BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Herrmann JM, Riemer J. The Intermembrane Space of Mitochondria. Antioxidants & Redox Signaling 2010;13:1341-58. [DOI: 10.1089/ars.2009.3063] [Cited by in Crossref: 88] [Cited by in F6Publishing: 86] [Article Influence: 7.3] [Reference Citation Analysis]
Number Citing Articles
1 Dröse S, Brandt U. Molecular mechanisms of superoxide production by the mitochondrial respiratory chain. Adv Exp Med Biol. 2012;748:145-169. [PMID: 22729857 DOI: 10.1007/978-1-4614-3573-0_6] [Cited by in Crossref: 308] [Cited by in F6Publishing: 291] [Article Influence: 30.8] [Reference Citation Analysis]
2 Leal NS, Martins LM. Mind the Gap: Mitochondria and the Endoplasmic Reticulum in Neurodegenerative Diseases. Biomedicines 2021;9:227. [PMID: 33672391 DOI: 10.3390/biomedicines9020227] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
3 Edwards R, Eaglesfield R, Tokatlidis K. The mitochondrial intermembrane space: the most constricted mitochondrial sub-compartment with the largest variety of protein import pathways. Open Biol 2021;11:210002. [PMID: 33715390 DOI: 10.1098/rsob.210002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
4 Bolisetty S, Jaimes EA. Mitochondria and reactive oxygen species: physiology and pathophysiology. Int J Mol Sci 2013;14:6306-44. [PMID: 23528859 DOI: 10.3390/ijms14036306] [Cited by in Crossref: 154] [Cited by in F6Publishing: 140] [Article Influence: 17.1] [Reference Citation Analysis]
5 Duranova H, Valkova V, Knazicka Z, Olexikova L, Vasicek J. Mitochondria: A worthwhile object for ultrastructural qualitative characterization and quantification of cells at physiological and pathophysiological states using conventional transmission electron microscopy. Acta Histochem 2020;122:151646. [PMID: 33128989 DOI: 10.1016/j.acthis.2020.151646] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Li Q, Zhou T, Wu F, Li N, Wang R, Zhao Q, Ma YM, Zhang JQ, Ma BL. Subcellular drug distribution: mechanisms and roles in drug efficacy, toxicity, resistance, and targeted delivery. Drug Metab Rev 2018;50:430-47. [PMID: 30270675 DOI: 10.1080/03602532.2018.1512614] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
7 Zerbes RM, Bohnert M, Stroud DA, von der Malsburg K, Kram A, Oeljeklaus S, Warscheid B, Becker T, Wiedemann N, Veenhuis M, van der Klei IJ, Pfanner N, van der Laan M. Role of MINOS in Mitochondrial Membrane Architecture: Cristae Morphology and Outer Membrane Interactions Differentially Depend on Mitofilin Domains. Journal of Molecular Biology 2012;422:183-91. [DOI: 10.1016/j.jmb.2012.05.004] [Cited by in Crossref: 88] [Cited by in F6Publishing: 81] [Article Influence: 8.8] [Reference Citation Analysis]
8 Prasai K. Regulation of mitochondrial structure and function by protein import: A current review. Pathophysiology 2017;24:107-22. [PMID: 28400074 DOI: 10.1016/j.pathophys.2017.03.001] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
9 Kojer K, Bien M, Gangel H, Morgan B, Dick TP, Riemer J. Glutathione redox potential in the mitochondrial intermembrane space is linked to the cytosol and impacts the Mia40 redox state. EMBO J 2012;31:3169-82. [PMID: 22705944 DOI: 10.1038/emboj.2012.165] [Cited by in Crossref: 135] [Cited by in F6Publishing: 130] [Article Influence: 13.5] [Reference Citation Analysis]
