BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Karimi M, Bahrami S, Ravari SB, Zangabad PS, Mirshekari H, Bozorgomid M, Shahreza S, Sori M, Hamblin MR. Albumin nanostructures as advanced drug delivery systems. Expert Opin Drug Deliv 2016;13:1609-23. [PMID: 27216915 DOI: 10.1080/17425247.2016.1193149] [Cited by in Crossref: 163] [Cited by in F6Publishing: 143] [Article Influence: 27.2] [Reference Citation Analysis]
Number Citing Articles
1 Patel A, Paul S, Akhtar N, Das S, Kar S, Bhattacharjee S, Manna D. Onium- and Alkyl Amine-Decorated Protein Nanoparticles as Antimicrobial Agents and Carriers of Antibiotics to Promote Synergistic Antibacterial and Antibiofilm Activities. ACS Appl Nano Mater 2022. [DOI: 10.1021/acsanm.2c03665] [Reference Citation Analysis]
2 Huang B, Wan Q, Li T, Yu L, Du W, Calhoun C, Leong KW, Qiang L. Polycationic PAMAM ameliorates obesity-associated chronic inflammation and focal adiposity. Biomaterials 2022. [DOI: 10.1016/j.biomaterials.2022.121850] [Reference Citation Analysis]
3 Sondhi P, Neupane D, Bhattarai JK, Demchenko AV, Stine KJ. Facile fabrication of hierarchically nanostructured gold electrode for bio-electrochemical applications. Journal of Electroanalytical Chemistry 2022;924:116865. [DOI: 10.1016/j.jelechem.2022.116865] [Reference Citation Analysis]
4 Pandey V, Haider T, Agrawal P, Soni S, Soni V. Advances in Natural Polymeric Nanoparticles for the Drug Delivery. Advances in Drug Delivery Methods [Working Title] 2022. [DOI: 10.5772/intechopen.107513] [Reference Citation Analysis]
5 Stiepel RT, Duggan E, Batty CJ, Ainslie KM. Micro and nanotechnologies: The little formulations that could. Bioengineering & Transla Med. [DOI: 10.1002/btm2.10421] [Reference Citation Analysis]
6 Yan A, Zhang Z, Gu J, Ding X, Chen Y, Du J, Wei S, Sun H, Xu J, Yu S, Liu J. Bioresponsive cisplatin crosslinked albumin hydrogel served for efficient cancer combination therapy. Nano Res . [DOI: 10.1007/s12274-022-4925-y] [Reference Citation Analysis]
7 Ullah A, Kwon HT, Lim SI. Albumin: A Multi-talented Clinical and Pharmaceutical Player. Biotechnol Bioproc E. [DOI: 10.1007/s12257-022-0104-y] [Reference Citation Analysis]
8 Kumbham S, Ghosh A, Ghosh B, Biswas S. Human serum albumin-poly(Lactide)-conjugated self-assembly NPs for targeted docetaxel delivery and improved therapeutic efficacy in oral cancer. International Journal of Biological Macromolecules 2022. [DOI: 10.1016/j.ijbiomac.2022.09.250] [Reference Citation Analysis]
9 Brindisi M, Curcio M, Frattaruolo L, Cirillo G, Leggio A, Rago V, Nicoletta FP, Cappello AR, Iemma F. CD44-targeted nanoparticles with GSH-responsive activity as powerful therapeutic agents against breast cancer. Int J Biol Macromol 2022;221:1491-503. [PMID: 36130642 DOI: 10.1016/j.ijbiomac.2022.09.157] [Reference Citation Analysis]
10 Kuten Pella O, Hornyák I, Horváthy D, Fodor E, Nehrer S, Lacza Z. Albumin as a Biomaterial and Therapeutic Agent in Regenerative Medicine. IJMS 2022;23:10557. [DOI: 10.3390/ijms231810557] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 ayatollahi S, Karimi E, Tabrizi MH. Fabrication of Bovine Serum Albumin Coated ZnO Nanoparticles Loaded Disogenin Conjugated Folate to Improve the Anti-Cancer Potential. J Polym Environ. [DOI: 10.1007/s10924-022-02540-z] [Reference Citation Analysis]
