BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Farooq MA, Aquib M, Farooq A, Haleem Khan D, Joelle Maviah MB, Sied Filli M, Kesse S, Boakye-Yiadom KO, Mavlyanova R, Parveen A, Wang B. Recent progress in nanotechnology-based novel drug delivery systems in designing of cisplatin for cancer therapy: an overview. Artif Cells Nanomed Biotechnol 2019;47:1674-92. [PMID: 31066300 DOI: 10.1080/21691401.2019.1604535] [Cited by in Crossref: 55] [Cited by in F6Publishing: 43] [Article Influence: 13.8] [Reference Citation Analysis]
Number Citing Articles
1 Sengupta S, Das P, Sharma S, Shukla MK, Kumar R, Kumar Tonk R, Pandey S, Kumar D. Role and Application of Biocatalysts in Cancer Drug Discovery. Catalysts 2023;13:250. [DOI: 10.3390/catal13020250] [Reference Citation Analysis]
2 Shen F, Fang Y, Wu Y, Zhou M, Shen J, Fan X. Metal ions and nanometallic materials in antitumor immunity: Function, application, and perspective. J Nanobiotechnology 2023;21:20. [PMID: 36658649 DOI: 10.1186/s12951-023-01771-z] [Reference Citation Analysis]
3 Xu DZ, Sun XY, Liang YX, Huang HW, Liu R, Lu ZL, He L. Esterase-Responsive Polymeric Micelles Containing Tetraphenylethene and Poly(ethylene glycol) Moieties for Efficient Doxorubicin Delivery and Tumor Therapy. Bioconjug Chem 2023;34:248-56. [PMID: 36621834 DOI: 10.1021/acs.bioconjchem.2c00545] [Reference Citation Analysis]
4 Fraguas-sánchez AI, Martín-sabroso C, Lozza I, Torres-suárez AI. Nanomedicine Applications in Cancer Treatment. Handbook of Cancer and Immunology 2023. [DOI: 10.1007/978-3-030-80962-1_294-1] [Reference Citation Analysis]
5 Chatterjee S. Carbon nanotubes as nanovectors for targeted delivery of platinum based anticancer drugs. Emerging Applications of Carbon Nanotubes in Drug and Gene Delivery 2023. [DOI: 10.1016/b978-0-323-85199-2.00004-2] [Reference Citation Analysis]
6 Shahriar SMS, Andrabi SM, Islam F, An JM, Schindler SJ, Matis MP, Lee DY, Lee YK. Next-Generation 3D Scaffolds for Nano-Based Chemotherapeutics Delivery and Cancer Treatment. Pharmaceutics 2022;14. [PMID: 36559206 DOI: 10.3390/pharmaceutics14122712] [Reference Citation Analysis]
7 Souza WA, Ramos LMS, de Almeida AM, Tezuka DY, Lopes CD, Moreira MB, Zanetti RD, Netto AVG, Ferreira FB, de Oliveira RJ, Guedes GP, de Albuquerque S, Silva JRL, Pereira-Maia EC, Resende JALC, de Almeida MV, Guerra W. Preparation, cytotoxic activity and DNA interaction studies of new platinum(II) complexes with 1,10-phenanthroline and 5-alkyl-1,3,4-oxadiazol-2(3H)-thione derivatives. J Inorg Biochem 2022;237:111993. [PMID: 36108344 DOI: 10.1016/j.jinorgbio.2022.111993] [Reference Citation Analysis]
8 Masoudifar R, Pouyanfar N, Liu D, Ahmadi M, Landi B, Akbari M, Moayeri-jolandan S, Ghorbani-bidkorpeh F, Asadian E, Shahbazi M. Surface engineered metal-organic frameworks as active targeting nanomedicines for mono- and multi-therapy. Applied Materials Today 2022;29:101646. [DOI: 10.1016/j.apmt.2022.101646] [Reference Citation Analysis]
9 Zhang L, Zhang H. Silver Halide-Based Nanomaterials in Biomedical Applications and Biosensing Diagnostics. Nanoscale Res Lett 2022;17:114. [DOI: 10.1186/s11671-022-03752-x] [Reference Citation Analysis]
10 Yang Z, Lou C, Wang X, Wang C, Shi Z, Niu N. Preparation, characterization, and in-vitro cytotoxicity of nanoliposomes loaded with anti-tubercular drugs and TGF-β1 siRNA for improving spinal tuberculosis therapy. BMC Infect Dis 2022;22:824. [DOI: 10.1186/s12879-022-07791-8] [Reference Citation Analysis]