10 Bornstein R, Gonzalez B, Johnson SC. Mitochondrial pathways in human health and aging. Mitochondrion 2020;54:72-84. [PMID: 32738358 DOI: 10.1016/j.mito.2020.07.007] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 8.5] [Reference Citation Analysis]
11 Murschall LM, Gerhards A, MacVicar T, Peker E, Hasberg L, Wawra S, Langer T, Riemer J. The C-terminal region of the oxidoreductase MIA40 stabilizes its cytosolic precursor during mitochondrial import. BMC Biol 2020;18:96. [PMID: 32762682 DOI: 10.1186/s12915-020-00824-1] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
12 Fraga H, Papaleo E, Vega S, Velazquez-campoy A, Ventura S. Zinc induced folding is essential for TIM15 activity as an mtHsp70 chaperone. Biochimica et Biophysica Acta (BBA) - General Subjects 2013;1830:2139-49. [DOI: 10.1016/j.bbagen.2012.10.002] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
13 Gopan A, Sarma MS. Mitochondrial hepatopathy: Respiratory chain disorders- ‘breathing in and out of the liver’. World J Hepatol 2021; 13(11): 1707-1726 [PMID: 34904040 DOI: 10.4254/wjh.v13.i11.1707] [Reference Citation Analysis]
14 Thévenod F, Lee WK, Garrick MD. Iron and Cadmium Entry Into Renal Mitochondria: Physiological and Toxicological Implications. Front Cell Dev Biol 2020;8:848. [PMID: 32984336 DOI: 10.3389/fcell.2020.00848] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
15 Guo L. Mitochondria and the permeability transition pore in cancer metabolic reprogramming. Biochem Pharmacol 2021;188:114537. [PMID: 33811907 DOI: 10.1016/j.bcp.2021.114537] [Reference Citation Analysis]
16 Bragoszewski P, Gornicka A, Sztolsztener ME, Chacinska A. The ubiquitin-proteasome system regulates mitochondrial intermembrane space proteins. Mol Cell Biol 2013;33:2136-48. [PMID: 23508107 DOI: 10.1128/MCB.01579-12] [Cited by in Crossref: 90] [Cited by in F6Publishing: 56] [Article Influence: 10.0] [Reference Citation Analysis]
17 Rigotto G, Basso E. Mitochondrial Dysfunctions: A Thread Sewing Together Alzheimer's Disease, Diabetes, and Obesity. Oxid Med Cell Longev 2019;2019:7210892. [PMID: 31316720 DOI: 10.1155/2019/7210892] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
18 Dröse S, Brandt U, Wittig I. Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation. Biochim Biophys Acta. 2014;1844:1344-1354. [PMID: 24561273 DOI: 10.1016/j.bbapap.2014.02.006] [Cited by in Crossref: 97] [Cited by in F6Publishing: 93] [Article Influence: 12.1] [Reference Citation Analysis]
19 Petrungaro C, Zimmermann KM, Küttner V, Fischer M, Dengjel J, Bogeski I, Riemer J. The Ca(2+)-Dependent Release of the Mia40-Induced MICU1-MICU2 Dimer from MCU Regulates Mitochondrial Ca(2+) Uptake. Cell Metab 2015;22:721-33. [PMID: 26387864 DOI: 10.1016/j.cmet.2015.08.019] [Cited by in Crossref: 119] [Cited by in F6Publishing: 113] [Article Influence: 17.0] [Reference Citation Analysis]
20 Botham A, Coyaud E, Nirmalanandhan VS, Gronda M, Hurren R, Maclean N, St-Germain J, Mirali S, Laurent E, Raught B, Schimmer A. Global Interactome Mapping of Mitochondrial Intermembrane Space Proteases Identifies a Novel Function for HTRA2. Proteomics 2019;19:e1900139. [PMID: 31617661 DOI: 10.1002/pmic.201900139] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
21 Kallergi E, Andreadaki M, Kritsiligkou P, Katrakili N, Pozidis C, Tokatlidis K, Banci L, Bertini I, Cefaro C, Ciofi-Baffoni S, Gajda K, Peruzzini R. Targeting and maturation of Erv1/ALR in the mitochondrial intermembrane space. ACS Chem Biol 2012;7:707-14. [PMID: 22296668 DOI: 10.1021/cb200485b] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 2.3] [Reference Citation Analysis]
