loss. BMC Neurosci 2021;22:38. [PMID: 34020590 DOI: 10.1186/s12868-021-00642-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
37 |
Pollali E, Hollnagel J, Çalışkan G. Hippocampal gamma-band oscillopathy in a mouse model of Fragile X Syndrome.. [DOI: 10.1101/2021.04.24.441239] [Reference Citation Analysis]
|
38 |
Wilkinson CL, Nelson CA. Increased aperiodic gamma power in young boys with Fragile X Syndrome is associated with better language ability. Mol Autism 2021;12:17. [PMID: 33632320 DOI: 10.1186/s13229-021-00425-x] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 10.5] [Reference Citation Analysis]
|
39 |
Mascio G, Bucci D, Notartomaso S, Liberatore F, Antenucci N, Scarselli P, Imbriglio T, Caruso S, Gradini R, Cannella M, Di Menna L, Bruno V, Battaglia G, Nicoletti F. Perineuronal nets are under the control of type-5 metabotropic glutamate receptors in the developing somatosensory cortex. Transl Psychiatry 2021;11:109. [PMID: 33597513 DOI: 10.1038/s41398-021-01210-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
|
40 |
Puścian A, Winiarski M, Łęski S, Charzewski Ł, Nikolaev T, Borowska J, Dzik JM, Bijata M, Lipp HP, Dziembowska M, Knapska E. Chronic fluoxetine treatment impairs motivation and reward learning by affecting neuronal plasticity in the central amygdala. Br J Pharmacol 2021;178:672-88. [PMID: 33171527 DOI: 10.1111/bph.15319] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
|
41 |
Razak KA, Binder DK, Ethell IM. Neural Correlates of Auditory Hypersensitivity in Fragile X Syndrome. Front Psychiatry 2021;12:720752. [PMID: 34690832 DOI: 10.3389/fpsyt.2021.720752] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
|
42 |
Williams ZJ, He JL, Cascio CJ, Woynaroski TG. A review of decreased sound tolerance in autism: Definitions, phenomenology, and potential mechanisms. Neurosci Biobehav Rev 2021;121:1-17. [PMID: 33285160 DOI: 10.1016/j.neubiorev.2020.11.030] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 8.3] [Reference Citation Analysis]
|
43 |
Zhao X, Bhattacharyya A. Advances in Human Stem Cells and Genome Editing to Understand and Develop Treatment for Fragile X Syndrome. Adv Neurobiol 2020;25:33-53. [PMID: 32578143 DOI: 10.1007/978-3-030-45493-7_2] [Reference Citation Analysis]
|
44 |
Edwards JA, Risch M, Hoke KL. Dynamics of perineuronal nets over amphibian metamorphosis. J Comp Neurol 2021;529:1768-78. [PMID: 33067799 DOI: 10.1002/cne.25055] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
|
45 |
Wilkinson CL, Nelson CA. Increased aperiodic gamma power in young boys with Fragile X is associated with better language ability.. [DOI: 10.1101/2020.10.08.20209536] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
46 |
Napoli D, Lupori L, Mazziotti R, Sagona G, Bagnoli S, Samad M, Sacramento EK, Kirkpartick J, Putignano E, Chen S, Terzibasi Tozzini E, Tognini P, Baldi P, Kwok JC, Cellerino A, Pizzorusso T. MiR-29 coordinates age-dependent plasticity brakes in the adult visual cortex. EMBO Rep 2020;21:e50431. [PMID: 33026181 DOI: 10.15252/embr.202050431] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
|
47 |
Negwer M, Piera K, Hesen R, Lütje L, Aarts L, Schubert D, Nadif Kasri N. EHMT1 regulates Parvalbumin-positive interneuron development and GABAergic input in sensory cortical areas. Brain Struct Funct 2020;225:2701-16. [PMID: 32975655 DOI: 10.1007/s00429-020-02149-9] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
|
48 |
Yang P, Davidson JO, Fowke TM, Galinsky R, Wassink G, Karunasinghe RN, Prasad JD, Ranasinghe S, Green CR, Bennet L, Gunn AJ, Dean JM. Connexin Hemichannel Mimetic Peptide Attenuates Cortical Interneuron Loss and Perineuronal Net Disruption Following Cerebral Ischemia in Near-Term Fetal Sheep. Int J Mol Sci 2020;21:E6475. [PMID: 32899855 DOI: 10.3390/ijms21186475] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
|
49 |