11 Raguzin EV, Yudin MA, Glushenko DD, Vengerovich NG, Raguzina OG, Pechurina TB, Shefer TV, Ivanov IM. Analysis and Evaluation of Modern Approaches to Development of Medical Drugs Using Micro- and Nanotechnologies. I P Pavlov Russian Medical Biological Herald 2022;30:397-410. [DOI: 10.17816/pavlovj104787] [Reference Citation Analysis]
12 Goldberg M, Manzi A, Birdi A, Laporte B, Conway P, Cantin S, Mishra V, Singh A, Pearson AT, Goldberg ER, Goldberger S, Flaum B, Hasina R, London NR, Gallia GL, Bettegowda C, Young S, Sandulache V, Melville J, Shum J, O'Neill SE, Aydin E, Zhavoronkov A, Vidal A, Soto A, Alonso MJ, Rosenberg AJ, Lingen MW, D'Cruz A, Agrawal N, Izumchenko E. A nanoengineered topical transmucosal cisplatin delivery system induces anti-tumor response in animal models and patients with oral cancer. Nat Commun 2022;13:4829. [PMID: 35977936 DOI: 10.1038/s41467-022-31859-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
13 Alshahrani SM, Thotakura N, Sharma S, Quadir SS, Chaurawal N, Sharma S, Chitkara D, Raza K. Influence of Nanocarrier Type on the Drug Delivery Aspects of Docetaxel: Empirical Evidences. J Pharm Innov. [DOI: 10.1007/s12247-022-09677-3] [Reference Citation Analysis]
14 Raducka A, Świątkowski M, Korona-głowniak I, Kaproń B, Plech T, Szczesio M, Gobis K, Czylkowska A. Design, Synthesis, and Characterization of Novel Coordination Compounds of Benzimidazole Derivatives with Cadmium. Pharmaceutics 2022;14:1626. [DOI: 10.3390/pharmaceutics14081626] [Reference Citation Analysis]
15 Alqahtani AA, Aslam H, Shukrullah S, Fatima H, Naz MY, Rahman S, Mahnashi MH, Irfan M. Nanocarriers for Smart Therapeutic Strategies to Treat Drug-Resistant Tumors: A Review. ASSAY and Drug Development Technologies 2022;20:191-210. [DOI: 10.1089/adt.2022.025] [Reference Citation Analysis]
16 Ali R, Aouida M, Alhaj Sulaiman A, Madhusudan S, Ramotar D. Can Cisplatin Therapy Be Improved? Pathways That Can Be Targeted. IJMS 2022;23:7241. [DOI: 10.3390/ijms23137241] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
17 Mirhadi E, Gheybi F, Mahmoudi N, Hemmati M, Soleymanian F, Ghasemi A, Askarizadeh A, Iranshahi M, Jaafari MR, Alavizadeh SH. Amino acid coordination complex mediates cisplatin entrapment within PEGylated liposome: An implication in colorectal cancer therapy. Int J Pharm 2022;623:121946. [PMID: 35750277 DOI: 10.1016/j.ijpharm.2022.121946] [Reference Citation Analysis]
18 Gao JR, Shi MM, Jiang H, Zhu XL, Wei LB, Qin XJ. MicroRNA-339-5p inhibits lipopolysaccharide-induced rat mesangial cells by regulating the Syk/Ras/c-Fos pathway. Naunyn Schmiedebergs Arch Pharmacol 2022. [PMID: 35687145 DOI: 10.1007/s00210-022-02261-z] [Reference Citation Analysis]
19 Kashikar R, Kotha AK, Shah S, Famta P, Singh SB, Srivastava S, Chougule MB. Advances in nanoparticle mediated targeting of RNA binding protein for cancer. Adv Drug Deliv Rev 2022;185:114257. [PMID: 35381306 DOI: 10.1016/j.addr.2022.114257] [Reference Citation Analysis]
20 Date T, Kuche K, Ghadi R, Kumar P, Jain S. Understanding the Role of Axial Ligands in Modulating the Biopharmaceutical Outcomes of Cisplatin(IV) Derivatives. Mol Pharm 2022. [PMID: 35437994 DOI: 10.1021/acs.molpharmaceut.1c00844] [Reference Citation Analysis]