22 Kühn K, Carrie C, Giraud E, Wang Y, Meyer EH, Narsai R, des Francs-Small CC, Zhang B, Murcha MW, Whelan J. The RCC1 family protein RUG3 is required for splicing of nad2 and complex I biogenesis in mitochondria of Arabidopsis thaliana. Plant J 2011;67:1067-80. [PMID: 21623974 DOI: 10.1111/j.1365-313X.2011.04658.x] [Cited by in Crossref: 79] [Cited by in F6Publishing: 46] [Article Influence: 7.2] [Reference Citation Analysis]
23 Zou L, Linck V, Zhai YJ, Galarza-Paez L, Li L, Yue Q, Al-Khalili O, Bao HF, Ma HP, Thai TL, Jiao J, Eaton DC. Knockout of mitochondrial voltage-dependent anion channel type 3 increases reactive oxygen species (ROS) levels and alters renal sodium transport. J Biol Chem 2018;293:1666-75. [PMID: 29180450 DOI: 10.1074/jbc.M117.798645] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
24 Fraga H, Ventura S. Oxidative folding in the mitochondrial intermembrane space in human health and disease. Int J Mol Sci 2013;14:2916-27. [PMID: 23364613 DOI: 10.3390/ijms14022916] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
25 Gomes F, Palma FR, Barros MH, Tsuchida ET, Turano HG, Alegria TGP, Demasi M, Netto LES. Proteolytic cleavage by the inner membrane peptidase (IMP) complex or Oct1 peptidase controls the localization of the yeast peroxiredoxin Prx1 to distinct mitochondrial compartments. J Biol Chem 2017;292:17011-24. [PMID: 28821623 DOI: 10.1074/jbc.M117.788588] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 2.2] [Reference Citation Analysis]
26 Gatti P, Ilamathi HS, Todkar K, Germain M. Mitochondria Targeted Viral Replication and Survival Strategies-Prospective on SARS-CoV-2. Front Pharmacol 2020;11:578599. [PMID: 32982760 DOI: 10.3389/fphar.2020.578599] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
27 Couturier J, Touraine B, Briat JF, Gaymard F, Rouhier N. The iron-sulfur cluster assembly machineries in plants: current knowledge and open questions. Front Plant Sci 2013;4:259. [PMID: 23898337 DOI: 10.3389/fpls.2013.00259] [Cited by in Crossref: 91] [Cited by in F6Publishing: 93] [Article Influence: 10.1] [Reference Citation Analysis]
28 Modjtahedi N, Tokatlidis K, Dessen P, Kroemer G. Mitochondrial Proteins Containing Coiled-Coil-Helix-Coiled-Coil-Helix (CHCH) Domains in Health and Disease. Trends Biochem Sci 2016;41:245-60. [PMID: 26782138 DOI: 10.1016/j.tibs.2015.12.004] [Cited by in Crossref: 58] [Cited by in F6Publishing: 56] [Article Influence: 9.7] [Reference Citation Analysis]
29 Theillet FX, Binolfi A, Frembgen-Kesner T, Hingorani K, Sarkar M, Kyne C, Li C, Crowley PB, Gierasch L, Pielak GJ, Elcock AH, Gershenson A, Selenko P. Physicochemical properties of cells and their effects on intrinsically disordered proteins (IDPs). Chem Rev 2014;114:6661-714. [PMID: 24901537 DOI: 10.1021/cr400695p] [Cited by in Crossref: 279] [Cited by in F6Publishing: 249] [Article Influence: 34.9] [Reference Citation Analysis]
30 Tang X, Ang SK, Ceh-Pavia E, Heyes DJ, Lu H. Kinetic characterisation of Erv1, a key component for protein import and folding in yeast mitochondria. FEBS J 2020;287:1220-31. [PMID: 31569302 DOI: 10.1111/febs.15077] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