Lovelace JW, Ethell IM, Binder DK, Razak KA. Minocycline Treatment Reverses Sound Evoked EEG Abnormalities in a Mouse Model of Fragile X Syndrome. Front Neurosci 2020;14:771. [PMID: 32848552 DOI: 10.3389/fnins.2020.00771] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
|
50 |
Sanz-Morello B, Pfisterer U, Winther Hansen N, Demharter S, Thakur A, Fujii K, Levitskii SA, Montalant A, Korshunova I, Mammen PP, Kamenski P, Noguchi S, Aldana BI, Hougaard KS, Perrier JF, Khodosevich K. Complex IV subunit isoform COX6A2 protects fast-spiking interneurons from oxidative stress and supports their function. EMBO J 2020;39:e105759. [PMID: 32744742 DOI: 10.15252/embj.2020105759] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
|
51 |
Pantazopoulos H, Gisabella B, Rexrode L, Benefield D, Yildiz E, Seltzer P, Valeri J, Chelini G, Reich A, Ardelt M, Berretta S. Circadian Rhythms of Perineuronal Net Composition. eNeuro 2020;7:ENEURO. [PMID: 32719104 DOI: 10.1523/ENEURO.0034-19.2020] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 6.7] [Reference Citation Analysis]
|
52 |
Yang X. Chondroitin sulfate proteoglycans: key modulators of neuronal plasticity, long-term memory, neurodegenerative, and psychiatric disorders. Rev Neurosci 2020;31:555-68. [PMID: 32126020 DOI: 10.1515/revneuro-2019-0117] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
|
53 |
Pirbhoy PS, Rais M, Lovelace JW, Woodard W, Razak KA, Binder DK, Ethell IM. Acute pharmacological inhibition of matrix metalloproteinase-9 activity during development restores perineuronal net formation and normalizes auditory processing in Fmr1 KO mice. J Neurochem 2020;155:538-58. [PMID: 32374912 DOI: 10.1111/jnc.15037] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 7.0] [Reference Citation Analysis]
|
54 |
Mahmud FJ, Boucher T, Liang S, Brown AM. Osteopontin and Integrin Mediated Modulation of Post-Synapses in HIV Envelope Glycoprotein Exposed Hippocampal Neurons. Brain Sci 2020;10:E346. [PMID: 32512754 DOI: 10.3390/brainsci10060346] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
|
55 |
Gore S, James EJ, Huang L, Park JJ, Berghella A, Thompson A, Cline HT, Aizenman CD. Role of matrix metalloproteinase-9 in neurodevelopmental disorders and experience-dependent plasticity in Xenopus tadpoles.. [DOI: 10.1101/2020.05.29.123661] [Reference Citation Analysis]
|
56 |
Razak KA, Dominick KC, Erickson CA. Developmental studies in fragile X syndrome. J Neurodev Disord 2020;12:13. [PMID: 32359368 DOI: 10.1186/s11689-020-09310-9] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 8.7] [Reference Citation Analysis]
|
57 |
Pantazopoulos H, Gisabella B, Rexrode L, Benefield D, Yildiz E, Seltzer P, Valeri J, Chelini G, Reich A, Ardelt M, Berretta S. Circadian Rhythms of Perineuronal Net Composition.. [DOI: 10.1101/2020.04.21.053751] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
58 |
Nguyen AO, Binder DK, Ethell IM, Razak KA. Abnormal development of auditory responses in the inferior colliculus of a mouse model of Fragile X Syndrome. J Neurophysiol 2020;123:2101-21. [PMID: 32319849 DOI: 10.1152/jn.00706.2019] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
|
59 |
Alaiyed S, McCann M, Mahajan G, Rajkowska G, Stockmeier CA, Kellar KJ, Wu JY, Conant K. Venlafaxine Stimulates an MMP-9-Dependent Increase in Excitatory/Inhibitory Balance in a Stress Model of Depression. J Neurosci 2020;40:4418-31. [PMID: 32269106 DOI: 10.1523/JNEUROSCI.2387-19.2020] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 7.7] [Reference Citation Analysis]
|
60 |
Bitanihirwe BKY, Woo TW. A conceptualized model linking matrix metalloproteinase-9 to schizophrenia pathogenesis. Schizophr Res 2020;218:28-35. [PMID: 32001079 DOI: 10.1016/j.schres.2019.12.015] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
|
61 |
Zhang C, Wen TH, Razak KA, Lin J, Xu C, Seo C, Villafana E, Jimenez H, Liu H. Magnesium-based biodegradable microelectrodes for neural recording. Mater Sci Eng C Mater Biol Appl 2020;110:110614. [PMID: 32204062 DOI: 10.1016/j.msec.2019.110614] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