21 Kanaoujiya R, Saroj SK, Srivastava S, Chaudhary MK, Murthy HCA. Renewable Polysaccharide and Biomedical Application of Nanomaterials. Journal of Nanomaterials 2022;2022:1-16. [DOI: 10.1155/2022/1050211] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
22 Yao H, Shen N, Ji G, Huang J, Sun J, Wang G, Tang Z, Chen X. Cisplatin Nanoparticles Promote Intratumoral CD8+ T Cell Priming via Antigen Presentation and T Cell Receptor Crosstalk. Nano Lett 2022. [PMID: 35404605 DOI: 10.1021/acs.nanolett.2c00478] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
23 Banthia P, Gambhir L, Sharma A, Daga D, Kapoor N, Chaudhary R, Sharma G. Nano to rescue: repository of nanocarriers for targeted drug delivery to curb breast cancer. 3 Biotech 2022;12:70. [PMID: 35223356 DOI: 10.1007/s13205-022-03121-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
24 Kokaz SF, Deb PK, Borah P, Bania R, Venugopala KN, Nair AB, Singh V, Al‐shar'i NA, Hourani W, Gupta G, Tekade RK. Dendrimers: Properties and Applications in Biomedical Field. In: Jana S, Jana S, editors. Nanoengineering of Biomaterials. Wiley; 2022. pp. 215-43. [DOI: 10.1002/9783527832095.ch25] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Sultan MH, Moni SS, Madkhali OA, Bakkari MA, Alshahrani S, Alqahtani SS, Alhakamy NA, Mohan S, Ghazwani M, Bukhary HA, Almoshari Y, Salawi A, Alshamrani M. Characterization of cisplatin-loaded chitosan nanoparticles and rituximab-linked surfaces as target-specific injectable nano-formulations for combating cancer. Sci Rep 2022;12:468. [PMID: 35013493 DOI: 10.1038/s41598-021-04427-w] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
26 Arya G, Gupta N, Nimesh S. Chitosan nanoparticles for therapeutic delivery of anticancer drugs. Polysaccharide Nanoparticles 2022. [DOI: 10.1016/b978-0-12-822351-2.00018-8] [Reference Citation Analysis]
27 Anees LM, Abdel-Hamid GR, Elkady AA. A nano based approach to alleviate cisplatin induced nephrotoxicity. Int J Immunopathol Pharmacol 2021;35:20587384211066441. [PMID: 34915755 DOI: 10.1177/20587384211066441] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
28 Sargazi S, Hosseinikhah SM, Zargari F, Chauhana NPS, Hassanisaadi M, Amani S. pH-responsive cisplatin-loaded niosomes: synthesis, characterization, cytotoxicity study and interaction analyses by simulation methodology. Nanofabrication 2021;6:1-15. [DOI: 10.1515/nanofab-2020-0100] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
29 Miatmoko A. Physical Characterization and Biodistribution of Cisplatin Loaded in Surfactant Modified-Hybrid Nanoparticles Using Polyethylene Oxide-b-Polymethacrylic Acid. Adv Pharm Bull 2021;11:765-71. [PMID: 34888224 DOI: 10.34172/apb.2021.086] [Reference Citation Analysis]
30 Bilal M, Qindeel M, Raza A, Mehmood S, Rahdar A. Stimuli-responsive nanoliposomes as prospective nanocarriers for targeted drug delivery. Journal of Drug Delivery Science and Technology 2021;66:102916. [DOI: 10.1016/j.jddst.2021.102916] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
31 Uson L, Yus C, Mendoza G, Leroy E, Irusta S, Alejo T, García‐domingo D, Larrea A, Arruebo M, Arenal R, Sebastian V. Nanoengineering Palladium Plasmonic Nanosheets Inside Polymer Nanospheres for Photothermal Therapy and Targeted Drug Delivery. Adv Funct Materials 2022;32:2106932. [DOI: 10.1002/adfm.202106932] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