31 Schreiner B, Westerburg H, Forné I, Imhof A, Neupert W, Mokranjac D. Role of the AAA protease Yme1 in folding of proteins in the intermembrane space of mitochondria. Mol Biol Cell 2012;23:4335-46. [PMID: 22993211 DOI: 10.1091/mbc.E12-05-0420] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 3.3] [Reference Citation Analysis]
32 Ueda E, Tamura Y, Sakaue H, Kawano S, Kakuta C, Matsumoto S, Endo T. Myristoyl group-aided protein import into the mitochondrial intermembrane space. Sci Rep 2019;9:1185. [PMID: 30718713 DOI: 10.1038/s41598-018-38016-1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
33 Banci L, Bertini I, Ciofi-baffoni S, Boscaro F, Chatzi A, Mikolajczyk M, Tokatlidis K, Winkelmann J. Anamorsin Is a [2Fe-2S] Cluster-Containing Substrate of the Mia40-Dependent Mitochondrial Protein Trapping Machinery. Chemistry & Biology 2011;18:794-804. [DOI: 10.1016/j.chembiol.2011.03.015] [Cited by in Crossref: 55] [Cited by in F6Publishing: 49] [Article Influence: 5.0] [Reference Citation Analysis]
34 Kenny TC, Germain D. From discovery of the CHOP axis and targeting ClpP to the identification of additional axes of the UPRmt driven by the estrogen receptor and SIRT3. J Bioenerg Biomembr 2017;49:297-305. [PMID: 28799020 DOI: 10.1007/s10863-017-9722-z] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
35 Jardim FR, Almeida FJS, Luckachaki MD, Oliveira MR. Effects of sulforaphane on brain mitochondria: mechanistic view and future directions. J Zhejiang Univ Sci B 2020;21:263-79. [PMID: 32253837 DOI: 10.1631/jzus.B1900614] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
36 Chan SHH, Chan JYH. Mitochondria and Reactive Oxygen Species Contribute to Neurogenic Hypertension. Physiology (Bethesda) 2017;32:308-21. [PMID: 28615314 DOI: 10.1152/physiol.00006.2017] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
37 Ham PB 3rd, Raju R. Mitochondrial function in hypoxic ischemic injury and influence of aging. Prog Neurobiol 2017;157:92-116. [PMID: 27321753 DOI: 10.1016/j.pneurobio.2016.06.006] [Cited by in Crossref: 115] [Cited by in F6Publishing: 123] [Article Influence: 19.2] [Reference Citation Analysis]
38 Carrì MT, Cozzolino M. SOD1 and mitochondria in ALS: a dangerous liaison. J Bioenerg Biomembr 2011;43:593-9. [DOI: 10.1007/s10863-011-9394-z] [Cited by in Crossref: 45] [Cited by in F6Publishing: 42] [Article Influence: 4.1] [Reference Citation Analysis]
39 Gomez M, Germain D. Cross talk between SOD1 and the mitochondrial UPR in cancer and neurodegeneration. Mol Cell Neurosci 2019;98:12-8. [PMID: 31028834 DOI: 10.1016/j.mcn.2019.04.003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
40 Circu ML, Aw TY. Intestinal redox biology and oxidative stress. Semin Cell Dev Biol. 2012;23:729-737. [PMID: 22484611 DOI: 10.1016/j.semcdb.2012.03.014] [Cited by in Crossref: 151] [Cited by in F6Publishing: 140] [Article Influence: 15.1] [Reference Citation Analysis]
41 Krüger V, Becker T, Becker L, Montilla-Martinez M, Ellenrieder L, Vögtle FN, Meyer HE, Ryan MT, Wiedemann N, Warscheid B, Pfanner N, Wagner R, Meisinger C. Identification of new channels by systematic analysis of the mitochondrial outer membrane. J Cell Biol 2017;216:3485-95. [PMID: 28916712 DOI: 10.1083/jcb.201706043] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 6.2] [Reference Citation Analysis]
42 Wojtovich AP, Foster TH. Optogenetic control of ROS production. Redox Biol 2014;2:368-76. [PMID: 24563855 DOI: 10.1016/j.redox.2014.01.019] [Cited by in Crossref: 87] [Cited by in F6Publishing: 80] [Article Influence: 10.9] [Reference Citation Analysis]
