BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang Y, Liu Y, Ren B, Zhang D, Xie S, Chang Y, Yang J, Wu J, Xu L, Zheng J. Fundamentals and applications of zwitterionic antifouling polymers. J Phys D: Appl Phys 2019;52:403001. [DOI: 10.1088/1361-6463/ab2cbc] [Cited by in Crossref: 65] [Cited by in F6Publishing: 68] [Article Influence: 16.3] [Reference Citation Analysis]
Number Citing Articles
1 Tharmavaram M, Pandey G, Khatri N, Rawtani D. L-arginine-grafted halloysite nanotubes as a sustainable excipient for antifouling composite coating. Materials Chemistry and Physics 2023;293:126937. [DOI: 10.1016/j.matchemphys.2022.126937] [Reference Citation Analysis]
2 Li Q, Wen C, Yang J, Zhou X, Zhu Y, Zheng J, Cheng G, Bai J, Xu T, Ji J, Jiang S, Zhang L, Zhang P. Zwitterionic Biomaterials. Chem Rev 2022;122:17073-154. [PMID: 36201481 DOI: 10.1021/acs.chemrev.2c00344] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Karthäuser JF, Koc J, Schönemann E, Wanka R, Aldred N, Clare AS, Rosenhahn A, Laschewsky A. Optimizing Fouling Resistance of Poly(Sulfabetaine)s through Backbone and Charge Separation. Adv Materials Inter. [DOI: 10.1002/admi.202200677] [Reference Citation Analysis]
4 Yuk H, Wu J, Zhao X. Hydrogel interfaces for merging humans and machines. Nat Rev Mater. [DOI: 10.1038/s41578-022-00483-4] [Reference Citation Analysis]
5 Yagasaki T, Matubayasi N. Molecular dynamics study of the interactions between a hydrophilic polymer brush on graphene and amino acid side chain analogues in water. Phys Chem Chem Phys 2022;24:22877-88. [PMID: 36124732 DOI: 10.1039/d2cp03112d] [Reference Citation Analysis]
6 Figueiredo AQ, Rodrigues CF, Fernandes N, de Melo-diogo D, Correia IJ, Moreira AF. Metal-Polymer Nanoconjugates Application in Cancer Imaging and Therapy. Nanomaterials 2022;12:3166. [DOI: 10.3390/nano12183166] [Reference Citation Analysis]
7 Bui HL, Huang S, Lee BP, Lan M, Huang C. Catechol-functionalized sulfobetaine polymer for uniform zwitterionization via pH transition approach. Colloids and Surfaces B: Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112879] [Reference Citation Analysis]
8 Lunkad R, Biehl P, Murmiliuk A, Blanco PM, Mons P, Štěpánek M, Schacher FH, Košovan P. Simulations and Potentiometric Titrations Enable Reliable Determination of Effective p Ka Values of Various Polyzwitterions. Macromolecules. [DOI: 10.1021/acs.macromol.2c01121] [Reference Citation Analysis]
9 Nguyen HN, Ngo TLH, Iwasaki Y, Huang C. Biodegradable Phosphocholine Cross‐Linker With Ion‐Pair Design for Tough Zwitterionic Hydrogel. Adv Materials Inter. [DOI: 10.1002/admi.202201002] [Reference Citation Analysis]
10 Ruseva K, Vassileva E. Polyzwitterionic Hydrogels as Wound Dressing Materials. Multifunctional Hydrogels for Biomedical Applications 2022. [DOI: 10.1002/9783527825820.ch9] [Reference Citation Analysis]
11 Christiansen D, Cheng G, Mehraeen S. Hydration and ion interactions of zwitterionic homopolymers with varying carbon spacer lengths. Chemical Engineering Research and Design 2022. [DOI: 10.1016/j.cherd.2022.07.032] [Reference Citation Analysis]
12 Ruhunage CK, Dhawan V, McKenzie TJ, Hoque A, Rahm CE, Nawarathne CP, Ayres N, Cui XT, Alvarez NT. Hydrophilic Micro- and Macroelectrodes with Antibiofouling Properties for Biomedical Applications. ACS Biomater Sci Eng 2022. [PMID: 35710337 DOI: 10.1021/acsbiomaterials.2c00173] [Reference Citation Analysis]
13 Guo F, Chen C. Zwitterionic Core-Sheath Nanofibers in Antibacterial Photodynamic Therapy. ACS Appl Polym Mater 2022;4:4576-87. [DOI: 10.1021/acsapm.2c00585] [Reference Citation Analysis]