12 Sarkar M, Wang Y, Ekpenyong O, Liang D, Xie H. Pharmacokinetic behaviors of soft nanoparticulate formulations of chemotherapeutics. WIREs Nanomed Nanobiotechnol 2022. [DOI: 10.1002/wnan.1846] [Reference Citation Analysis]
13 Li P, Guo X, Liu T, Liu Q, Yang J, Liu G. Evaluation of Hepatoprotective Effects of Piperlongumine Derivative PL 1-3-Loaded Albumin Nanoparticles on Lipopolysaccharide/d-Galactosamine-Induced Acute Liver Injury in Mice. Mol Pharm 2022. [PMID: 35971845 DOI: 10.1021/acs.molpharmaceut.2c00215] [Reference Citation Analysis]
14 Chung H, Park JY, Kim K, Yoo RJ, Suh M, Gu GJ, Kim JS, Choi TH, Byun JW, Ju YW, Han W, Ryu HS, Chung G, Hwang DW, Kim Y, Kang HR, Na YR, Choi H, Im HJ, Lee YS, Seok SH. Circulation Time-Optimized Albumin Nanoplatform for Quantitative Visualization of Lung Metastasis via Targeting of Macrophages. ACS Nano 2022. [PMID: 35943956 DOI: 10.1021/acsnano.2c03075] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
15 Ban E, Kim A. Coacervates: recent developments as nanostructure delivery platforms for therapeutic biomolecules. Int J Pharm 2022;:122058. [PMID: 35905931 DOI: 10.1016/j.ijpharm.2022.122058] [Reference Citation Analysis]
16 Thangudu S, Huang EY, Su CH. Safe magnetic resonance imaging on biocompatible nanoformulations. Biomater Sci 2022. [PMID: 35858468 DOI: 10.1039/d2bm00692h] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Qin HJ, Li S, Zhu YB, Bao YB, Tang Q, Liu WB, Zhong M, Zhao Y, Yang Y. Oseltamivir modified bovine serum albumin inhibits neuraminidase activity and accumulates virion particles to disturb influenza virus replication. Carbohydr Res 2022;520:108631. [PMID: 35839640 DOI: 10.1016/j.carres.2022.108631] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
18 Shrestha S, Banstola A, Jeong JH, Seo JH, Yook S. Targeting Cancer Stem Cells: Therapeutic and diagnostic strategies by the virtue of nanoparticles. J Control Release 2022;348:518-36. [PMID: 35709876 DOI: 10.1016/j.jconrel.2022.06.013] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Sinai Kunde S, Wairkar S. Folic acid anchored urchin-like raloxifene nanoparticles for receptor targeting in breast cancer: Synthesis, optimisation and in vitro biological evaluation. Int J Pharm 2022;623:121926. [PMID: 35716974 DOI: 10.1016/j.ijpharm.2022.121926] [Reference Citation Analysis]
20 Li W, Shan T, Wang N, Li J, Liu Y, Suo S. Research on Mechanism of Hypoxia-Inducible Factor-1α Gene Carried with Albumin Nanoparticles in Regulating Tumor Angiogenesis in Human Papillomavirus Through Induction of PI3K/AKT Signal Pathway. sci adv mater 2022;14:891-897. [DOI: 10.1166/sam.2022.4268] [Reference Citation Analysis]
21 Kunde SS, Wairkar S. Targeted delivery of albumin nanoparticles for breast cancer: A review. Colloids Surf B Biointerfaces 2022;213:112422. [PMID: 35231688 DOI: 10.1016/j.colsurfb.2022.112422] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
22 Mu W, Wang Q, Jia M, Dong S, Li S, Yang J, Liu G. Hepatoprotective Effects of Albumin-Encapsulated Nanoparticles of a Curcumin Derivative COP-22 against Lipopolysaccharide/D-Galactosamine-Induced Acute Liver Injury in Mice. Int J Mol Sci 2022;23:4903. [PMID: 35563293 DOI: 10.3390/ijms23094903] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
