BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Schuemann J, Bagley AF, Berbeco R, Bromma K, Butterworth KT, Byrne HL, Chithrani BD, Cho SH, Cook JR, Favaudon V, Gholami YH, Gargioni E, Hainfeld JF, Hespeels F, Heuskin AC, Ibeh UM, Kuncic Z, Kunjachan S, Lacombe S, Lucas S, Lux F, McMahon S, Nevozhay D, Ngwa W, Payne JD, Penninckx S, Porcel E, Prise KM, Rabus H, Ridwan SM, Rudek B, Sanche L, Singh B, Smilowitz HM, Sokolov KV, Sridhar S, Stanishevskiy Y, Sung W, Tillement O, Virani N, Yantasee W, Krishnan S. Roadmap for metal nanoparticles in radiation therapy: current status, translational challenges, and future directions. Phys Med Biol 2020;65:21RM02. [PMID: 32380492 DOI: 10.1088/1361-6560/ab9159] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 12.0] [Reference Citation Analysis]
Number Citing Articles
1 Zettergren H, Domaracka A, Schlathölter T, Bolognesi P, Díaz-tendero S, Łabuda M, Tosic S, Maclot S, Johnsson P, Steber A, Tikhonov D, Castrovilli MC, Avaldi L, Bari S, Milosavljević AR, Palacios A, Faraji S, Piekarski DG, Rousseau P, Ascenzi D, Romanzin C, Erdmann E, Alcamí M, Kopyra J, Limão-vieira P, Kočišek J, Fedor J, Albertini S, Gatchell M, Cederquist H, Schmidt HT, Gruber E, Andersen LH, Heber O, Toker Y, Hansen K, Noble JA, Jouvet C, Kjær C, Nielsen SB, Carrascosa E, Bull J, Candian A, Petrignani A. Roadmap on dynamics of molecules and clusters in the gas phase. Eur Phys J D 2021;75. [DOI: 10.1140/epjd/s10053-021-00155-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
2 Penninckx S, Hespeels F, Smeets J, Colaux JL, Lucas S, Heuskin A. Metallic Nanoparticles: A Useful Prompt Gamma Emitter for Range Monitoring in Proton Therapy? Radiation 2021;1:305-16. [DOI: 10.3390/radiation1040025] [Reference Citation Analysis]
3 Chiang CS, Shih IJ, Shueng PW, Kao M, Zhang LW, Chen SF, Chen MH, Liu TY. Tumor cell-targeting radiotherapy in the treatment of glioblastoma multiforme using linear accelerators. Acta Biomater 2021;125:300-11. [PMID: 33609743 DOI: 10.1016/j.actbio.2021.02.019] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
4 Dubey P, Sertorio M, Takiar V. Therapeutic Advancements in Metal and Metal Oxide Nanoparticle-Based Radiosensitization for Head and Neck Cancer Therapy. Cancers (Basel) 2022;14:514. [PMID: 35158781 DOI: 10.3390/cancers14030514] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Bronk L, Guan F, Patel D, Ma D, Kroger B, Wang X, Tran K, Yiu J, Stephan C, Debus J, Abdollahi A, Jäkel O, Mohan R, Titt U, Grosshans DR. Mapping the Relative Biological Effectiveness of Proton, Helium and Carbon Ions with High-Throughput Techniques. Cancers (Basel) 2020;12:E3658. [PMID: 33291477 DOI: 10.3390/cancers12123658] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
6 Verkhovtsev AV, Nichols A, Mason NJ, Solov'yov AV. Molecular Dynamics Characterization of Radiosensitizing Coated Gold Nanoparticles in Aqueous Environment. J Phys Chem A 2022;126:2170-84. [PMID: 35362970 DOI: 10.1021/acs.jpca.2c00489] [Reference Citation Analysis]
7 Matsumoto Y, Fukumitsu N, Ishikawa H, Nakai K, Sakurai H. A Critical Review of Radiation Therapy: From Particle Beam Therapy (Proton, Carbon, and BNCT) to Beyond. J Pers Med 2021;11:825. [PMID: 34442469 DOI: 10.3390/jpm11080825] [Reference Citation Analysis]
8 Xu JJ, Zhang WC, Guo YW, Chen XY, Zhang YN. Metal nanoparticles as a promising technology in targeted cancer treatment. Drug Deliv 2022;29:664-78. [PMID: 35209786 DOI: 10.1080/10717544.2022.2039804] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