14 Xie X, Jin X, He B, Zou Y, Yang J, Liu C, Kong X, Liu W, Wang W. A change-prone zwitterionic hyperbranched terpolymer-based diabetic wound dressing. Applied Materials Today 2022;27:101477. [DOI: 10.1016/j.apmt.2022.101477] [Reference Citation Analysis]
15 Donnelly B, Sammut K, Tang Y. Materials Selection for Antifouling Systems in Marine Structures. Molecules 2022;27:3408. [PMID: 35684344 DOI: 10.3390/molecules27113408] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Dave P, Balasubramanian C, Hans S, Patil C, Nema SK. Oxygen Plasma for Prevention of Biofilm Formation on Silicone Catheter Surfaces: Influence of Plasma Exposure Time. Plasma Chem Plasma Process. [DOI: 10.1007/s11090-022-10254-2] [Reference Citation Analysis]
17 Zhang H, Zheng J, Lin C, Yuan S. Molecular Dynamics Study on Properties of Hydration Layers above Polymer Antifouling Membranes. Molecules 2022;27:3074. [PMID: 35630551 DOI: 10.3390/molecules27103074] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Dinda P, Anas M, Banerjee P, Mandal TK. Dual Thermoresponsive Boc-Lysine-Based Acryl Polymer: RAFT Kinetics and Anti-Protein-Fouling of Its Zwitterionic Form. Macromolecules. [DOI: 10.1021/acs.macromol.2c00633] [Reference Citation Analysis]
19 van Andel E, Roosjen M, van der Zanden S, Lange SC, Weijers D, Smulders MMJ, Savelkoul HFJ, Zuilhof H, Tijhaar EJ. Highly Specific Protein Identification by Immunoprecipitation-Mass Spectrometry Using Antifouling Microbeads. ACS Appl Mater Interfaces 2022. [PMID: 35536557 DOI: 10.1021/acsami.1c22734] [Reference Citation Analysis]
20 Liu F, Wang D, Wang J, Ma L, Yu C, Wei H. Construction of Enzyme-Responsive Micelles Based on Theranostic Zwitterionic Conjugated Bottlebrush Copolymers with Brush-on-Brush Architecture for Cell Imaging and Anticancer Drug Delivery. Molecules 2022;27:3016. [DOI: 10.3390/molecules27093016] [Reference Citation Analysis]
21 McVerry B, Polasko A, Rao E, Haghniaz R, Chen D, He N, Ramos P, Hayashi J, Curson P, Wu CY, Bandaru P, Anderson M, Bui B, Sayegh A, Mahendra S, Carlo DD, Kreydin E, Khademhosseini A, Sheikhi A, Kaner RB. A Readily Scalable, Clinically Demonstrated, Antibiofouling Zwitterionic Surface Treatment for Implantable Medical Devices. Adv Mater 2022;34:e2200254. [PMID: 35315553 DOI: 10.1002/adma.202200254] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
22 Chen Z. Surface Hydration and Antifouling Activity of Zwitterionic Polymers. Langmuir 2022. [PMID: 35380850 DOI: 10.1021/acs.langmuir.2c00512] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
23 Mahmoudpour M, Jouyban A, Soleymani J, Rahimi M. Rational design of smart nano-platforms based on antifouling-nanomaterials toward multifunctional bioanalysis. Adv Colloid Interface Sci 2022;302:102637. [PMID: 35290930 DOI: 10.1016/j.cis.2022.102637] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
24 Bui VT, Abdelrasoul A, Mcmartin DW. Influence of zwitterionic structure design on mixed matrix membrane stability, hydrophilicity, and fouling resistance: A computational study. Journal of Molecular Graphics and Modelling 2022. [DOI: 10.1016/j.jmgm.2022.108187] [Reference Citation Analysis]
25 Mercader A, Ye SH, Kim S, Orizondo RA, Cho SK, Wagner WR. PDMS-Zwitterionic Hybrid for Facile, Antifouling Microfluidic Device Fabrication. Langmuir 2022. [PMID: 35294197 DOI: 10.1021/acs.langmuir.1c03375] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Pan J, Mei L, Zhou H, Zhang C, Xie Q, Ma C. Self-regenerating zwitterionic hyperbranched polymer with tunable degradation for anti-biofouling coatings. Progress in Organic Coatings 2022;163:106674. [DOI: 10.1016/j.porgcoat.2021.106674] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
