BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ju RJ, Cheng L, Peng XM, Wang T, Li CQ, Song XL, Liu S, Chao JP, Li XT. Octreotide-modified liposomes containing daunorubicin and dihydroartemisinin for treatment of invasive breast cancer. Artif Cells Nanomed Biotechnol 2018;46:616-28. [PMID: 29381101 DOI: 10.1080/21691401.2018.1433187] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 5.8] [Reference Citation Analysis]
Number Citing Articles
1 Wong KH, Yang D, Chen S, He C, Chen M. Development of Nanoscale Drug Delivery Systems of Dihydroartemisinin for Cancer Therapy: A Review. Asian Journal of Pharmaceutical Sciences 2022. [DOI: 10.1016/j.ajps.2022.04.005] [Reference Citation Analysis]
2 Peter S, Jama S, Alven S, Aderibigbe BA. Artemisinin and Derivatives-Based Hybrid Compounds: Promising Therapeutics for the Treatment of Cancer and Malaria. Molecules 2021;26:7521. [PMID: 34946603 DOI: 10.3390/molecules26247521] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
3 Wang J, Zhu M, Nie G. Biomembrane-based nanostructures for cancer targeting and therapy: From synthetic liposomes to natural biomembranes and membrane-vesicles. Adv Drug Deliv Rev 2021;178:113974. [PMID: 34530015 DOI: 10.1016/j.addr.2021.113974] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 8.0] [Reference Citation Analysis]
4 Yu R, Jin G, Fujimoto M. Dihydroartemisinin: A Potential Drug for the Treatment of Malignancies and Inflammatory Diseases. Front Oncol 2021;11:722331. [PMID: 34692496 DOI: 10.3389/fonc.2021.722331] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
5 Zhang Q, Jin L, Jin Q, Wei Q, Sun M, Yue Q, Liu H, Li F, Li H, Ren X, Jin G. Inhibitory Effect of Dihydroartemisinin on the Proliferation and Migration of Melanoma Cells and Experimental Lung Metastasis From Melanoma in Mice. Front Pharmacol 2021;12:727275. [PMID: 34539408 DOI: 10.3389/fphar.2021.727275] [Reference Citation Analysis]
6 Ma Y, Zhang P, Zhang Q, Wang X, Miao Q, Lyu X, Cui B, Ma H. Dihydroartemisinin suppresses proliferation, migration, the Wnt/β-catenin pathway and EMT via TNKS in gastric cancer. Oncol Lett 2021;22:688. [PMID: 34457043 DOI: 10.3892/ol.2021.12949] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Zheng Y, Karnoub AE. Endocrine regulation of cancer stem cell compartments in breast tumors. Mol Cell Endocrinol 2021;535:111374. [PMID: 34242715 DOI: 10.1016/j.mce.2021.111374] [Reference Citation Analysis]
8 Yang B, Song BP, Shankar S, Guller A, Deng W. Recent advances in liposome formulations for breast cancer therapeutics. Cell Mol Life Sci 2021;78:5225-43. [PMID: 33974093 DOI: 10.1007/s00018-021-03850-6] [Reference Citation Analysis]
9 Khongsti K, Pasupuleti BG, Das B, Bez G. 1,2,3-Triazole tethered 1,2,4‑trioxane trimer induces apoptosis in metastatic cancer cells and inhibits their proliferation, migration and invasion. Bioorg Chem 2021;112:104952. [PMID: 33971565 DOI: 10.1016/j.bioorg.2021.104952] [Reference Citation Analysis]
10 Gote V, Nookala AR, Bolla PK, Pal D. Drug Resistance in Metastatic Breast Cancer: Tumor Targeted Nanomedicine to the Rescue. Int J Mol Sci 2021;22:4673. [PMID: 33925129 DOI: 10.3390/ijms22094673] [Cited by in Crossref: 2] [Cited by in F6Publishing: 18] [Article Influence: 2.0] [Reference Citation Analysis]
11 Gote V, Pal D. Octreotide-Targeted Lcn2 siRNA PEGylated Liposomes as a Treatment for Metastatic Breast Cancer. Bioengineering (Basel) 2021;8:44. [PMID: 33916786 DOI: 10.3390/bioengineering8040044] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
12 Li Y, Zhou X, Liu J, Yuan X, He Q. Therapeutic Potentials and Mechanisms of Artemisinin and its Derivatives for Tumorigenesis and Metastasis. Anticancer Agents Med Chem 2020;20:520-35. [PMID: 31958040 DOI: 10.2174/1871520620666200120100252] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
13 Dai X, Zhang X, Chen W, Chen Y, Zhang Q, Mo S, Lu J. Dihydroartemisinin: A Potential Natural Anticancer Drug. Int J Biol Sci 2021;17:603-22. [PMID: 33613116 DOI: 10.7150/ijbs.50364] [Cited by in Crossref: 3] [Cited by in F6Publishing: 23] [Article Influence: 3.0] [Reference Citation Analysis]
14 Tang S, Wei H, Yu C. Peptide-functionalized delivery vehicles for enhanced cancer therapy. International Journal of Pharmaceutics 2021;593:120141. [DOI: 10.1016/j.ijpharm.2020.120141] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