9 Sood A, Dev A, Sardoiwala MN, Choudhury SR, Chaturvedi S, Mishra AK, Karmakar S. Alpha-ketoglutarate decorated iron oxide-gold core-shell nanoparticles for active mitochondrial targeting and radiosensitization enhancement in hepatocellular carcinoma. Mater Sci Eng C Mater Biol Appl 2021;129:112394. [PMID: 34579913 DOI: 10.1016/j.msec.2021.112394] [Reference Citation Analysis]
10 Li WB, Stangl S, Klapproth A, Shevtsov M, Hernandez A, Kimm MA, Schuemann J, Qiu R, Michalke B, Bernal MA, Li J, Hürkamp K, Zhang Y, Multhoff G. Application of High-Z Gold Nanoparticles in Targeted Cancer Radiotherapy-Pharmacokinetic Modeling, Monte Carlo Simulation and Radiobiological Effect Modeling. Cancers (Basel) 2021;13:5370. [PMID: 34771534 DOI: 10.3390/cancers13215370] [Reference Citation Analysis]
11 Rahman S, Kumar V, Kumar A, Abdullah TS, Rather IA, Jan AT. Molecular Perspective of Nanoparticle Mediated Therapeutic Targeting in Breast Cancer: An Odyssey of Endoplasmic Reticulum Unfolded Protein Response (UPRER) and Beyond. Biomedicines 2021;9:635. [PMID: 34199484 DOI: 10.3390/biomedicines9060635] [Reference Citation Analysis]
12 Beaudelot C, Bayart E, Thariat J, Bourgier C, Denis F, Hatt M, Pasquier D, Verry C, Deutsch É, Levy A. [Radiation-oncology horizon 2030: From microbiota to plasma laser]. Cancer Radiother 2020;24:744-50. [PMID: 32861611 DOI: 10.1016/j.canrad.2020.06.023] [Reference Citation Analysis]
13 Zhao X, Liu R, Zhao T, Reynoso FJ. Quantification of gold nanoparticle photon radiosensitization from direct and indirect effects using a complete human genome single cell model based on Geant4. Med Phys 2021. [PMID: 34738643 DOI: 10.1002/mp.15330] [Reference Citation Analysis]
14 Job V, Laloy J, Maloteau V, Haye E, Lucas S, Penninckx S. Investigation of the Antibacterial Properties of Silver-Doped Amorphous Carbon Coatings Produced by Low Pressure Magnetron Assisted Acetylene Discharges. Int J Mol Sci 2022;23:563. [PMID: 35008988 DOI: 10.3390/ijms23010563] [Reference Citation Analysis]
15 Bagley AF, Ludmir EB, Maitra A, Minsky BD, Li Smith G, Das P, Koong AC, Holliday EB, Taniguchi CM, Katz MH, Tamm EP, Wolff RA, Overman MJ, Patel S, Kim MP, Tzeng CD, Ikoma N, Bhutani MS, Koay EJ. NBTXR3, a first-in-class radioenhancer for pancreatic ductal adenocarcinoma: Report of first patient experience. Clinical and Translational Radiation Oncology 2022;33:66-9. [DOI: 10.1016/j.ctro.2021.12.012] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Bromma K, Alhussan A, Perez MM, Howard P, Beckham W, Chithrani DB. Three-Dimensional Tumor Spheroids as a Tool for Reliable Investigation of Combined Gold Nanoparticle and Docetaxel Treatment. Cancers (Basel) 2021;13:1465. [PMID: 33806801 DOI: 10.3390/cancers13061465] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
17 Sunil K, Utsav S, Nairy RK, Chethan G, Shenoy SP, Mustak MS, Yerol N. Synthesis and characterization of Zn0.4Co0.6Fe2O4 superparamagnetic nanoparticles as a promising agent against proliferation of colorectal cancer cells. Ceramics International 2021;47:19026-35. [DOI: 10.1016/j.ceramint.2021.03.248] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Penninckx S, Heuskin AC, Michiels C, Lucas S. Gold Nanoparticles as a Potent Radiosensitizer: A Transdisciplinary Approach from Physics to Patient. Cancers (Basel) 2020;12:E2021. [PMID: 32718058 DOI: 10.3390/cancers12082021] [Cited by in F6Publishing: 16] [Reference Citation Analysis]
19 Yang C, Gao Y, Fan Y, Cao L, Li J, Ge Y, Tu W, Liu Y, Cao X, Shi X. Dual-mode endogenous and exogenous sensitization of tumor radiotherapy through antifouling dendrimer-entrapped gold nanoparticles. Theranostics 2021;11:1721-31. [PMID: 33408777 DOI: 10.7150/thno.54930] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
