BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Jin LY, Li J, Wang KF, Xia WW, Zhu ZQ, Wang CR, Li XF, Liu HY. Blood-Spinal Cord Barrier in Spinal Cord Injury: A Review. J Neurotrauma 2021;38:1203-24. [PMID: 33292072 DOI: 10.1089/neu.2020.7413] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 28.0] [Reference Citation Analysis]
Number Citing Articles
1 Long H, Ren Z, Xu J, Cheng X, Xu G. Pathophysiological mechanisms of chronic compressive spinal cord injury due to vascular events. Neural Regen Res 2023;18:790. [DOI: 10.4103/1673-5374.353485] [Reference Citation Analysis]
2 Leung CM, de Haan P, Ronaldson-bouchard K, Kim G, Ko J, Rho HS, Chen Z, Habibovic P, Jeon NL, Takayama S, Shuler ML, Vunjak-novakovic G, Frey O, Verpoorte E, Toh Y. A guide to the organ-on-a-chip. Nat Rev Methods Primers 2022;2. [DOI: 10.1038/s43586-022-00118-6] [Cited by in Crossref: 12] [Cited by in F6Publishing: 19] [Article Influence: 12.0] [Reference Citation Analysis]
3 Zhou R, Li J, Wang R, Chen Z, Zhou F. Moderate systemic therapeutic hypothermia is insufficient to protect blood-spinal cord barrier in spinal cord injury. Front Neurol 2022;13. [DOI: 10.3389/fneur.2022.1041099] [Reference Citation Analysis]
4 An J, Jiang X, Wang Z, Li Y, Zou Z, Wu Q, Tong L, Mei X, Tian H, Wu C. Codelivery of minocycline hydrochloride and dextran sulfate via bionic liposomes for the treatment of spinal cord injury. International Journal of Pharmaceutics 2022;628:122285. [DOI: 10.1016/j.ijpharm.2022.122285] [Reference Citation Analysis]
5 Zhao R, Chu X, Ge Y, Guo X, Xue Y. Brain connectivity markers in degenerative cervical myelopathy patients with depression for predicting the prognosis following decompression surgery. Front Neurol 2022;13. [DOI: 10.3389/fneur.2022.1003578] [Reference Citation Analysis]
6 Yao F, Luo Y, Liu YC, Chen YH, Li YT, Hu XY, You XY, Yu SS, Li ZY, Chen L, Tian DS, Zheng MG, Cheng L, Jing JH. Imatinib inhibits pericyte-fibroblast transition and inflammation and promotes axon regeneration by blocking the PDGF-BB/PDGFRβ pathway in spinal cord injury. Inflamm Regen 2022;42:44. [PMID: 36163271 DOI: 10.1186/s41232-022-00223-9] [Reference Citation Analysis]
7 Malvandi AM, Rastegar-Moghaddam SH, Ebrahimzadeh-Bideskan S, Lombardi G, Ebrahimzadeh-Bideskan A, Mohammadipour A. Targeting miR-21 in spinal cord injuries: a game-changer? Mol Med 2022;28:118. [PMID: 36138359 DOI: 10.1186/s10020-022-00546-w] [Reference Citation Analysis]
8 Yang C, He T, Wang Q, Wang G, Ma J, Chen Z, Li Q, Wang L, Quan Z. Elevated intraspinal pressure drives edema progression after acute compression spinal cord injury in rabbits. Exp Neurol 2022;357:114206. [PMID: 35988698 DOI: 10.1016/j.expneurol.2022.114206] [Reference Citation Analysis]
9 Zhao C, Zhou T, Zhao X, Pang Y, Li W, Fan B, Li M, Liu X, Ma L, Zhang J, Sun C, Shen W, Kong X, Yao X, Feng S. Delayed administration of nafamostat mesylate inhibits thrombin-mediated blood-spinal cord barrier breakdown during acute spinal cord injury in rats. J Neuroinflammation 2022;19:189. [PMID: 35842640 DOI: 10.1186/s12974-022-02531-w] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
10 Yao C, Cao Y, Wang D, Lv Y, Liu Y, Gu X, Wang Y, Wang X, Yu B. Single-cell sequencing reveals microglia induced angiogenesis by specific subsets of endothelial cells following spinal cord injury. FASEB J 2022;36:e22393. [PMID: 35699080 DOI: 10.1096/fj.202200337R] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Alarcan H, Al Ojaimi Y, Lanznaster D, Escoffre J, Corcia P, Vourc’h P, Andres CR, Veyrat-durebex C, Blasco H. Taking Advantages of Blood–Brain or Spinal Cord Barrier Alterations or Restoring Them to Optimize Therapy in ALS? JPM 2022;12:1071. [DOI: 10.3390/jpm12071071] [Reference Citation Analysis]
12 Cai L, Gao L, Zhang G, Zeng H, Wu X, Tan X, Qian C, Chen G. DJ-1 Alleviates Neuroinflammation and the Related Blood-Spinal Cord Barrier Destruction by Suppressing NLRP3 Inflammasome Activation via SOCS1/Rac1/ROS Pathway in a Rat Model of Traumatic Spinal Cord Injury. JCM 2022;11:3716. [DOI: 10.3390/jcm11133716] [Reference Citation Analysis]
13 Tsivelekas KK, Evangelopoulos DS, Pallis D, Benetos IS, Papadakis SA, Vlamis J, Pneumaticos SG. Angiogenesis in Spinal Cord Injury: Progress and Treatment. Cureus. [DOI: 10.7759/cureus.25475] [Reference Citation Analysis]
