BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Duan X, Xiao J, Yin Q, Zhang Z, Yu H, Mao S, Li Y. Multi-targeted inhibition of tumor growth and lung metastasis by redox-sensitive shell crosslinked micelles loading disulfiram. Nanotechnology 2014;25:125102. [DOI: 10.1088/0957-4484/25/12/125102] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 4.1] [Reference Citation Analysis]
Number Citing Articles
1 Wang L, Yu Y, Zhou C, Wan R, Li Y. Anticancer effects of disulfiram: a systematic review of in vitro, animal, and human studies. Syst Rev 2022;11:109. [PMID: 35655266 DOI: 10.1186/s13643-021-01858-4] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
2 Cao HZ, Yang WT, Zheng PS. Cytotoxic effect of disulfiram/copper on human cervical cancer cell lines and LGR5-positive cancer stem-like cells. BMC Cancer 2022;22:521. [PMID: 35534815 DOI: 10.1186/s12885-022-09574-5] [Reference Citation Analysis]
3 Lu Y, Pan Q, Gao W, Pu Y, Luo K, He B, Gu Z. Leveraging disulfiram to treat cancer: Mechanisms of action, delivery strategies, and treatment regimens. Biomaterials 2021;281:121335. [PMID: 34979419 DOI: 10.1016/j.biomaterials.2021.121335] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 13.0] [Reference Citation Analysis]
4 Kannappan V, Ali M, Small B, Rajendran G, Elzhenni S, Taj H, Wang W, Dou QP. Recent Advances in Repurposing Disulfiram and Disulfiram Derivatives as Copper-Dependent Anticancer Agents. Front Mol Biosci 2021;8:741316. [PMID: 34604310 DOI: 10.3389/fmolb.2021.741316] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 12.0] [Reference Citation Analysis]
5 Farooq MA, Xu L, Aquib M, Ahsan A, Baig MMFA, Wang B. Denatured food protein-coated nanosuspension: A promising approach for anticancer delivery of hydrophobic drug. Journal of Molecular Liquids 2020;303:112690. [DOI: 10.1016/j.molliq.2020.112690] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
6 Ishii H, Yamasaki T, Yui J, Zhang Y, Hanyu M, Ogawa M, Nengaki N, Tsuji AB, Terashima Y, Matsushima K, Zhang MR. Radiosynthesis of [thiocarbonyl-11C]disulfiram and its first PET study in mice. Bioorg Med Chem Lett 2020;30:126998. [PMID: 32014383 DOI: 10.1016/j.bmcl.2020.126998] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
7 Xie C, Ding R, Wang X, Hu C, Yan J, Zhang W, Wang Y, Qu Y, Zhang S, He P, Wang Z. A disulfiram-loaded electrospun poly(vinylidene fluoride) nanofibrous scaffold for cancer treatment. Nanotechnology 2020;31:115101. [PMID: 31766038 DOI: 10.1088/1361-6528/ab5b35] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
8 Chang Y, Jiang J, Chen W, Yang W, Chen L, Chen P, Shen J, Qian S, Zhou T, Wu L, Hong L, Huang Y, Li F. Biomimetic metal-organic nanoparticles prepared with a 3D-printed microfluidic device as a novel formulation for disulfiram-based therapy against breast cancer. Applied Materials Today 2020;18:100492. [DOI: 10.1016/j.apmt.2019.100492] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
9 Ekinci E, Rohondia S, Khan R, Dou QP. Repurposing Disulfiram as An Anti-Cancer Agent: Updated Review on Literature and Patents. Recent Pat Anticancer Drug Discov 2019;14:113-32. [PMID: 31084595 DOI: 10.2174/1574892814666190514104035] [Cited by in Crossref: 61] [Cited by in F6Publishing: 65] [Article Influence: 30.5] [Reference Citation Analysis]
10 Li H, Liu B, Ao H, Fu J, Wang Y, Feng Y, Guo Y, Wang X. Soybean lecithin stabilizes disulfiram nanosuspensions with a high drug-loading content: remarkably improved antitumor efficacy. J Nanobiotechnology 2020;18:4. [PMID: 31907045 DOI: 10.1186/s12951-019-0565-0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
11 McMahon A, Chen W, Li F. Old wine in new bottles: Advanced drug delivery systems for disulfiram-based cancer therapy. J Control Release 2020;319:352-9. [PMID: 31911155 DOI: 10.1016/j.jconrel.2020.01.001] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 17.0] [Reference Citation Analysis]