15 Alavi M, Varma RS. Overview of novel strategies for the delivery of anthracyclines to cancer cells by liposomal and polymeric nanoformulations. Int J Biol Macromol 2020;164:2197-203. [PMID: 32763404 DOI: 10.1016/j.ijbiomac.2020.07.274] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
16 Ahmad F, Sarder A, Gour R, Karna SKL, Arora P, Kartha KPR, Pokharel YR. Inhibition of prostate cancer cell line (PC-3) by anhydrodihydroartemisinin (ADHA) through caspase-dependent pathway. EXCLI J 2020;19:613-9. [PMID: 32483407 DOI: 10.17179/excli2020-1331] [Reference Citation Analysis]
17 Yao XM, Niu FJ, Kong L, Cai FY, Jing M, Fu M, Liu JJ, He SY, Zhang L, Liu XZ, Ju RJ, Li XT. GGP modified daunorubicin plus dioscin liposomes inhibit breast cancer by suppressing epithelial-mesenchymal transition. Drug Dev Ind Pharm 2020;46:916-30. [PMID: 32362146 DOI: 10.1080/03639045.2020.1763397] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
18 Fan X, Xu H, Zhao F, Song J, Jin Y, Zhang C, Wu G. Lipid-mimicking peptide decorates erythrocyte membrane for active delivery to engrafted MDA-MB-231 breast tumour. Eur J Pharm Biopharm 2020;152:72-84. [PMID: 32376370 DOI: 10.1016/j.ejpb.2020.04.024] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Li XT, Jing M, Cai FY, Yao XM, Kong L, Wang XB. Enhanced antitumour efficiency of R8GD-modified epirubicin plus tetrandrine liposomes in treatment of gastric cancer via inhibiting tumour metastasis. J Liposome Res 2021;31:145-57. [PMID: 32223361 DOI: 10.1080/08982104.2020.1748647] [Reference Citation Analysis]
20 Kong L, Cai FY, Yao XM, Jing M, Fu M, Liu JJ, He SY, Zhang L, Liu XZ, Ju RJ, Li XT. RPV-modified epirubicin and dioscin co-delivery liposomes suppress non-small cell lung cancer growth by limiting nutrition supply. Cancer Sci 2020;111:621-36. [PMID: 31777993 DOI: 10.1111/cas.14256] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
21 Liu JJ, Tang W, Fu M, Gong XQ, Kong L, Yao XM, Jing M, Cai FY, Li XT, Ju RJ. Development of R8 modified epirubicin-dihydroartemisinin liposomes for treatment of non-small-cell lung cancer. Artif Cells Nanomed Biotechnol 2019;47:1947-60. [PMID: 31079495 DOI: 10.1080/21691401.2019.1615932] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 6.7] [Reference Citation Analysis]
22 Larocca AV, Toniolo G, Tortorella S, Krokidis MG, Menounou G, Di Bella G, Chatgilialoglu C, Ferreri C. The Entrapment of Somatostatin in a Lipid Formulation: Retarded Release and Free Radical Reactivity. Molecules 2019;24:E3085. [PMID: 31450691 DOI: 10.3390/molecules24173085] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
23 Di J, Zheng B, Kong Q, Jiang Y, Liu S, Yang Y, Han X, Sheng Y, Zhang Y, Cheng L, Han J. Prioritization of candidate cancer drugs based on a drug functional similarity network constructed by integrating pathway activities and drug activities. Mol Oncol 2019;13:2259-77. [PMID: 31408580 DOI: 10.1002/1878-0261.12564] [Cited by in Crossref: 6] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
24 Wang Y, Fu M, Liu J, Yang Y, Yu Y, Li J, Pan W, Fan L, Li G, Li X, Wang X. Inhibition of tumor metastasis by targeted daunorubicin and dioscin codelivery liposomes modified with PFV for the treatment of non-small-cell lung cancer. Int J Nanomedicine 2019;14:4071-90. [PMID: 31239668 DOI: 10.2147/IJN.S194304] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
25 Zhu HZ, Hou J, Guo Y, Liu X, Jiang FL, Chen GP, Pang XF, Sun JG, Chen ZT. Identification and imaging of miR-155 in the early screening of lung cancer by targeted delivery of octreotide-conjugated chitosan-molecular beacon nanoparticles. Drug Deliv 2018;25:1974-83. [PMID: 30621480 DOI: 10.1080/10717544.2018.1516003] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
26 Lichota A, Gwozdzinski K. Anticancer Activity of Natural Compounds from Plant and Marine Environment. Int J Mol Sci 2018;19:E3533. [PMID: 30423952 DOI: 10.3390/ijms19113533] [Cited by in Crossref: 105] [Cited by in F6Publishing: 154] [Article Influence: 26.3] [Reference Citation Analysis]
27 Ju R, Mu L, Li X, Li C, Cheng Z, Lu W. Development of functional docetaxel nanomicelles for treatment of brain glioma. Artificial Cells, Nanomedicine, and Biotechnology 2018;46:1180-90. [DOI: 10.1080/21691401.2018.1446971] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
28 Konstat-Korzenny E, Ascencio-Aragón JA, Niezen-Lugo S, Vázquez-López R. Artemisinin and Its Synthetic Derivatives as a Possible Therapy for Cancer. Med Sci (Basel) 2018;6:E19. [PMID: 29495461 DOI: 10.3390/medsci6010019] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 6.5] [Reference Citation Analysis]