BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zanoni M, Pignatta S, Arienti C, Bonafè M, Tesei A. Anticancer drug discovery using multicellular tumor spheroid models. Expert Opin Drug Discov 2019;14:289-301. [PMID: 30689452 DOI: 10.1080/17460441.2019.1570129] [Cited by in Crossref: 32] [Cited by in F6Publishing: 40] [Article Influence: 10.7] [Reference Citation Analysis]
Number Citing Articles
1 Badr-eldin SM, Aldawsari HM, Kotta S, Deb PK, Venugopala KN. Three-Dimensional In Vitro Cell Culture Models for Efficient Drug Discovery: Progress So Far and Future Prospects. Pharmaceuticals 2022;15:926. [DOI: 10.3390/ph15080926] [Reference Citation Analysis]
2 Fujiike AY, Lee CYAL, Rodrigues FST, Oliveira LCB, Barbosa-Dekker AM, Dekker RFH, Cólus IMS, Serpeloni JM. Anticancer effects of carboxymethylated (1→3)(1→6)-β-D-glucan (botryosphaeran) on multicellular tumor spheroids of MCF-7 cells as a model of breast cancer. J Toxicol Environ Health A 2022;85:521-37. [PMID: 35255775 DOI: 10.1080/15287394.2022.2048153] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Lara S, Heilig J, Virtanen A, Kleinau S. Exploring complement-dependent cytotoxicity by rituximab isotypes in 2D and 3D-cultured B-cell lymphoma. BMC Cancer 2022;22:678. [PMID: 35725455 DOI: 10.1186/s12885-022-09772-1] [Reference Citation Analysis]
4 Fucina G, Cesca K, Berti FV, Biavatti MW, Porto LM. Melanoma growth in non-chemically modified translucid bacterial nanocellulose hollow and compartimentalized spheres. Biochim Biophys Acta Gen Subj 2022;:130183. [PMID: 35661803 DOI: 10.1016/j.bbagen.2022.130183] [Reference Citation Analysis]
5 Fonseca-benitez A, Morantes Medina SJ, Ballesteros-vivas D, Parada-alfonso F, Sandra J Perdomo, Chan KW. Passiflora mollissima Seed Extract Induced Antiproliferative and Cytotoxic Effects on CAL 27 Spheroids. Advances in Pharmacological and Pharmaceutical Sciences 2022;2022:1-15. [DOI: 10.1155/2022/4602413] [Reference Citation Analysis]
6 Miserocchi G, Spadazzi C, Calpona S, De Rosa F, Usai A, De Vita A, Liverani C, Cocchi C, Vanni S, Calabrese C, Bassi M, De Luca G, Meccariello G, Ibrahim T, Schiavone M, Mercatali L. Precision Medicine in Head and Neck Cancers: Genomic and Preclinical Approaches. J Pers Med 2022;12:854. [PMID: 35743639 DOI: 10.3390/jpm12060854] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Ribeiro DL, Tuttis K, Oliveira LCBD, Serpeloni JM, Gomes INF, Lengert AVH, Rocha CQD, Reis RM, Cólus IMDS, Antunes LMG. The Antitumoral/Antimetastatic Action of the Flavonoid Brachydin A in Metastatic Prostate Tumor Spheroids In Vitro Is Mediated by (Parthanatos) PARP-Related Cell Death. Pharmaceutics 2022;14:963. [DOI: 10.3390/pharmaceutics14050963] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Kumar P, Tomar V, Kumar D, Joshi RK, Nemiwal M. Magnetically active iron oxide nanoparticles for catalysis of organic transformations: A review. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132641] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
9 Jayme CC, Pires AF, Fernandes DS, Bi H, Tedesco AC. DNA polymer films used as drug delivery systems to early-stage diagnose and treatment of breast cancer using 3D tumor spheroids as a model. Photodiagnosis Photodyn Ther 2021;:102575. [PMID: 34628073 DOI: 10.1016/j.pdpdt.2021.102575] [Reference Citation Analysis]