27 Wang P, Zhang Y, Fu K, Liu Z, Zhang L, Liu C, Deng Y, Xie R, Ju X, Wang W, Chu L. Zinc-coordinated polydopamine surface with a nanostructure and superhydrophilicity for antibiofouling and antibacterial applications. Mater Adv . [DOI: 10.1039/d2ma00482h] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Liu L, Zuo X, He J, Zhou Y, Xiong J, Ma C, Chen Z, Yu S. Fabrication and characterization of 2-aminophenol-4-sulfonic acid-integrated polyamide loose nanofiltration membrane. Journal of Membrane Science 2021;640:119867. [DOI: 10.1016/j.memsci.2021.119867] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
29 Wang X, Gu H, Wu G. Facile preparation of tertiary amine grafted poly (α,β-L-aspartic acid) with zwitterionic property to limit nonspecific protein adsorption. Journal of Dispersion Science and Technology 2021;42:2133-42. [DOI: 10.1080/01932691.2020.1805331] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
30 Huang Z, Nazifi S, Cheng K, Karim A, Ghasemi H. Scalable inter-diffused zwitterionic polyurethanes for durable antibacterial coatings. Chemical Engineering Journal 2021;422:130085. [DOI: 10.1016/j.cej.2021.130085] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
31 Niskanen J, Peltekoff AJ, Bullet J, Lessard BH, Winnik FM. Enthalpy of the Complexation in Electrolyte Solutions of Polycations and Polyzwitterions of Different Structures and Topologies. Macromolecules 2021;54:6678-90. [DOI: 10.1021/acs.macromol.1c00586] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
32 Bellassai N, D'Agata R, Marti A, Rozzi A, Volpi S, Allegretti M, Corradini R, Giacomini P, Huskens J, Spoto G. Detection of Tumor DNA in Human Plasma with a Functional PLL-Based Surface Layer and Plasmonic Biosensing. ACS Sens 2021;6:2307-19. [PMID: 34032412 DOI: 10.1021/acssensors.1c00360] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
33 Jia E, Liang B, Lin Y, Su Z. Hemocompatibility of polyzwitterion-modified titanium dioxide nanotubes. Nanotechnology 2021;32. [PMID: 33752184 DOI: 10.1088/1361-6528/abf0cb] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
34 Liu Y, Zhang D, Ren B, Gong X, Xu L, Feng ZQ, Chang Y, He Y, Zheng J. Molecular simulations and understanding of antifouling zwitterionic polymer brushes. J Mater Chem B 2020;8:3814-28. [PMID: 32227061 DOI: 10.1039/d0tb00520g] [Cited by in Crossref: 44] [Cited by in F6Publishing: 48] [Article Influence: 22.0] [Reference Citation Analysis]
35 Choi W, Park S, Kwon JS, Jang EY, Kim JY, Heo J, Hwang Y, Kim BS, Moon JH, Jung S, Choi SH, Lee H, Ahn HW, Hong J. Reverse Actuation of Polyelectrolyte Effect for In Vivo Antifouling. ACS Nano 2021;15:6811-28. [PMID: 33769787 DOI: 10.1021/acsnano.0c10431] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
36 Sadeghi K, Seo J. Photografting Coating: An Innovative Approach to “Non‐Migratory” Active Packaging. Adv Funct Mater 2021;31:2010759. [DOI: 10.1002/adfm.202010759] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
37 Ihlenburg RBJ, Mai T, Thünemann AF, Baerenwald R, Saalwächter K, Koetz J, Taubert A. Sulfobetaine Hydrogels with a Complex Multilength-Scale Hierarchical Structure. J Phys Chem B 2021;125:3398-408. [PMID: 33769825 DOI: 10.1021/acs.jpcb.0c10601] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
38 Chen Q, Zhang D, Gu J, Zhang H, Wu X, Cao C, Zhang X, Liu R. The impact of antifouling layers in fabricating bioactive surfaces. Acta Biomater 2021;126:45-62. [PMID: 33727195 DOI: 10.1016/j.actbio.2021.03.022] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
