1 |
Fu Y, Liu Z, Wang H, Zhang F, Guo S, Shen Q. Comparison of the generation of α-glucosidase inhibitory peptides derived from prolamins of raw and cooked foxtail millet: In vitro activity, de novo sequencing, and in silico docking. Food Chem 2023;411:135378. [PMID: 36669338 DOI: 10.1016/j.foodchem.2022.135378] [Reference Citation Analysis]
|
2 |
Ma W, Li N, Lin L, Wen J, Zhao C, Wang F. Research progress in lipid metabolic regulation of bioactive peptides. Food Prod Process and Nutr 2023;5:10. [DOI: 10.1186/s43014-022-00123-y] [Reference Citation Analysis]
|
3 |
Khalesi M, Gcaza L, FitzGerald RJ. In Vitro Digestibility, Biological Activity, and Physicochemical Characterization of Proteins Extracted from Conventionally and Organically Cultivated Hempseed (Cannabis sativa L.). Molecules 2023;28. [PMID: 36770583 DOI: 10.3390/molecules28030915] [Reference Citation Analysis]
|
4 |
Alblooshi M, Devarajan AR, Singh BP, Ramakrishnan P, Mostafa H, Kamal H, Mudgil P, Maqsood S. Multifunctional bioactive properties of hydrolysates from colocynth (Citrullus colocynthis) seeds derived proteins: Characterization and biological properties. Plant Physiol Biochem 2023;194:326-34. [PMID: 36459867 DOI: 10.1016/j.plaphy.2022.11.026] [Reference Citation Analysis]
|
5 |
Rivera-Jiménez J, Berraquero-García C, Pérez-Gálvez R, García-Moreno PJ, Espejo-Carpio FJ, Guadix A, Guadix EM. Peptides and protein hydrolysates exhibiting anti-inflammatory activity: sources, structural features and modulation mechanisms. Food Funct 2022;13:12510-40. [PMID: 36420754 DOI: 10.1039/d2fo02223k] [Reference Citation Analysis]
|
6 |
Mirzapour-Kouhdasht A, Garcia-Vaquero M, Eun JB, Simal-Gandara J. Influence of Enzymatic Hydrolysis and Molecular Weight Fractionation on the Antioxidant and Lipase / α-Amylase Inhibitory Activities In Vitro of Watermelon Seed Protein Hydrolysates. Molecules 2022;27. [PMID: 36431994 DOI: 10.3390/molecules27227897] [Reference Citation Analysis]
|
7 |
Samtiya M, Aluko RE, Dhaka N, Dhewa T, Puniya AK. Nutritional and health-promoting attributes of millet: current and future perspectives. Nutr Rev 2022:nuac081. [PMID: 36219789 DOI: 10.1093/nutrit/nuac081] [Reference Citation Analysis]
|
8 |
Abeysekera WKSM, Jayathilaka SI, Abeysekera WPKM, Senevirathne IGNH, Jayanath NY, Premakumara GAS, Wijewardana DCMSI. In vitro determination of anti-lipidemic, anti-inflammatory, and anti-oxidant properties and proximate composition of range of millet types and sorghum varieties in Sri Lanka. Front Sustain Food Syst 2022;6:884436. [DOI: 10.3389/fsufs.2022.884436] [Reference Citation Analysis]
|
9 |
Sharma R, Sharma S, Dar B, Singh B. Millets as potential nutri‐cereals: a review of nutrient composition, phytochemical profile and techno‐functionality. Int J Food Sci Technol 2021;56:3703-18. [DOI: 10.1111/ijfs.15044] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
|
10 |
Manzanarez-Quín CG, Beltrán-Barrientos LM, Hernández-Mendoza A, González-Córdova AF, Vallejo-Cordoba B. Invited review: Potential antiobesity effect of fermented dairy products. J Dairy Sci 2021;104:3766-78. [PMID: 33551162 DOI: 10.3168/jds.2020-19256] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
11 |
Urbizo-reyes UC, Aguilar-toalá JE, Liceaga AM. Hairless canary seeds (Phalaris canariensis L.) as a potential source of antioxidant, antihypertensive, antidiabetic, and antiobesity biopeptides. Food Prod Process and Nutr 2021;3. [DOI: 10.1186/s43014-020-00050-w] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
12 |
Fu Y, Yin R, Guo E, Cheng R, Diao X, Xue Y, Shen Q. Protein Isolates from Raw and Cooked Foxtail Millet Attenuate Development of Type 2 Diabetes in Streptozotocin-Induced Diabetic Mice. Mol Nutr Food Res 2021;65:e2000365. [PMID: 33480470 DOI: 10.1002/mnfr.202000365] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
|
13 |
Amigo-benavent M, Khalesi M, Thapa G, Fitzgerald RJ. Methodologies for bioactivity assay: biochemical study. Biologically Active Peptides 2021. [DOI: 10.1016/b978-0-12-821389-6.00030-3] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
14 |
Gong X, An Q, Le L, Geng F, Jiang L, Yan J, Xiang D, Peng L, Zou L, Zhao G, Wan Y. Prospects of cereal protein-derived bioactive peptides: Sources, bioactivities diversity, and production. Crit Rev Food Sci Nutr 2020;:1-17. [PMID: 33325758 DOI: 10.1080/10408398.2020.1860897] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
|
15 |
Xiang H, Waterhouse D, Liu P, Waterhouse GI, Li J, Cui C. Pancreatic lipase-inhibiting protein hydrolysate and peptides from seabuckthorn seed meal: Preparation optimization and inhibitory mechanism. LWT 2020;134:109870. [DOI: 10.1016/j.lwt.2020.109870] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
|
16 |
Thayumanavan P, Nallaiyan S, Loganathan C, Sakayanathan P, Kandasamy S, Isa MA. Inhibition of glutathione and s-allyl glutathione on pancreatic lipase: Analysis through in vitro kinetics, fluorescence spectroscopy and in silico docking. Int J Biol Macromol 2020;160:623-31. [PMID: 32473219 DOI: 10.1016/j.ijbiomac.2020.05.215] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
|
17 |
Hu S, Yuan J, Gao J, Wu Y, Meng X, Tong P, Chen H. Antioxidant and Anti-Inflammatory Potential of Peptides Derived from In Vitro Gastrointestinal Digestion of Germinated and Heat-Treated Foxtail Millet (Setaria italica) Proteins. J Agric Food Chem 2020;68:9415-26. [PMID: 32786864 DOI: 10.1021/acs.jafc.0c03732] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
|