12 Basso J, Mendes M, Fortuna A, Vitorino R, Sousa J, Pais A, Vitorino C. Nanotechnological approaches in cancer. Drug Repurposing in Cancer Therapy 2020. [DOI: 10.1016/b978-0-12-819668-7.00014-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
13 Farooq MA, Aquib M, Khan DH, Hussain Z, Ahsan A, Baig MMFA, Wande DP, Ahmad MM, Ahsan HM, Jiajie J, Wang B. Recent advances in the delivery of disulfiram: a critical analysis of promising approaches to improve its pharmacokinetic profile and anticancer efficacy. Daru 2019;27:853-62. [PMID: 31758497 DOI: 10.1007/s40199-019-00308-w] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
14 Banerjee P, Geng T, Mahanty A, Li T, Zong L, Wang B. Integrating the drug, disulfiram into the vitamin E-TPGS-modified PEGylated nanostructured lipid carriers to synergize its repurposing for anti-cancer therapy of solid tumors. International Journal of Pharmaceutics 2019;557:374-89. [DOI: 10.1016/j.ijpharm.2018.12.051] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 10.7] [Reference Citation Analysis]
15 Lang T, Yin Q, Li Y. Progress of Cell-Derived Biomimetic Drug Delivery Systems for Cancer Therapy. Adv Therap 2018;1:1800053. [DOI: 10.1002/adtp.201800053] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 6.0] [Reference Citation Analysis]
16 Butcher K, Kannappan V, Kilari RS, Morris MR, McConville C, Armesilla AL, Wang W. Investigation of the key chemical structures involved in the anticancer activity of disulfiram in A549 non-small cell lung cancer cell line. BMC Cancer 2018;18:753. [PMID: 30031402 DOI: 10.1186/s12885-018-4617-x] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 6.5] [Reference Citation Analysis]
17 Ke Z, Yang L, Wu H, Li Z, Jia X, Zhang Z. Evaluation of in vitro and in vivo antitumor effects of gambogic acid-loaded layer-by-layer self-assembled micelles. International Journal of Pharmaceutics 2018;545:306-17. [DOI: 10.1016/j.ijpharm.2018.04.016] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 5.0] [Reference Citation Analysis]
18 Miao L, Su J, Zhuo X, Luo L, Kong Y, Gou J, Yin T, Zhang Y, He H, Tang X. mPEG 5k - b -PLGA 2k /PCL 3.4k /MCT Mixed Micelles as Carriers of Disulfiram for Improving Plasma Stability and Antitumor Effect in Vivo. Mol Pharmaceutics 2018;15:1556-64. [DOI: 10.1021/acs.molpharmaceut.7b01094] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
19 He H, Markoutsa E, Li J, Xu P. Repurposing disulfiram for cancer therapy via targeted nanotechnology through enhanced tumor mass penetration and disassembly. Acta Biomater 2018;68:113-24. [PMID: 29294377 DOI: 10.1016/j.actbio.2017.12.023] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 10.3] [Reference Citation Analysis]
20 Ruttala HB, Chitrapriya N, Kaliraj K, Ramasamy T, Shin WH, Jeong JH, Kim JR, Ku SK, Choi HG, Yong CS, Kim JO. Facile construction of bioreducible crosslinked polypeptide micelles for enhanced cancer combination therapy. Acta Biomater 2017;63:135-49. [PMID: 28890258 DOI: 10.1016/j.actbio.2017.09.002] [Cited by in Crossref: 60] [Cited by in F6Publishing: 56] [Article Influence: 12.0] [Reference Citation Analysis]
21 You C, Wu H, Wang M, Zhang Y, Wang J, Luo Y, Zhai L, Sun B, Zhang X, Zhu J. Near-Infrared Light and pH Dual-Responsive Targeted Drug Carrier Based on Core-Crosslinked Polyaniline Nanoparticles for Intracellular Delivery of Cisplatin. Chem Eur J 2017;23:5352-60. [DOI: 10.1002/chem.201700059] [Cited by in Crossref: 40] [Cited by in F6Publishing: 43] [Article Influence: 8.0] [Reference Citation Analysis]
22 Wang C, Yang J, Han H, Chen J, Wang Y, Li Q, Wang Y. Disulfiram-loaded porous PLGA microparticle for inhibiting the proliferation and migration of non-small-cell lung cancer. Int J Nanomedicine 2017;12:827-37. [PMID: 28182125 DOI: 10.2147/IJN.S121948] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 3.4] [Reference Citation Analysis]