|
62 |
Cornez G, Shevchouk OT, Ghorbanpoor S, Ball GF, Cornil CA, Balthazart J. Testosterone stimulates perineuronal nets development around parvalbumin cells in the adult canary brain in parallel with song crystallization. Horm Behav 2020;119:104643. [PMID: 31785283 DOI: 10.1016/j.yhbeh.2019.104643] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 5.3] [Reference Citation Analysis]
|
63 |
Heavner WE, Smith SEP. Resolving the Synaptic versus Developmental Dichotomy of Autism Risk Genes. Trends Neurosci 2020;43:227-41. [PMID: 32209454 DOI: 10.1016/j.tins.2020.01.009] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
|
64 |
McCullagh EA, Rotschafer SE, Auerbach BD, Klug A, Kaczmarek LK, Cramer KS, Kulesza RJ Jr, Razak KA, Lovelace JW, Lu Y, Koch U, Wang Y. Mechanisms underlying auditory processing deficits in Fragile X syndrome. FASEB J 2020;34:3501-18. [PMID: 32039504 DOI: 10.1096/fj.201902435R] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 9.3] [Reference Citation Analysis]
|
65 |
Jonak CR, Lovelace JW, Ethell IM, Razak KA, Binder DK. Multielectrode array analysis of EEG biomarkers in a mouse model of Fragile X Syndrome. Neurobiol Dis 2020;138:104794. [PMID: 32036032 DOI: 10.1016/j.nbd.2020.104794] [Cited by in Crossref: 22] [Cited by in F6Publishing: 14] [Article Influence: 7.3] [Reference Citation Analysis]
|
66 |
He Q, Arroyo ED, Smukowski SN, Xu J, Piochon C, Savas JN, Portera-Cailliau C, Contractor A. Critical period inhibition of NKCC1 rectifies synapse plasticity in the somatosensory cortex and restores adult tactile response maps in fragile X mice. Mol Psychiatry 2019;24:1732-47. [PMID: 29703945 DOI: 10.1038/s41380-018-0048-y] [Cited by in Crossref: 32] [Cited by in F6Publishing: 36] [Article Influence: 8.0] [Reference Citation Analysis]
|
67 |
Bozzelli PL, Caccavano A, Avdoshina V, Mocchetti I, Wu JY, Conant K. Increased matrix metalloproteinase levels and perineuronal net proteolysis in the HIV-infected brain; relevance to altered neuronal population dynamics. Exp Neurol 2020;323:113077. [PMID: 31678140 DOI: 10.1016/j.expneurol.2019.113077] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
|
68 |
Gonzalez D, Tomasek M, Hays S, Sridhar V, Ammanuel S, Chang CW, Pawlowski K, Huber KM, Gibson JR. Audiogenic Seizures in the Fmr1 Knock-Out Mouse Are Induced by Fmr1 Deletion in Subcortical, VGlut2-Expressing Excitatory Neurons and Require Deletion in the Inferior Colliculus. J Neurosci 2019;39:9852-63. [PMID: 31666356 DOI: 10.1523/JNEUROSCI.0886-19.2019] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
|
69 |
Ethridge LE, De Stefano LA, Schmitt LM, Woodruff NE, Brown KL, Tran M, Wang J, Pedapati EV, Erickson CA, Sweeney JA. Auditory EEG Biomarkers in Fragile X Syndrome: Clinical Relevance. Front Integr Neurosci 2019;13:60. [PMID: 31649514 DOI: 10.3389/fnint.2019.00060] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 10.0] [Reference Citation Analysis]
|
70 |
Alaiyed S, Mccann M, Mahajan G, Rajkowska G, Stockmeier CA, Kellar KJ, Wu JY, Conant K. Venlafaxine stimulates an MMP-9-dependent increase in excitatory/inhibitory balance in a stress model of depression.. [DOI: 10.1101/794628] [Reference Citation Analysis]
|
71 |
Reinhard SM, Abundez-toledo M, Espinoza K, Razak KA. Effects of developmental noise exposure on inhibitory cell densities and perineuronal nets in A1 and AAF of mice. Hearing Research 2019;381:107781. [DOI: 10.1016/j.heares.2019.107781] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
|
72 |
Reinhard SM, Rais M, Afroz S, Hanania Y, Pendi K, Espinoza K, Rosenthal R, Binder DK, Ethell IM, Razak KA. Reduced perineuronal net expression in Fmr1 KO mice auditory cortex and amygdala is linked to impaired fear-associated memory. Neurobiol Learn Mem 2019;164:107042. [PMID: 31326533 DOI: 10.1016/j.nlm.2019.107042] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 3.3] [Reference Citation Analysis]