32 Yeroslavsky G, Richman M, Gertler A, Cohen HY, Motiei M, Popovtzer R, Gottlieb HE, Rahimipour S. Polydopamine Nanoparticles Containing a Cisplatin Analog for Anticancer Treatment and Diagnostics. ACS Appl Nano Mater 2021;4:14126-35. [DOI: 10.1021/acsanm.1c03487] [Reference Citation Analysis]
33 Sargazi S, Mukhtar M, Rahdar A, Barani M, Pandey S, Díez-Pascual AM. Active Targeted Nanoparticles for Delivery of Poly(ADP-ribose) Polymerase (PARP) Inhibitors: A Preliminary Review. Int J Mol Sci 2021;22:10319. [PMID: 34638660 DOI: 10.3390/ijms221910319] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
34 Chen D, Zhang X, Yang J, Liao X, Yang B, Gao C. Codelivery of satraplatin and aminopyrrolic receptor with Pluronic F127-based polyaniline nanoparticles with NIR induced release for combined chemotherapy. Nanotechnology 2021;32. [PMID: 34388738 DOI: 10.1088/1361-6528/ac1d78] [Reference Citation Analysis]
35 Piorecka K, Kurjata J, Stanczyk WA. Nanoarchitectonics: Complexes and Conjugates of Platinum Drugs with Silicon Containing Nanocarriers. An Overview. Int J Mol Sci 2021;22:9264. [PMID: 34502173 DOI: 10.3390/ijms22179264] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
36 Bădilă AE, Rădulescu DM, Niculescu AG, Grumezescu AM, Rădulescu M, Rădulescu AR. Recent Advances in the Treatment of Bone Metastases and Primary Bone Tumors: An Up-to-Date Review. Cancers (Basel) 2021;13:4229. [PMID: 34439383 DOI: 10.3390/cancers13164229] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
37 Maliyakkal N, Appadath Beeran A, Udupa N. Nanoparticles of cisplatin augment drug accumulations and inhibit multidrug resistance transporters in human glioblastoma cells. Saudi Pharm J 2021;29:857-73. [PMID: 34408546 DOI: 10.1016/j.jsps.2021.07.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
38 Li G, Cheng Z. miR-339-5p Inhibits Autophagy to Reduce the Resistance of Laryngeal Carcinoma on Cisplatin via Targeting TAK1. Biomed Res Int 2021;2021:9938515. [PMID: 34395629 DOI: 10.1155/2021/9938515] [Reference Citation Analysis]
39 Zhao H, Gu W, Pan W, Zhang H, Shuai L, Diao R, Wang L. [miR-483-5p aggravates cisplatin-induced premature ovarian insufficiency in rats by targeting FKBP4]. Nan Fang Yi Ke Da Xue Xue Bao 2021;41:801-10. [PMID: 34238731 DOI: 10.12122/j.issn.1673-4254.2021.06.01] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
40 Boztepe T, Castro GR, León IE. Lipid, polymeric, inorganic-based drug delivery applications for platinum-based anticancer drugs. Int J Pharm 2021;605:120788. [PMID: 34116182 DOI: 10.1016/j.ijpharm.2021.120788] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
41 Zajda J, Wróblewska A, Ruzik L, Matczuk M. Methodology for characterization of platinum-based drug's targeted delivery nanosystems. J Control Release 2021;335:178-90. [PMID: 34022322 DOI: 10.1016/j.jconrel.2021.05.022] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
42 Vaghasiya K, Ray E, Singh R, Jadhav K, Sharma A, Khan R, Katare OP, Verma RK. Efficient, enzyme responsive and tumor receptor targeting gelatin nanoparticles decorated with concanavalin-A for site-specific and controlled drug delivery for cancer therapy. Mater Sci Eng C Mater Biol Appl 2021;123:112027. [PMID: 33812642 DOI: 10.1016/j.msec.2021.112027] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
43 Chen Y, Liang H, Liu M, Huang W, Yi P, Yuan S, Mei L, Hu Y, Cao Y, Hao G, Zhang D, Yang G. Catalase Inhibitors with Dual Pro‐Oxidant Effect as New Therapeutic Agents in Castration‐Resistant Prostate Cancer. Adv Therap 2021;4:2000164. [DOI: 10.1002/adtp.202000164] [Reference Citation Analysis]