43 Finger Y, Riemer J. Protein import by the mitochondrial disulfide relay in higher eukaryotes. Biol Chem 2020;401:749-63. [PMID: 32142475 DOI: 10.1515/hsz-2020-0108] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
44 Herrmann JM, Longen S, Weckbecker D, Depuydt M. Biogenesis of mitochondrial proteins. Adv Exp Med Biol 2012;748:41-64. [PMID: 22729854 DOI: 10.1007/978-1-4614-3573-0_3] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 3.2] [Reference Citation Analysis]
45 Kenny TC, Manfredi G, Germain D. The Mitochondrial Unfolded Protein Response as a Non-Oncogene Addiction to Support Adaptation to Stress during Transformation in Cancer and Beyond. Front Oncol 2017;7:159. [PMID: 28798902 DOI: 10.3389/fonc.2017.00159] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
46 Thevarajan I, Zolkiewski M, Zolkiewska A. Human CLPB forms ATP-dependent complexes in the mitochondrial intermembrane space. Int J Biochem Cell Biol 2020;127:105841. [PMID: 32866687 DOI: 10.1016/j.biocel.2020.105841] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
47 Chowdhury D. Stochastic mechano-chemical kinetics of molecular motors: A multidisciplinary enterprise from a physicist’s perspective. Physics Reports 2013;529:1-197. [DOI: 10.1016/j.physrep.2013.03.005] [Cited by in Crossref: 158] [Cited by in F6Publishing: 78] [Article Influence: 17.6] [Reference Citation Analysis]
48 Mabalirajan U, Ghosh B. Mitochondrial dysfunction in metabolic syndrome and asthma. J Allergy (Cairo) 2013;2013:340476. [PMID: 23840225 DOI: 10.1155/2013/340476] [Cited by in Crossref: 13] [Cited by in F6Publishing: 18] [Article Influence: 1.4] [Reference Citation Analysis]
49 Zitare UA, Szuster J, Scocozza MF, Espinoza-cara A, Leguto AJ, Morgada MN, Vila AJ, Murgida DH. The role of molecular crowding in long-range metalloprotein electron transfer: Dissection into site- and scaffold-specific contributions. Electrochimica Acta 2019;294:117-25. [DOI: 10.1016/j.electacta.2018.10.069] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
50 Fallaize D, Chin LS, Li L. Differential submitochondrial localization of PINK1 as a molecular switch for mediating distinct mitochondrial signaling pathways. Cell Signal 2015;27:2543-54. [PMID: 26436374 DOI: 10.1016/j.cellsig.2015.09.020] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 3.0] [Reference Citation Analysis]
51 Reinhardt C, Arena G, Nedara K, Edwards R, Brenner C, Tokatlidis K, Modjtahedi N. AIF meets the CHCHD4/Mia40-dependent mitochondrial import pathway. Biochim Biophys Acta Mol Basis Dis 2020;1866:165746. [PMID: 32105825 DOI: 10.1016/j.bbadis.2020.165746] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
52 Ang SK, Zhang M, Lodi T, Lu H. Mitochondrial thiol oxidase Erv1: both shuttle cysteine residues are required for its function with distinct roles. Biochem J 2014;460:199-210. [PMID: 24625320 DOI: 10.1042/BJ20131540] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
53 Yang JY, Deng W, Chen Y, Fan W, Baldwin KM, Jope RS, Wallace DC, Wang PH. Impaired translocation and activation of mitochondrial Akt1 mitigated mitochondrial oxidative phosphorylation Complex V activity in diabetic myocardium. J Mol Cell Cardiol 2013;59:167-75. [PMID: 23500391 DOI: 10.1016/j.yjmcc.2013.02.016] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 2.2] [Reference Citation Analysis]