23 Yang Y, Zhang K, Wang Y, Li M, Sun X, Liang Z, Wang L, Chen L, Yang H, Zhu L. Disulfiram chelated with copper promotes apoptosis in human breast cancer cells by impairing the mitochondria functions. Scanning 2016;38:825-36. [PMID: 27353661 DOI: 10.1002/sca.21332] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
24 Fasehee H, Dinarvand R, Ghavamzadeh A, Esfandyari-Manesh M, Moradian H, Faghihi S, Ghaffari SH. Delivery of disulfiram into breast cancer cells using folate-receptor-targeted PLGA-PEG nanoparticles: in vitro and in vivo investigations. J Nanobiotechnology 2016;14:32. [PMID: 27102110 DOI: 10.1186/s12951-016-0183-z] [Cited by in Crossref: 85] [Cited by in F6Publishing: 87] [Article Influence: 14.2] [Reference Citation Analysis]
25 Song W, Tang Z, Lei T, Wen X, Wang G, Zhang D, Deng M, Tang X, Chen X. Stable loading and delivery of disulfiram with mPEG-PLGA/PCL mixed nanoparticles for tumor therapy. Nanomedicine: Nanotechnology, Biology and Medicine 2016;12:377-86. [DOI: 10.1016/j.nano.2015.10.022] [Cited by in Crossref: 54] [Cited by in F6Publishing: 58] [Article Influence: 9.0] [Reference Citation Analysis]
26 Triscott J, Rose Pambid M, Dunn SE. Concise review: bullseye: targeting cancer stem cells to improve the treatment of gliomas by repurposing disulfiram. Stem Cells. 2015;33:1042-1046. [PMID: 25588723 DOI: 10.1002/stem.1956] [Cited by in Crossref: 54] [Cited by in F6Publishing: 58] [Article Influence: 9.0] [Reference Citation Analysis]
27 Yang J, Duan Y, Zhang X, Wang Y, Yu A. Modulating the cellular microenvironment with disulfide-containing nanoparticles as an auxiliary cancer treatment strategy. J Mater Chem B 2016;4:3868-73. [DOI: 10.1039/c6tb00847j] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
28 Biswas S, Kumari P, Lakhani PM, Ghosh B. Recent advances in polymeric micelles for anti-cancer drug delivery. Eur J Pharm Sci 2016;83:184-202. [PMID: 26747018 DOI: 10.1016/j.ejps.2015.12.031] [Cited by in Crossref: 319] [Cited by in F6Publishing: 276] [Article Influence: 45.6] [Reference Citation Analysis]
29 Zhang L, Tian B, Li Y, Lei T, Meng J, Yang L, Zhang Y, Chen F, Zhang H, Xu H, Zhang Y, Tang X. A Copper-Mediated Disulfiram-Loaded pH-Triggered PEG-Shedding TAT Peptide-Modified Lipid Nanocapsules for Use in Tumor Therapy. ACS Appl Mater Interfaces 2015;7:25147-61. [DOI: 10.1021/acsami.5b06488] [Cited by in Crossref: 50] [Cited by in F6Publishing: 52] [Article Influence: 7.1] [Reference Citation Analysis]
30 Würth R, Thellung S, Bajetto A, Mazzanti M, Florio T, Barbieri F. Drug-repositioning opportunities for cancer therapy: novel molecular targets for known compounds. Drug Discov Today 2016;21:190-9. [PMID: 26456577 DOI: 10.1016/j.drudis.2015.09.017] [Cited by in Crossref: 89] [Cited by in F6Publishing: 94] [Article Influence: 12.7] [Reference Citation Analysis]
31 Rodriguez-Torres M, Allan AL. Aldehyde dehydrogenase as a marker and functional mediator of metastasis in solid tumors. Clin Exp Metastasis 2016;33:97-113. [PMID: 26445849 DOI: 10.1007/s10585-015-9755-9] [Cited by in Crossref: 86] [Cited by in F6Publishing: 88] [Article Influence: 12.3] [Reference Citation Analysis]
32 Deng H, Zhang Y, Wang X, Jianhuazhang, Cao Y, Liu J, Liu J, Deng L, Dong A. Balancing the stability and drug release of polymer micelles by the coordination of dual-sensitive cleavable bonds in cross-linked core. Acta Biomater 2015;11:126-36. [PMID: 25288518 DOI: 10.1016/j.actbio.2014.09.047] [Cited by in Crossref: 59] [Cited by in F6Publishing: 62] [Article Influence: 8.4] [Reference Citation Analysis]
33 Cai M, Ye M, Shang X, Sun H, Liu M, Sun H, Ma Z, Zhu H. cRGD-functionalized redox-sensitive micelles as potential doxorubicin delivery carriers for α v β 3 integrin over expressing tumors. RSC Adv 2015;5:92292-302. [DOI: 10.1039/c5ra16137a] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]