20 Pedrielli A, de Vera P, Trevisanutto PE, Pugno NM, Garcia-Molina R, Abril I, Taioli S, Dapor M. Electronic excitation spectra of cerium oxides: from ab initio dielectric response functions to Monte Carlo electron transport simulations. Phys Chem Chem Phys 2021;23:19173-87. [PMID: 34357365 DOI: 10.1039/d1cp01810h] [Reference Citation Analysis]
21 Chen MH, Liu TY, Chen YC, Chen MH. Combining Augmented Radiotherapy and Immunotherapy through a Nano-Gold and Bacterial Outer-Membrane Vesicle Complex for the Treatment of Glioblastoma. Nanomaterials (Basel) 2021;11:1661. [PMID: 34202555 DOI: 10.3390/nano11071661] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Harrison RM, Ainsbury E, Alves J, Bottollier-Depois JF, Breustedt B, Caresana M, Clairand I, Fantuzzi E, Fattibene P, Gilvin P, Hupe O, Knežević Ž, Lopez MA, Olko P, Olšovcová V, Rabus H, Rühm W, Silari M, Stolarczyk L, Tanner R, Vanhavere F, Vargas A, Woda C. EURADOS STRATEGIC RESEARCH AGENDA 2020: VISION FOR THE DOSIMETRY OF IONISING RADIATION. Radiat Prot Dosimetry 2021;194:42-56. [PMID: 33989429 DOI: 10.1093/rpd/ncab063] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
23 Montinola D, Mcnamara AL, Kuncic Z, Byrne HL. Investigation of Micron-Scale Radiotherapy Dose Deposition in the Lung: Effect of Magnetic Field and Nanoparticles—a Monte Carlo Simulation. Front Phys 2022;10:835016. [DOI: 10.3389/fphy.2022.835016] [Reference Citation Analysis]
24 Bae J, Ha M, Perumalsamy H, Lee Y, Song J, Yoon T. Mass Cytometry Exploration of Immunomodulatory Responses of Human Immune Cells Exposed to Silver Nanoparticles. Pharmaceutics 2022;14:630. [DOI: 10.3390/pharmaceutics14030630] [Reference Citation Analysis]
25 Păduraru DN, Ion D, Niculescu A, Mușat F, Andronic O, Grumezescu AM, Bolocan A. Recent Developments in Metallic Nanomaterials for Cancer Therapy, Diagnosing and Imaging Applications. Pharmaceutics 2022;14:435. [DOI: 10.3390/pharmaceutics14020435] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
26 Bilynsky C, Millot N, Papa A. Radiation nanosensitizers in cancer therapy—From preclinical discoveries to the outcomes of early clinical trials. Bioengineering & Transla Med 2022;7. [DOI: 10.1002/btm2.10256] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Maye F, Turak A. LiF Nanoparticles Enhance Targeted Degradation of Organic Material under Low Dose X-ray Irradiation. Radiation 2021;1:131-44. [DOI: 10.3390/radiation1020012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Reda M, Bagley AF, Zaidan HY, Yantasee W. Augmenting the therapeutic window of radiotherapy: A perspective on molecularly targeted therapies and nanomaterials. Radiother Oncol 2020;150:225-35. [PMID: 32598976 DOI: 10.1016/j.radonc.2020.06.041] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
29 Yang C, Mei T, Fu Q, Zhang Y, Liu Y, Cui R, Li G, Wang Y, Huang J, Jia J, Chen B, Hu Y. Silk Fibroin-Induced Gadolinium-Functionalized Gold Nanoparticles for MR/CT Dual-Modal Imaging-Guided Photothermal Therapy. JFB 2022;13:87. [DOI: 10.3390/jfb13030087] [Reference Citation Analysis]
30 Tinganelli W, Durante M. Carbon Ion Radiobiology. Cancers (Basel) 2020;12:E3022. [PMID: 33080914 DOI: 10.3390/cancers12103022] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 11.0] [Reference Citation Analysis]
31 Russell E, Dunne V, Russell B, Mohamud H, Ghita M, McMahon SJ, Butterworth KT, Schettino G, McGarry CK, Prise KM. Impact of superparamagnetic iron oxide nanoparticles on in vitro and in vivo radiosensitisation of cancer cells. Radiat Oncol 2021;16:104. [PMID: 34118963 DOI: 10.1186/s13014-021-01829-y] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
