BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Cunliffe AR, Armato SG 3rd, Straus C, Malik R, Al-Hallaq HA. Lung texture in serial thoracic CT scans: correlation with radiologist-defined severity of acute changes following radiation therapy. Phys Med Biol 2014;59:5387-98. [PMID: 25157625 DOI: 10.1088/0031-9155/59/18/5387] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 2.5] [Reference Citation Analysis]
Number Citing Articles
1 Shaker R, Wilke C, Ober C, Lawrence J. Machine learning model development for quantitative analysis of CT heterogeneity in canine hepatic masses may predict histologic malignancy. Vet Radiol Ultrasound 2021. [PMID: 34448312 DOI: 10.1111/vru.13012] [Reference Citation Analysis]
2 Higano NS, Ruoss JL, Woods JC. Modern pulmonary imaging of bronchopulmonary dysplasia. J Perinatol 2021;41:707-17. [PMID: 33547408 DOI: 10.1038/s41372-021-00929-7] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
3 Martini K, Baessler B, Bogowicz M, Blüthgen C, Mannil M, Tanadini-Lang S, Schniering J, Maurer B, Frauenfelder T. Applicability of radiomics in interstitial lung disease associated with systemic sclerosis: proof of concept. Eur Radiol 2021;31:1987-98. [PMID: 33025174 DOI: 10.1007/s00330-020-07293-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
4 Arimura H, Soufi M, Kamezawa H, Ninomiya K, Yamada M. Radiomics with artificial intelligence for precision medicine in radiation therapy. J Radiat Res 2019;60:150-7. [PMID: 30247662 DOI: 10.1093/jrr/rry077] [Cited by in Crossref: 30] [Cited by in F6Publishing: 37] [Article Influence: 10.0] [Reference Citation Analysis]
5 Kloth C, Thaiss WM, Beck R, Haap M, Fritz J, Beer M, Horger M. Potential role of CT-textural features for differentiation between viral interstitial pneumonias, pneumocystis jirovecii pneumonia and diffuse alveolar hemorrhage in early stages of disease: a proof of principle. BMC Med Imaging 2019;19:39. [PMID: 31113389 DOI: 10.1186/s12880-019-0338-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
6 Huang L, Chen J, Hu W, Xu X, Liu D, Wen J, Lu J, Cao J, Zhang J, Gu Y, Wang J, Fan M. Assessment of a Radiomic Signature Developed in a General NSCLC Cohort for Predicting Overall Survival of ALK-Positive Patients With Different Treatment Types. Clin Lung Cancer 2019;20:e638-51. [PMID: 31375452 DOI: 10.1016/j.cllc.2019.05.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
7 Buch K, Kuno H, Qureshi MM, Li B, Sakai O. Quantitative variations in texture analysis features dependent on MRI scanning parameters: A phantom model. J Appl Clin Med Phys 2018;19:253-64. [PMID: 30369010 DOI: 10.1002/acm2.12482] [Cited by in Crossref: 27] [Cited by in F6Publishing: 31] [Article Influence: 6.8] [Reference Citation Analysis]
8 Kloth C, Henes J, Xenitidis T, Thaiss WM, Blum AC, Fritz J, Nikolaou K, Horger M, Ioanoviciu SD. Chest CT texture analysis for response assessment in systemic sclerosis. Eur J Radiol 2018;101:50-8. [PMID: 29571801 DOI: 10.1016/j.ejrad.2018.01.024] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
9 Veiga C, Landau D, McClelland JR, Ledermann JA, Hawkes D, Janes SM, Devaraj A. Long term radiological features of radiation-induced lung damage. Radiother Oncol 2018;126:300-6. [PMID: 29191458 DOI: 10.1016/j.radonc.2017.11.003] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
10 Hou Z, Ren W, Li S, Liu J, Sun Y, Yan J, Wan S. Radiomic analysis in contrast-enhanced CT: predict treatment response to chemoradiotherapy in esophageal carcinoma. Oncotarget 2017;8:104444-54. [PMID: 29262652 DOI: 10.18632/oncotarget.22304] [Cited by in Crossref: 24] [Cited by in F6Publishing: 34] [Article Influence: 4.8] [Reference Citation Analysis]
11 [DOI: 10.1109/icip.2017.8296888] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
12 Moran A, Daly ME, Yip SSF, Yamamoto T. Radiomics-based Assessment of Radiation-induced Lung Injury After Stereotactic Body Radiotherapy. Clin Lung Cancer 2017;18:e425-31. [PMID: 28623121 DOI: 10.1016/j.cllc.2017.05.014] [Cited by in Crossref: 42] [Cited by in F6Publishing: 45] [Article Influence: 8.4] [Reference Citation Analysis]
13 Buch K, Li B, Qureshi MM, Kuno H, Anderson SW, Sakai O. Quantitative Assessment of Variation in CT Parameters on Texture Features: Pilot Study Using a Nonanatomic Phantom. AJNR Am J Neuroradiol 2017;38:981-5. [PMID: 28341714 DOI: 10.3174/ajnr.A5139] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 7.2] [Reference Citation Analysis]
14 Cunliffe AR, White B, Justusson J, Straus C, Malik R, Al-Hallaq HA, Armato SG 3rd. Comparison of Two Deformable Registration Algorithms in the Presence of Radiologic Change Between Serial Lung CT Scans. J Digit Imaging 2015;28:755-60. [PMID: 25822396 DOI: 10.1007/s10278-015-9789-1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
15 Zhang L, Fried DV, Fave XJ, Hunter LA, Yang J, Court LE. IBEX: an open infrastructure software platform to facilitate collaborative work in radiomics. Med Phys 2015;42:1341-53. [PMID: 25735289 DOI: 10.1118/1.4908210] [Cited by in Crossref: 173] [Cited by in F6Publishing: 192] [Article Influence: 28.8] [Reference Citation Analysis]
16 Wei K, Su H, Zhou G, Zhang R, Cai P, Fan Y, Xie C, Fei B, Zhang Z. Potential Application of Radiomics for Differentiating Solitary Pulmonary Nodules. OMICS J Radiol 2016;5:1000218. [PMID: 28261535 DOI: 10.4172/2167-7964.1000218] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
17 Graff CG, Sidky EY. Compressive sensing in medical imaging. Appl Opt 2015;54:C23-44. [PMID: 25968400 DOI: 10.1364/AO.54.000C23] [Cited by in Crossref: 60] [Cited by in F6Publishing: 40] [Article Influence: 10.0] [Reference Citation Analysis]
18 Mattonen SA, Tetar S, Palma DA, Louie AV, Senan S, Ward AD. Imaging texture analysis for automated prediction of lung cancer recurrence after stereotactic radiotherapy. J Med Imaging (Bellingham) 2015;2:041010. [PMID: 26835492 DOI: 10.1117/1.JMI.2.4.041010] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 2.7] [Reference Citation Analysis]
19 Bernchou U, Hansen O, Schytte T, Bertelsen A, Hope A, Moseley D, Brink C. Prediction of lung density changes after radiotherapy by cone beam computed tomography response markers and pre-treatment factors for non-small cell lung cancer patients. Radiotherapy and Oncology 2015;117:17-22. [DOI: 10.1016/j.radonc.2015.07.021] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 3.1] [Reference Citation Analysis]
20 [DOI: 10.1101/2020.09.07.20189977] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Reference Citation Analysis]