|
73 |
Rais M, Binder DK, Razak KA, Ethell IM. Sensory Processing Phenotypes in Fragile X Syndrome. ASN Neuro 2018;10:1759091418801092. [PMID: 30231625 DOI: 10.1177/1759091418801092] [Cited by in Crossref: 54] [Cited by in F6Publishing: 59] [Article Influence: 13.5] [Reference Citation Analysis]
|
74 |
Toledo MA, Wen TH, Binder DK, Ethell IM, Razak KA. Reversal of ultrasonic vocalization deficits in a mouse model of Fragile X Syndrome with minocycline treatment or genetic reduction of MMP-9. Behav Brain Res 2019;372:112068. [PMID: 31271818 DOI: 10.1016/j.bbr.2019.112068] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
|
75 |
Reichelt AC, Hare DJ, Bussey TJ, Saksida LM. Perineuronal Nets: Plasticity, Protection, and Therapeutic Potential. Trends in Neurosciences 2019;42:458-70. [DOI: 10.1016/j.tins.2019.04.003] [Cited by in Crossref: 73] [Cited by in F6Publishing: 56] [Article Influence: 18.3] [Reference Citation Analysis]
|
76 |
Krishnaswamy VR, Benbenishty A, Blinder P, Sagi I. Demystifying the extracellular matrix and its proteolytic remodeling in the brain: structural and functional insights. Cell Mol Life Sci 2019;76:3229-48. [PMID: 31197404 DOI: 10.1007/s00018-019-03182-6] [Cited by in Crossref: 40] [Cited by in F6Publishing: 31] [Article Influence: 10.0] [Reference Citation Analysis]
|
77 |
Kokash J, Alderson EM, Reinhard SM, Crawford CA, Binder DK, Ethell IM, Razak KA. Genetic reduction of MMP-9 in the Fmr1 KO mouse partially rescues prepulse inhibition of acoustic startle response. Brain Res 2019;1719:24-9. [PMID: 31128097 DOI: 10.1016/j.brainres.2019.05.029] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
|
78 |
Alaiyed S, Conant K. A Role for Matrix Metalloproteases in Antidepressant Efficacy. Front Mol Neurosci 2019;12:117. [PMID: 31133801 DOI: 10.3389/fnmol.2019.00117] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
|
79 |
Alaiyed S, Bozzelli PL, Caccavano A, Wu JY, Conant K. Venlafaxine stimulates PNN proteolysis and MMP-9-dependent enhancement of gamma power; relevance to antidepressant efficacy. J Neurochem 2019;148:810-21. [PMID: 30697747 DOI: 10.1111/jnc.14671] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 5.8] [Reference Citation Analysis]
|
80 |
Mayne PE, Burne THJ. Vitamin D in Synaptic Plasticity, Cognitive Function, and Neuropsychiatric Illness.Trends Neurosci. 2019;42:293-306. [PMID: 30795846 DOI: 10.1016/j.tins.2019.01.003] [Cited by in Crossref: 55] [Cited by in F6Publishing: 60] [Article Influence: 13.8] [Reference Citation Analysis]
|
81 |
Wen TH, Lovelace JW, Ethell IM, Binder DK, Razak KA. Developmental Changes in EEG Phenotypes in a Mouse Model of Fragile X Syndrome. Neuroscience 2019;398:126-43. [PMID: 30528856 DOI: 10.1016/j.neuroscience.2018.11.047] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 6.6] [Reference Citation Analysis]
|
82 |
Wen TH, Binder DK, Ethell IM, Razak KA. The Perineuronal 'Safety' Net? Perineuronal Net Abnormalities in Neurological Disorders. Front Mol Neurosci 2018;11:270. [PMID: 30123106 DOI: 10.3389/fnmol.2018.00270] [Cited by in Crossref: 75] [Cited by in F6Publishing: 85] [Article Influence: 15.0] [Reference Citation Analysis]
|
83 |
Lovelace JW, Ethell IM, Binder DK, Razak KA. Translation-relevant EEG phenotypes in a mouse model of Fragile X Syndrome. Neurobiol Dis 2018;115:39-48. [PMID: 29605426 DOI: 10.1016/j.nbd.2018.03.012] [Cited by in Crossref: 71] [Cited by in F6Publishing: 60] [Article Influence: 14.2] [Reference Citation Analysis]
|
84 |
Bozzelli PL, Alaiyed S, Kim E, Villapol S, Conant K. Proteolytic Remodeling of Perineuronal Nets: Effects on Synaptic Plasticity and Neuronal Population Dynamics. Neural Plast 2018;2018:5735789. [PMID: 29531525 DOI: 10.1155/2018/5735789] [Cited by in Crossref: 25] [Cited by in F6Publishing: 38] [Article Influence: 5.0] [Reference Citation Analysis]
|