14 Mao C, Luan H, Gao S, Sheng W. Urolithin A as a Potential Drug for the Treatment of Spinal Cord Injuries: A Mechanistic Study Using Network Pharmacology Approaches. Evid Based Complement Alternat Med 2022;2022:9090113. [PMID: 35497925 DOI: 10.1155/2022/9090113] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
15 Zuo Y, Ye J, Cai W, Guo B, Chen X, Lin L, Jin S, Zheng H, Fang A, Qian X, Abdelrahman Z, Wang Z, Zhang Z, Yu B, Gu X, Wang X. Improving functional recovery after severe spinal cord injury by a noninvasive dual functional approach of neuroprotection and neuromodulation.. [DOI: 10.1101/2022.02.14.478109] [Reference Citation Analysis]
16 Yao C, Cao Y, Lv Y, Wang D, Liu Y, Gu X, Wang Y, Wang X, Yu B. Single cell sequencing reveals microglia induced angiogenesis by specific subsets of endothelial cells following spinal cord injury.. [DOI: 10.1101/2022.01.25.477640] [Reference Citation Analysis]
17 Wang Y, Zeng L, Zhu F, Huang G, Wan Y, Yao S, Chen K, Guo X. Acute hyperextension myelopathy in children: Radiographic predictors of clinical improvement. Spinal Cord 2022. [PMID: 35046538 DOI: 10.1038/s41393-021-00739-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Zhu X, Wang Z, Sun YE, Liu Y, Wu Z, Ma B, Cheng L. Neuroprotective Effects of Human Umbilical Cord-Derived Mesenchymal Stem Cells From Different Donors on Spinal Cord Injury in Mice. Front Cell Neurosci 2022;15:768711. [DOI: 10.3389/fncel.2021.768711] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
19 Luo Y, Yao F, Hu X, Li Y, Chen Y, Li Z, Zhu Z, Yu S, Tian D, Cheng L, Zheng M, Jing J. M1 macrophages impair tight junctions between endothelial cells after spinal cord injury. Brain Res Bull 2022:S0361-9230(22)00001-6. [PMID: 34995751 DOI: 10.1016/j.brainresbull.2021.12.019] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
20 Dolma S, Adhikari K, Mamidi T, Roy A, Pathak Z, Kumar H. Ethamsylate Attenuates Mutilated Secondary Pathogenesis and Exhibits a Neuroprotective Role in Experimental Model of Spinal Cord Injury. Neuroscience 2022:S0306-4522(21)00671-0. [PMID: 34995714 DOI: 10.1016/j.neuroscience.2021.12.038] [Reference Citation Analysis]
21 Kamat AS, Dolachee AA, Al-dhahir MA, Al Ramadan AH, Al-rawi MA, Ahmed FO, Al-sharshahi ZF, Hoz SS. Principles and Initial Assessment. Neurotrauma 2022. [DOI: 10.1007/978-3-030-80869-3_4] [Reference Citation Analysis]
22 Yu Q, Jiang X, Liu X, Shen W, Mei X, Tian H, Wu C. Glutathione-modified macrophage-derived cell membranes encapsulated metformin nanogels for the treatment of spinal cord injury. Materials Science and Engineering: C 2022. [DOI: 10.1016/j.msec.2022.112668] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
23 Wichmann TO, Kasch H, Dyrskog S, Høy K, Møller BK, Krog J, Hoffmann HJ, Hviid CVB, Rasmussen MM. Cerebrospinal fluid and peripheral blood proteomics in Traumatic Spinal Cord Injury: A prospective pilot study. Brain and Spine 2022;2:100906. [DOI: 10.1016/j.bas.2022.100906] [Reference Citation Analysis]
24 Chang S, Cao Y. The ROCK inhibitor Y-27632 ameliorates blood-spinal cord barrier disruption by reducing tight junction protein degradation via the MYPT1-MLC2 pathway after spinal cord injury in rats. Brain Res 2021;1773:147684. [PMID: 34634287 DOI: 10.1016/j.brainres.2021.147684] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
25 Wu X, Yan Y, Zhang Q. Neuroinflammation and Modulation Role of Natural Products After Spinal Cord Injury. J Inflamm Res 2021;14:5713-37. [PMID: 34764668 DOI: 10.2147/JIR.S329864] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
26 Kim Y, Roh EJ, Joshi HP, Shin HE, Choi H, Kwon SY, Sohn S, Han I. Bazedoxifene, a Selective Estrogen Receptor Modulator, Promotes Functional Recovery in a Spinal Cord Injury Rat Model. Int J Mol Sci 2021;22:11012. [PMID: 34681670 DOI: 10.3390/ijms222011012] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
27 Yao C, Cao X, Yu B. Revascularization After Traumatic Spinal Cord Injury. Front Physiol 2021;12:631500. [PMID: 33995118 DOI: 10.3389/fphys.2021.631500] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
28 Muheremu A, Shu L, Liang J, Aili A, Jiang K. Sustained delivery of neurotrophic factors to treat spinal cord injury. Transl Neurosci 2021;12:494-511. [PMID: 34900347 DOI: 10.1515/tnsci-2020-0200] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]