54 Gonczarowska-jorge H, Zahedi RP, Sickmann A. The proteome of baker's yeast mitochondria. Mitochondrion 2017;33:15-21. [DOI: 10.1016/j.mito.2016.08.007] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
55 Lefkimmiatis K. cAMP signalling meets mitochondrial compartments. Biochem Soc Trans 2014;42:265-9. [PMID: 24646228 DOI: 10.1042/BST20130281] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 1.6] [Reference Citation Analysis]
56 Vögtle FN, Burkhart JM, Rao S, Gerbeth C, Hinrichs J, Martinou JC, Chacinska A, Sickmann A, Zahedi RP, Meisinger C. Intermembrane space proteome of yeast mitochondria. Mol Cell Proteomics 2012;11:1840-52. [PMID: 22984289 DOI: 10.1074/mcp.M112.021105] [Cited by in Crossref: 112] [Cited by in F6Publishing: 62] [Article Influence: 11.2] [Reference Citation Analysis]
57 Nuebel E, Manganas P, Tokatlidis K. Orphan proteins of unknown function in the mitochondrial intermembrane space proteome: New pathways and metabolic cross-talk. Biochim Biophys Acta 2016;1863:2613-23. [PMID: 27425144 DOI: 10.1016/j.bbamcr.2016.07.004] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
58 Herrmann JM, Riemer J. Oxidation and Reduction of Cysteines in the Intermembrane Space of Mitochondria: Multiple Facets of Redox Control. Antioxidants & Redox Signaling 2010;13:1323-6. [DOI: 10.1089/ars.2010.3270] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.1] [Reference Citation Analysis]
59 Vascotto C, Bisetto E, Li M, Zeef LA, D'Ambrosio C, Domenis R, Comelli M, Delneri D, Scaloni A, Altieri F, Mavelli I, Quadrifoglio F, Kelley MR, Tell G. Knock-in reconstitution studies reveal an unexpected role of Cys-65 in regulating APE1/Ref-1 subcellular trafficking and function. Mol Biol Cell 2011;22:3887-901. [PMID: 21865600 DOI: 10.1091/mbc.E11-05-0391] [Cited by in Crossref: 48] [Cited by in F6Publishing: 36] [Article Influence: 4.4] [Reference Citation Analysis]
60 Joaquim M, Escobar-Henriques M. Role of Mitofusins and Mitophagy in Life or Death Decisions. Front Cell Dev Biol 2020;8:572182. [PMID: 33072754 DOI: 10.3389/fcell.2020.572182] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
61 Herrmann JM, Riemer J. Three approaches to one problem: protein folding in the periplasm, the endoplasmic reticulum, and the intermembrane space. Antioxid Redox Signal 2014;21:438-56. [PMID: 24483706 DOI: 10.1089/ars.2014.5841] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 3.1] [Reference Citation Analysis]
62 Ye X, Wei X, Liao J, Chen P, Li X, Chen Y, Yang Y, Zhao Q, Sun H, Pan L, Chen G, He X, Lyu J, Fang H. 4-Hydroxyphenylpyruvate Dioxygenase-Like Protein Promotes Pancreatic Cancer Cell Progression and Is Associated With Glutamine-Mediated Redox Balance. Front Oncol 2020;10:617190. [PMID: 33537239 DOI: 10.3389/fonc.2020.617190] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
63 Ji T, Zhang X, Xin Z, Xu B, Jin Z, Wu J, Hu W, Yang Y. Does perturbation in the mitochondrial protein folding pave the way for neurodegeneration diseases? Ageing Res Rev 2020;57:100997. [PMID: 31816444 DOI: 10.1016/j.arr.2019.100997] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
64 Hung V, Zou P, Rhee HW, Udeshi ND, Cracan V, Svinkina T, Carr SA, Mootha VK, Ting AY. Proteomic mapping of the human mitochondrial intermembrane space in live cells via ratiometric APEX tagging. Mol Cell 2014;55:332-41. [PMID: 25002142 DOI: 10.1016/j.molcel.2014.06.003] [Cited by in Crossref: 282] [Cited by in F6Publishing: 248] [Article Influence: 35.3] [Reference Citation Analysis]