32 Seniwal B, Freitas LF, Mendes BM, Lugão AB, Katti KV, Fonseca TCF. In silico dosimetry of low-dose rate brachytherapy using radioactive nanoparticles. Phys Med Biol 2021;66:045016. [PMID: 33561008 DOI: 10.1088/1361-6560/abd671] [Reference Citation Analysis]
33 Alhussan A, Bromma K, Bozdoğan EPD, Metcalfe A, Karasinska J, Beckham W, Alexander AS, Renouf DJ, Schaeffer DF, Chithrani DB. Investigation of Nano-Bio Interactions within a Pancreatic Tumor Microenvironment for the Advancement of Nanomedicine in Cancer Treatment. Curr Oncol 2021;28:1962-79. [PMID: 34073974 DOI: 10.3390/curroncol28030183] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Bromma K, Chithrani DB. Advances in Gold Nanoparticle-Based Combined Cancer Therapy. Nanomaterials (Basel) 2020;10:E1671. [PMID: 32858957 DOI: 10.3390/nano10091671] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
35 Huwaidi A, Kumari B, Robert G, Guérin B, Sanche L, Wagner JR. Profiling DNA Damage Induced by the Irradiation of DNA with Gold Nanoparticles. J Phys Chem Lett 2021;12:9947-54. [PMID: 34617774 DOI: 10.1021/acs.jpclett.1c02598] [Reference Citation Analysis]
36 Rabus H, Gomez-Ros JM, Villagrasa C, Eakins JS, Vrba T, Blideanu V, Zankl M, Tanner RJ, Struelens L, Brkić H, Domingo C, Baiocco G, Caccia B, Huet C, Ferrari P. Quality assurance for the use of computational methods in dosimetry: activities of EURADOS Working Group 6 "Computational Dosimetry". J Radiol Prot 2021. [PMID: 33406511 DOI: 10.1088/1361-6498/abd914] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
37 Gao Y, Zheng Y, Sanche L. Low-Energy Electron Damage to Condensed-Phase DNA and Its Constituents. Int J Mol Sci 2021;22:7879. [PMID: 34360644 DOI: 10.3390/ijms22157879] [Reference Citation Analysis]
38 Moktan H, Panta RK, Cho SH. Bias-voltage dependent operational characteristics of a fully spectroscopic pixelated cadmium telluride detector system within an experimental benchtop x-ray fluorescence imaging setup. Biomed Phys Eng Express 2021;8. [PMID: 34874017 DOI: 10.1088/2057-1976/ac3d9c] [Reference Citation Analysis]
39 Hainfeld JF, Ridwan SM, Stanishevskiy Y, Smilowitz HM. Iodine Nanoparticles (Niodx™) for Radiotherapy Enhancement of Glioblastoma and Other Cancers: An NCI Nanotechnology Characterization Laboratory Study. Pharmaceutics 2022;14:508. [DOI: 10.3390/pharmaceutics14030508] [Reference Citation Analysis]
40 Kyriakou I, Sakata D, Tran HN, Perrot Y, Shin WG, Lampe N, Zein S, Bordage MC, Guatelli S, Villagrasa C, Emfietzoglou D, Incerti S. Review of the Geant4-DNA Simulation Toolkit for Radiobiological Applications at the Cellular and DNA Level. Cancers (Basel) 2021;14:35. [PMID: 35008196 DOI: 10.3390/cancers14010035] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
41 Li Y, Yu H, Ren J, Lu G, Cao Y, Xu Z, Kang Y, Xue P. Acidic TME-Responsive Nano-Bi2 Se3 @MnCaP as a NIR-II-Triggered Free Radical Generator for Hypoxia-Irrelevant Phototherapy with High Specificity and Immunogenicity. Small 2021;:e2104302. [PMID: 34761867 DOI: 10.1002/smll.202104302] [Reference Citation Analysis]
42 Han O, Bromma K, Palmerley N, Bido AT, Monica M, Alhussan A, Howard PL, Brolo AG, Beckham W, Alexander AS, Chithrani DB. Nanotechnology Driven Cancer Chemoradiation: Exploiting the Full Potential of Radiotherapy with a Unique Combination of Gold Nanoparticles and Bleomycin. Pharmaceutics 2022;14:233. [DOI: 10.3390/pharmaceutics14020233] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]