44 Kuznetsova DA, Gabdrakhmanov DR, Gaynanova GA, Vasileva LA, Kuznetsov DM, Lukashenko SS, Voloshina AD, Sapunova AS, Nizameev IR, Sibgatullina GV, Samigullin DV, Kadirov MK, Petrov KA, Zakharova LY. Novel biocompatible liposomal formulations for encapsulation of hydrophilic drugs – Chloramphenicol and cisplatin. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021;610:125673. [DOI: 10.1016/j.colsurfa.2020.125673] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
45 Kadina YA, Razuvaeva EV, Streltsov DR, Sedush NG, Shtykova EV, Kulebyakina AI, Puchkov AA, Volkov DS, Nazarov AA, Chvalun SN. Poly(Ethylene Glycol)-b-Poly(D,L-Lactide) Nanoparticles as Potential Carriers for Anticancer Drug Oxaliplatin. Molecules 2021;26:602. [PMID: 33498932 DOI: 10.3390/molecules26030602] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
46 Liang Y, Xu L, Yang H, Xu W, Hu R, Fan X, Liu Y. Analysis on the interaction and binding properties of daphnoretin and human serum albumin in the presence of cisplatin: multi-spectroscopic methods and docking simulation. Eur J Pharm Sci 2021;159:105723. [PMID: 33482316 DOI: 10.1016/j.ejps.2021.105723] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
47 Jiang M, Lin Y, Fang X, Liu M, Ma L, Liu J, Chen M, Yang Y, Wang C. Enhancement of gold-nanocluster-mediated chemotherapeutic efficiency of cisplatin in lung cancer. J Mater Chem B 2021;9:4895-905. [PMID: 34095942 DOI: 10.1039/d1tb00276g] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
48 Perdomo SJ, Fonseca-benítez A, Cardona-mendoza A, Romero-sánchez C, Párraga J. Nano drug delivery strategies for the treatment and diagnosis of oral and throat cancers. Nano Drug Delivery Strategies for the Treatment of Cancers 2021. [DOI: 10.1016/b978-0-12-819793-6.00004-7] [Reference Citation Analysis]
49 Güven E. Nanoparticles for Anticancer Drug Delivery. Nanotechnology in the Life Sciences 2021. [DOI: 10.1007/978-3-030-64410-9_4] [Reference Citation Analysis]
50 Keerthiga G, Gupta P, Santra TS. Hydrogels: Biomaterials for Sustained and Localized Drug Delivery. Nanomaterials and Their Biomedical Applications 2021. [DOI: 10.1007/978-981-33-6252-9_9] [Reference Citation Analysis]
51 Chis AA, Dobrea C, Morgovan C, Arseniu AM, Rus LL, Butuca A, Juncan AM, Totan M, Vonica-Tincu AL, Cormos G, Muntean AC, Muresan ML, Gligor FG, Frum A. Applications and Limitations of Dendrimers in Biomedicine. Molecules 2020;25:E3982. [PMID: 32882920 DOI: 10.3390/molecules25173982] [Cited by in Crossref: 84] [Cited by in F6Publishing: 90] [Article Influence: 28.0] [Reference Citation Analysis]
52 Huyan T, Li H, Peng H, Chen J, Yang R, Zhang W, Li Q. Extracellular Vesicles - Advanced Nanocarriers in Cancer Therapy: Progress and Achievements. Int J Nanomedicine 2020;15:6485-502. [PMID: 32922012 DOI: 10.2147/IJN.S238099] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
53 Wang C, Chen S, Bao L, Liu X, Hu F, Yuan H. Size-Controlled Preparation and Behavior Study of Phospholipid-Calcium Carbonate Hybrid Nanoparticles. Int J Nanomedicine 2020;15:4049-62. [PMID: 32606663 DOI: 10.2147/IJN.S237156] [Cited by in Crossref: 25] [Cited by in F6Publishing: 29] [Article Influence: 8.3] [Reference Citation Analysis]