10 Dellaquila A, Le Bao C, Letourneur D, Simon-Yarza T. In Vitro Strategies to Vascularize 3D Physiologically Relevant Models. Adv Sci (Weinh) 2021;8:e2100798. [PMID: 34351702 DOI: 10.1002/advs.202100798] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
11 Hadianamrei R, Tomeh MA, Brown S, Wang J, Zhao X. Rationally designed short cationic α-helical peptides with selective anticancer activity. J Colloid Interface Sci 2022;607:488-501. [PMID: 34509120 DOI: 10.1016/j.jcis.2021.08.200] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
12 Yagolovich A, Kuskov A, Kulikov P, Kurbanova L, Bagrov D, Artykov A, Gasparian M, Sizova S, Oleinikov V, Gileva A, Kirpichnikov M, Dolgikh D, Markvicheva E. Amphiphilic Poly(N-vinylpyrrolidone) Nanoparticles Conjugated with DR5-Specific Antitumor Cytokine DR5-B for Targeted Delivery to Cancer Cells. Pharmaceutics 2021;13:1413. [PMID: 34575490 DOI: 10.3390/pharmaceutics13091413] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Farhat J, Pandey I, AlWahsh M. Transcending toward Advanced 3D-Cell Culture Modalities: A Review about an Emerging Paradigm in Translational Oncology. Cells 2021;10:1657. [PMID: 34359827 DOI: 10.3390/cells10071657] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
14 Liu X, Lin H, Song J, Zhang T, Wang X, Huang X, Zheng C. A Novel SimpleDrop Chip for 3D Spheroid Formation and Anti-Cancer Drug Assay. Micromachines (Basel) 2021;12:681. [PMID: 34200752 DOI: 10.3390/mi12060681] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
15 Sargenti A, Musmeci F, Cavallo C, Mazzeschi M, Bonetti S, Pasqua S, Bacchi F, Filardo G, Gazzola D, Lauriola M, Santi S. A new method for the study of biophysical and morphological parameters in 3D cell cultures: Evaluation in LoVo spheroids treated with crizotinib. PLoS One 2021;16:e0252907. [PMID: 34101765 DOI: 10.1371/journal.pone.0252907] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Langhans SA. Using 3D in vitro cell culture models in anti-cancer drug discovery. Expert Opin Drug Discov 2021;16:841-50. [PMID: 33823728 DOI: 10.1080/17460441.2021.1912731] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
17 Miserocchi G, Cocchi C, De Vita A, Liverani C, Spadazzi C, Calpona S, Di Menna G, Bassi M, Meccariello G, De Luca G, Campobassi A, Maddalena Tumedei M, Bongiovanni A, Fausti V, Cotelli F, Ibrahim T, Mercatali L. Three-dimensional collagen-based scaffold model to study the microenvironment and drug-resistance mechanisms of oropharyngeal squamous cell carcinomas. Cancer Biol Med 2021:j. [PMID: 33772505 DOI: 10.20892/j.issn.2095-3941.2020.0482] [Cited by in Crossref: 2] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
18 Arienti C, Pignatta S, Zanoni M, Zamagni A, Cortesi M, Sarnelli A, Romeo A, Arpa D, Longobardi P, Bartolini D, Tosatto L, Naldini A, Tesei A. High-pressure oxygen rewires glucose metabolism of patient-derived glioblastoma cells and fuels inflammasome response. Cancer Lett 2021;506:152-66. [PMID: 33652086 DOI: 10.1016/j.canlet.2021.02.019] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
19 Peneda Pacheco D, Suárez Vargas N, Visentin S, Petrini P. From tissue engineering to engineering tissues: the role and application of in vitro models. Biomater Sci 2021;9:70-83. [DOI: 10.1039/d0bm01097a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
20 Wang Y, Kankala RK, Wang S, Zhang YS, Chen A. Cellularized polymeric microarchitectures for drug screening. Smart Materials in Medicine 2021;2:96-113. [DOI: 10.1016/j.smaim.2021.03.002] [Reference Citation Analysis]