65 Papa L, Manfredi G, Germain D. SOD1, an unexpected novel target for cancer therapy. Genes Cancer 2014;5:15-21. [PMID: 24955214 DOI: 10.18632/genesandcancer.4] [Cited by in Crossref: 68] [Cited by in F6Publishing: 71] [Article Influence: 8.5] [Reference Citation Analysis]
66 Cornelissen T, Spinazzi M, Martin S, Imberechts D, Vangheluwe P, Bird M, De Strooper B, Vandenberghe W. CHCHD2 harboring Parkinson's disease-linked T61I mutation precipitates inside mitochondria and induces precipitation of wild-type CHCHD2. Hum Mol Genet 2020;29:1096-106. [PMID: 32068847 DOI: 10.1093/hmg/ddaa028] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
67 Ströher E, Millar AH. The biological roles of glutaredoxins. Biochem J 2012;446:333-48. [PMID: 22928493 DOI: 10.1042/BJ20112131] [Cited by in Crossref: 71] [Cited by in F6Publishing: 30] [Article Influence: 7.1] [Reference Citation Analysis]
68 Hebert-chatelain E, Marsicano G, Desprez T. Cannabinoids and Mitochondria. In: Melis M, editor. Endocannabinoids and Lipid Mediators in Brain Functions. Cham: Springer International Publishing; 2017. pp. 211-35. [DOI: 10.1007/978-3-319-57371-7_8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
69 Fischer M, Horn S, Belkacemi A, Kojer K, Petrungaro C, Habich M, Ali M, Küttner V, Bien M, Kauff F, Dengjel J, Herrmann JM, Riemer J. Protein import and oxidative folding in the mitochondrial intermembrane space of intact mammalian cells. Mol Biol Cell 2013;24:2160-70. [PMID: 23676665 DOI: 10.1091/mbc.E12-12-0862] [Cited by in Crossref: 88] [Cited by in F6Publishing: 64] [Article Influence: 9.8] [Reference Citation Analysis]
70 Habich M, Riemer J. Detection of Cysteine Redox States in Mitochondrial Proteins in Intact Mammalian Cells. In: Mokranjac D, Perocchi F, editors. Mitochondria. New York: Springer; 2017. pp. 105-38. [DOI: 10.1007/978-1-4939-6824-4_8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
71 Herrmann JM, Riemer J. Mitochondrial disulfide relay: redox-regulated protein import into the intermembrane space. J Biol Chem 2012;287:4426-33. [PMID: 22157015 DOI: 10.1074/jbc.R111.270678] [Cited by in Crossref: 86] [Cited by in F6Publishing: 45] [Article Influence: 7.8] [Reference Citation Analysis]
72 Bode M, Woellhaf MW, Bohnert M, van der Laan M, Sommer F, Jung M, Zimmermann R, Schroda M, Herrmann JM. Redox-regulated dynamic interplay between Cox19 and the copper-binding protein Cox11 in the intermembrane space of mitochondria facilitates biogenesis of cytochrome c oxidase. Mol Biol Cell 2015;26:2385-401. [PMID: 25926683 DOI: 10.1091/mbc.E14-11-1526] [Cited by in Crossref: 37] [Cited by in F6Publishing: 30] [Article Influence: 5.3] [Reference Citation Analysis]
73 Germain D. Sirtuins and the Estrogen Receptor as Regulators of the Mammalian Mitochondrial UPR in Cancer and Aging. Adv Cancer Res 2016;130:211-56. [PMID: 27037754 DOI: 10.1016/bs.acr.2016.01.004] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
74 Chin LS, Li L. Ubiquitin phosphorylation in Parkinson's disease: Implications for pathogenesis and treatment. Transl Neurodegener 2016;5:1. [PMID: 26740872 DOI: 10.1186/s40035-015-0049-6] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
75 Backes S, Herrmann JM. Protein Translocation into the Intermembrane Space and Matrix of Mitochondria: Mechanisms and Driving Forces. Front Mol Biosci 2017;4:83. [PMID: 29270408 DOI: 10.3389/fmolb.2017.00083] [Cited by in Crossref: 49] [Cited by in F6Publishing: 45] [Article Influence: 9.8] [Reference Citation Analysis]