39 Schönemann E, Koc J, Karthäuser JF, Özcan O, Schanzenbach D, Schardt L, Rosenhahn A, Laschewsky A. Sulfobetaine Methacrylate Polymers of Unconventional Polyzwitterion Architecture and Their Antifouling Properties. Biomacromolecules 2021;22:1494-508. [PMID: 33709699 DOI: 10.1021/acs.biomac.0c01705] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
40 Liu Y, Zhang D, Tang Y, Zhang Y, Chang Y, Zheng J. Machine Learning-Enabled Design and Prediction of Protein Resistance on Self-Assembled Monolayers and Beyond. ACS Appl Mater Interfaces 2021;13:11306-19. [PMID: 33635641 DOI: 10.1021/acsami.1c00642] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
41 Kang S, Park S, Baek I, Song Y, Kim S, Choi D, Kim J, Lee Y. Development of poly(D,L-lactic-co-glycolic acid) films coated with biomembrane-mimicking polymers for anti-adhesion activity. Mater Sci Eng C Mater Biol Appl 2021;120:111780. [PMID: 33545908 DOI: 10.1016/j.msec.2020.111780] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
42 Karayilan M, Clamen L, Becker ML. Polymeric Materials for Eye Surface and Intraocular Applications. Biomacromolecules 2021;22:223-61. [PMID: 33405900 DOI: 10.1021/acs.biomac.0c01525] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
43 Camacho-cruz LA, Velazco-medel MA, Cruz-gómez A, Bucio E. Antimicrobial Polymers. Environmental and Microbial Biotechnology 2021. [DOI: 10.1007/978-981-15-7098-8_1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
44 Jesus F, Passos H, Ferreira AM, Kuroda K, Pereira JL, Gonçalves FJM, Coutinho JAP, Ventura SPM. Zwitterionic compounds are less ecotoxic than their analogous ionic liquids. Green Chem 2021;23:3683-92. [DOI: 10.1039/d1gc00477h] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
45 Wang J, Wang L, Wu C, Pei X, Cong Y, Zhang R, Fu J. Antibacterial Zwitterionic Polyelectrolyte Hydrogel Adhesives with Adhesion Strength Mediated by Electrostatic Mismatch. ACS Appl Mater Interfaces 2020;12:46816-26. [DOI: 10.1021/acsami.0c14959] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 12.3] [Reference Citation Analysis]
46 Pajerski W, Duch J, Ochonska D, Golda-cepa M, Brzychczy-wloch M, Kotarba A. Bacterial attachment to oxygen-functionalized graphenic surfaces. Materials Science and Engineering: C 2020;113:110972. [DOI: 10.1016/j.msec.2020.110972] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
47 Sun X, Zhang S, Li H, Bandara N. Anti‐Adhesive Coatings. Green Adhesives 2020. [DOI: 10.1002/9781119655053.ch1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
48 Jiang C, Wang G, Hein R, Liu N, Luo X, Davis JJ. Antifouling Strategies for Selective In Vitro and In Vivo Sensing. Chem Rev 2020;120:3852-89. [DOI: 10.1021/acs.chemrev.9b00739] [Cited by in Crossref: 176] [Cited by in F6Publishing: 187] [Article Influence: 58.7] [Reference Citation Analysis]
49 Hao X, Chen S, Qin D, Zhang M, Li W, Fan J, Wang C, Dong M, Zhang J, Cheng F, Guo Z. Antifouling and antibacterial behaviors of capsaicin-based pH responsive smart coatings in marine environments. Materials Science and Engineering: C 2020;108:110361. [DOI: 10.1016/j.msec.2019.110361] [Cited by in Crossref: 52] [Cited by in F6Publishing: 54] [Article Influence: 17.3] [Reference Citation Analysis]
50 Shao Q. Effect of conjugated (EK) 10 peptide on structural and dynamic properties of ubiquitin protein: a molecular dynamics simulation study. J Mater Chem B 2020;8:6934-43. [DOI: 10.1039/d0tb00664e] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
51 Liu G, Yuan Z, Incecik A, Leng D, Wang S, Li Z. A new biomimetic antifouling method based on water jet for marine structures. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment 2020;234:573-84. [DOI: 10.1177/1475090219892420] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]