21 Sargenti A, Musmeci F, Bacchi F, Delprete C, Cristaldi DA, Cannas F, Bonetti S, Pasqua S, Gazzola D, Costa D, Villa F, Zocchi MR, Poggi A. Physical Characterization of Colorectal Cancer Spheroids and Evaluation of NK Cell Infiltration Through a Flow-Based Analysis. Front Immunol 2020;11:564887. [PMID: 33424829 DOI: 10.3389/fimmu.2020.564887] [Cited by in Crossref: 3] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
22 Pinto B, Henriques AC, Silva PMA, Bousbaa H. Three-Dimensional Spheroids as In Vitro Preclinical Models for Cancer Research. Pharmaceutics. 2020;12. [PMID: 33291351 DOI: 10.3390/pharmaceutics12121186] [Cited by in Crossref: 14] [Cited by in F6Publishing: 46] [Article Influence: 7.0] [Reference Citation Analysis]
23 Khan S, Sharifi M, Hasan A, Attar F, Edis Z, Bai Q, Derakhshankhah H, Falahati M. Magnetic nanocatalysts as multifunctional platforms in cancer therapy through the synthesis of anticancer drugs and facilitated Fenton reaction. J Adv Res 2021;30:171-84. [PMID: 34026294 DOI: 10.1016/j.jare.2020.12.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 14] [Article Influence: 1.0] [Reference Citation Analysis]
24 Seyfoori A, Barough MS, Amereh M, Jush BK, Lum JJ, Akbari M. Bioengineered tissue models for the development of dynamic immuno-associated tumor models and high-throughput immunotherapy cytotoxicity assays. Drug Discov Today 2021;26:455-73. [PMID: 33253917 DOI: 10.1016/j.drudis.2020.11.028] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
25 Saleh NA, Rode MP, Sierra JA, Silva AH, Miyake JA, Filippin-Monteiro FB, Creczynski-Pasa TB. Three-dimensional multicellular cell culture for anti-melanoma drug screening: focus on tumor microenvironment. Cytotechnology 2021;73:35-48. [PMID: 33505112 DOI: 10.1007/s10616-020-00440-5] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
26 Zhang M, Vandana JJ, Lacko L, Chen S. Modeling cancer progression using human pluripotent stem cell-derived cells and organoids. Stem Cell Res 2020;49:102063. [PMID: 33137568 DOI: 10.1016/j.scr.2020.102063] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
27 Wang J, Zhang J, Li S, Huang C, Xie Y, Cao Y. Anthocyanins decrease the internalization of TiO2 nanoparticles into 3D Caco-2 spheroids. Food Chemistry 2020;331:127360. [DOI: 10.1016/j.foodchem.2020.127360] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
28 Frappart PO, Hofmann TG. Pancreatic Ductal Adenocarcinoma (PDAC) Organoids: The Shining Light at the End of the Tunnel for Drug Response Prediction and Personalized Medicine. Cancers (Basel) 2020;12:E2750. [PMID: 32987786 DOI: 10.3390/cancers12102750] [Cited by in Crossref: 11] [Cited by in F6Publishing: 19] [Article Influence: 5.5] [Reference Citation Analysis]
29 Zanoni M, Cortesi M, Zamagni A, Arienti C, Pignatta S, Tesei A. Modeling neoplastic disease with spheroids and organoids. J Hematol Oncol 2020;13:97. [PMID: 32677979 DOI: 10.1186/s13045-020-00931-0] [Cited by in Crossref: 24] [Cited by in F6Publishing: 51] [Article Influence: 12.0] [Reference Citation Analysis]
30 Pistollato F, Bernasconi C, McCarthy J, Campia I, Desaintes C, Wittwehr C, Deceuninck P, Whelan M. Alzheimer's Disease, and Breast and Prostate Cancer Research: Translational Failures and the Importance to Monitor Outputs and Impact of Funded Research. Animals (Basel) 2020;10:E1194. [PMID: 32674379 DOI: 10.3390/ani10071194] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