76 Duran L, López JM, Avalos JL. ¡Viva la mitochondria!: harnessing yeast mitochondria for chemical production. FEMS Yeast Res 2020;20:foaa037. [PMID: 32592388 DOI: 10.1093/femsyr/foaa037] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
77 Harvey AJ. Mitochondria in early development: linking the microenvironment, metabolism and the epigenome. Reproduction 2019;157:R159-79. [PMID: 30870807 DOI: 10.1530/REP-18-0431] [Cited by in Crossref: 41] [Cited by in F6Publishing: 28] [Article Influence: 20.5] [Reference Citation Analysis]
78 Circu ML, Aw TY. Redox biology of the intestine. Free Radic Res. 2011;45:1245-1266. [PMID: 21831010 DOI: 10.3109/10715762.2011.611509] [Cited by in Crossref: 113] [Cited by in F6Publishing: 99] [Article Influence: 10.3] [Reference Citation Analysis]
79 Yao D, Li Y, Zeng S, Li Z, Shah Z, Song B, Liu J, Wu Y, Yang L, Long Q, Wang W, Hu Z, Tang H, Liu X. Short-form OPA1 is a molecular chaperone in mitochondrial intermembrane space. Sci China Life Sci 2021. [PMID: 34480695 DOI: 10.1007/s11427-021-1962-0] [Reference Citation Analysis]
80 Sakowska P, Jans DC, Mohanraj K, Riedel D, Jakobs S, Chacinska A. The Oxidation Status of Mic19 Regulates MICOS Assembly. Mol Cell Biol 2015;35:4222-37. [PMID: 26416881 DOI: 10.1128/MCB.00578-15] [Cited by in Crossref: 27] [Cited by in F6Publishing: 9] [Article Influence: 3.9] [Reference Citation Analysis]
81 Hansen KG, Herrmann JM. Transport of Proteins into Mitochondria. Protein J 2019;38:330-42. [PMID: 30868341 DOI: 10.1007/s10930-019-09819-6] [Cited by in Crossref: 59] [Cited by in F6Publishing: 51] [Article Influence: 29.5] [Reference Citation Analysis]
82 Gao XH, Qanungo S, Pai HV, Starke DW, Steller KM, Fujioka H, Lesnefsky EJ, Kerner J, Rosca MG, Hoppel CL, Mieyal JJ. Aging-dependent changes in rat heart mitochondrial glutaredoxins--Implications for redox regulation. Redox Biol 2013;1:586-98. [PMID: 25126518 DOI: 10.1016/j.redox.2013.10.010] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 2.8] [Reference Citation Analysis]
83 Fischer M, Riemer J. The mitochondrial disulfide relay system: roles in oxidative protein folding and beyond. Int J Cell Biol 2013;2013:742923. [PMID: 24348563 DOI: 10.1155/2013/742923] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 3.0] [Reference Citation Analysis]
84 Hagiyama M, Yoneshige A, Inoue T, Sato Y, Mimae T, Okada M, Ito A. The intracellular domain of cell adhesion molecule 1 is present in emphysematous lungs and induces lung epithelial cell apoptosis. J Biomed Sci 2015;22:67. [PMID: 26259600 DOI: 10.1186/s12929-015-0173-8] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
85 Döring K, Ahmed N, Riemer T, Suresh HG, Vainshtein Y, Habich M, Riemer J, Mayer MP, O'Brien EP, Kramer G, Bukau B. Profiling Ssb-Nascent Chain Interactions Reveals Principles of Hsp70-Assisted Folding. Cell 2017;170:298-311.e20. [PMID: 28708998 DOI: 10.1016/j.cell.2017.06.038] [Cited by in Crossref: 95] [Cited by in F6Publishing: 68] [Article Influence: 19.0] [Reference Citation Analysis]
86 Bohovych I, Chan SS, Khalimonchuk O. Mitochondrial protein quality control: the mechanisms guarding mitochondrial health. Antioxid Redox Signal 2015;22:977-94. [PMID: 25546710 DOI: 10.1089/ars.2014.6199] [Cited by in Crossref: 46] [Cited by in F6Publishing: 43] [Article Influence: 6.6] [Reference Citation Analysis]