54 Fu B, Dang M, Tao J, Li Y, Tang Y. Mesoporous platinum nanoparticle-based nanoplatforms for combined chemo-photothermal breast cancer therapy. Journal of Colloid and Interface Science 2020;570:197-204. [DOI: 10.1016/j.jcis.2020.02.051] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 10.3] [Reference Citation Analysis]
55 Shen X, Li T, Xie X, Feng Y, Chen Z, Yang H, Wu C, Deng S, Liu Y. PLGA-Based Drug Delivery Systems for Remotely Triggered Cancer Therapeutic and Diagnostic Applications. Front Bioeng Biotechnol 2020;8:381. [PMID: 32432092 DOI: 10.3389/fbioe.2020.00381] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 11.7] [Reference Citation Analysis]
56 Daraba OM, Cadinoiu AN, Rata DM, Atanase LI, Vochita G. Antitumoral Drug-Loaded Biocompatible Polymeric Nanoparticles Obtained by Non-Aqueous Emulsion Polymerization. Polymers (Basel) 2020;12:E1018. [PMID: 32365767 DOI: 10.3390/polym12051018] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
57 Khaledi S, Jafari S, Hamidi S, Molavi O, Davaran S. Preparation and characterization of PLGA-PEG-PLGA polymeric nanoparticles for co-delivery of 5-Fluorouracil and Chrysin. Journal of Biomaterials Science, Polymer Edition 2020;31:1107-26. [DOI: 10.1080/09205063.2020.1743946] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 8.0] [Reference Citation Analysis]
58 Wrobel D, Müllerová M, Strašák T, Růžička K, Fulem M, Kubíková R, Bryszewska M, Klajnert-Maculewicz B, Malý J. Glucose-modified carbosilane dendrimers: Interaction with model membranes and human serum albumin. Int J Pharm 2020;579:119138. [PMID: 32061725 DOI: 10.1016/j.ijpharm.2020.119138] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
59 Xie M, Yang M, Sun X, Yang N, Deng T, Li Y, Shen H. WS 2 nanosheets functionalized by biomimetic lipids with enhanced dispersibility for photothermal and chemo combination therapy. J Mater Chem B 2020;8:2331-42. [DOI: 10.1039/c9tb01604j] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
60 Banerjee S. Nanoparticle-Based Delivery of Phytochemical Compounds Against Major Maladies: Cancer, Diabetes, and Cardiovascular Disease. Plant-derived Bioactives 2020. [DOI: 10.1007/978-981-15-1761-7_25] [Reference Citation Analysis]
61 Zhu Z, Xiao S, Hao H, Hou Q, Fu X. Kirsten Rat Sarcoma Viral Oncogene Homologue (KRAS) Mutations in the Occurrence and Treatment of Pancreatic Cancer. Curr Top Med Chem 2019;19:2176-86. [PMID: 31456520 DOI: 10.2174/1568026619666190828160804] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
62 Hafizi M, Kalanaky S, Moaiery H, Khayamzadeh M, Noorian S, Kaveh V, Foudazi H, Gharib B, Jenabian A, Razavi M, Salimi S, Fakharzadeh S, Zarghi A, Nazaran MH, Akbari ME. An Investigation on the Effect of BCc1 Nanomedicine on Gastric Cancer Patients Using EORTC QLQ-STO30 Questionnaire. Int J Cancer Manag 2019;12. [DOI: 10.5812/ijcm.94190] [Reference Citation Analysis]
63 Türker F, Gürses C, Barut Celepci D, Aktaş A, Ateş B, Gök Y. New morpholine‐liganded palladium(II) N ‐heterocyclic carbene complexes: Synthesis, characterization, crystal structure, and DNA‐binding studies. Arch Pharm Chem Life Sci 2019;352:1900187. [DOI: 10.1002/ardp.201900187] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
64 Chen SH, Chang JY. New Insights into Mechanisms of Cisplatin Resistance: From Tumor Cell to Microenvironment. Int J Mol Sci 2019;20:E4136. [PMID: 31450627 DOI: 10.3390/ijms20174136] [Cited by in Crossref: 135] [Cited by in F6Publishing: 144] [Article Influence: 33.8] [Reference Citation Analysis]