31 Wei J, Lei D, Chen M, Ran P, Li X. Engineering HepG2 spheroids with injectable fiber fragments as predictable models for drug metabolism and tumor infiltration. J Biomed Mater Res B Appl Biomater 2020;108:3331-44. [PMID: 32627303 DOI: 10.1002/jbm.b.34669] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
32 Garanti T, Alhnan MA, Wan K. RGD-decorated solid lipid nanoparticles enhance tumor targeting, penetration and anticancer effect of asiatic acid. Nanomedicine 2020;15:1567-83. [DOI: 10.2217/nnm-2020-0035] [Cited by in Crossref: 7] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
33 Prasad B, Richter P, Vadakedath N, Mancinelli R, Krüger M, Strauch SM, Grimm D, Darriet P, Chapel JP, Cohen J, Lebert M. Exploration of space to achieve scientific breakthroughs. Biotechnol Adv 2020;43:107572. [PMID: 32540473 DOI: 10.1016/j.biotechadv.2020.107572] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
34 Piccinini F, Balassa T, Carbonaro A, Diosdi A, Toth T, Moshkov N, Tasnadi EA, Horvath P. Software tools for 3D nuclei segmentation and quantitative analysis in multicellular aggregates. Comput Struct Biotechnol J 2020;18:1287-300. [PMID: 32612752 DOI: 10.1016/j.csbj.2020.05.022] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
35 Huang L, Abdalla AME, Xiao L, Yang G. Biopolymer-Based Microcarriers for Three-Dimensional Cell Culture and Engineered Tissue Formation. Int J Mol Sci 2020;21:E1895. [PMID: 32164316 DOI: 10.3390/ijms21051895] [Cited by in Crossref: 12] [Cited by in F6Publishing: 30] [Article Influence: 6.0] [Reference Citation Analysis]
36 Monteiro MV, Gaspar VM, Ferreira LP, Mano JF. Hydrogel 3D in vitro tumor models for screening cell aggregation mediated drug response. Biomater Sci 2020;8:1855-64. [DOI: 10.1039/c9bm02075f] [Cited by in Crossref: 25] [Cited by in F6Publishing: 38] [Article Influence: 12.5] [Reference Citation Analysis]
37 Trujillo-de Santiago G, Flores-Garza BG, Tavares-Negrete JA, Lara-Mayorga IM, González-Gamboa I, Zhang YS, Rojas-Martínez A, Ortiz-López R, Álvarez MM. The Tumor-on-Chip: Recent Advances in the Development of Microfluidic Systems to Recapitulate the Physiology of Solid Tumors. Materials (Basel) 2019;12:E2945. [PMID: 31514390 DOI: 10.3390/ma12182945] [Cited by in Crossref: 71] [Cited by in F6Publishing: 54] [Article Influence: 23.7] [Reference Citation Analysis]
38 Liu T, Yao R, Pang Y, Sun W. Review on biofabrication and applications of heterogeneous tumor models. J Tissue Eng Regen Med 2019;13:2101-20. [PMID: 31359625 DOI: 10.1002/term.2949] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
39 Malhão F, Ramos AA, Buttachon S, Dethoup T, Kijjoa A, Rocha E. Cytotoxic and Antiproliferative Effects of Preussin, a Hydroxypyrrolidine Derivative from the Marine Sponge-Associated Fungus Aspergillus candidus KUFA 0062, in a Panel of Breast Cancer Cell Lines and Using 2D and 3D Cultures. Mar Drugs 2019;17:E448. [PMID: 31366127 DOI: 10.3390/md17080448] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
40 Worthington P, Drake KM, Li Z, Napper AD, Pochan DJ, Langhans SA. Implementation of a High-Throughput Pilot Screen in Peptide Hydrogel-Based Three-Dimensional Cell Cultures. SLAS Discov 2019;24:714-23. [PMID: 31039326 DOI: 10.1177/2472555219844570] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]