23 Xia YN, Zu H, Guo H, Jiang T, Yang S, Yu H, Zhang S, Ding H, Li X, Wang Y, Wang Y, Zhang LW. Preclinical safety and hepatotoxicity evaluation of biomineralized copper sulfide nanoagents. J Nanobiotechnology 2022;20:185. [PMID: 35414075 DOI: 10.1186/s12951-022-01399-5] [Reference Citation Analysis]
24 Radwan SE, El-Moslemany RM, Mehanna RA, Thabet EH, Abdelfattah EA, El-Kamel A. Chitosan-coated bovine serum albumin nanoparticles for topical tetrandrine delivery in glaucoma: in vitro and in vivo assessment. Drug Deliv 2022;29:1150-63. [PMID: 35384774 DOI: 10.1080/10717544.2022.2058648] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
25 Haque ST, Karim ME, Othman I, Chowdhury EH. Mitigating off-target distribution and enhancing cytotoxicity in breast cancer cells with alpha-ketoglutaric acid-modified Fe/Mg-CA nanoparticles. J Pharm Investig . [DOI: 10.1007/s40005-022-00571-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
26 Kovács AN, Katona G, Juhász Á, Balogh GT, Csapó E. Albumin-hyaluronic acid colloidal nanocarriers: Effect of human and bovine serum albumin for intestinal ibuprofen release enhancement. Journal of Molecular Liquids 2022;351:118614. [DOI: 10.1016/j.molliq.2022.118614] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Rajkhowa S, Pathak U, Patgiri H. Elucidating the Interaction and Stability of Withanone and Withaferin‐A with Human Serum Albumin, Lysozyme and Hemoglobin Using Computational Biophysical Modeling. ChemistrySelect 2022;7. [DOI: 10.1002/slct.202103938] [Reference Citation Analysis]
28 Zhang L, Wang K, Huang Y, Zhang H, Zhou L, Li A, Sun Y. Photosensitizer-induced HPV16 E7 nanovaccines for cervical cancer immunotherapy. Biomaterials 2022;282:121411. [DOI: 10.1016/j.biomaterials.2022.121411] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
29 Hatami E, Nagesh PKB, Chauhan N, Jaggi M, Chauhan SC, Yallapu MM. In Situ Nanoparticle Self-Assembly for Combination Delivery of Therapeutics to Non-Small Cell Lung Cancer. ACS Appl Bio Mater 2022. [PMID: 35179871 DOI: 10.1021/acsabm.1c01158] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Laime SG, Hernández CC, García AM, Payrol JA. Application of Nanoformulations in Improving the Properties of Curcuma (Curcuma longa L.). Application of Nanotechnology in Food Science, Processing and Packaging 2022. [DOI: 10.1007/978-3-030-98820-3_13] [Reference Citation Analysis]
31 Abo Dena AS, El-sherbiny IM. Biological macromolecules for nucleic acid delivery. Biological Macromolecules 2022. [DOI: 10.1016/b978-0-323-85759-8.00021-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Kaur N, Kumar V, Mahender T, Maji I, Mahajan S, Aalhate M, Singh PK, Sahu SK. Nanomedical drug delivery for neurodegenerative disease. Nanomedical Drug Delivery for Neurodegenerative Diseases 2022. [DOI: 10.1016/b978-0-323-85544-0.00016-2] [Reference Citation Analysis]
33 Zhang Y, Liu YC, Chen SM, Zong H, Hou WT, Qiu XR, Guo SY, Sun YF, Jiang YY, An MM, Shen H. Evaluation of the in vitro Activity and in vivo Efficacy of Anidulafungin-Loaded Human Serum Albumin Nanoparticles Against Candida albicans. Front Microbiol 2021;12:788442. [PMID: 34970244 DOI: 10.3389/fmicb.2021.788442] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Misra C, Raza K. Polymers-drug-conjugates strategies in drug delivery. Multifunctional Nanocarriers 2022. [DOI: 10.1016/b978-0-323-85041-4.00001-9] [Reference Citation Analysis]
35 Begum Tanis-kanbur M, Raj Tamilselvam N, Wei Chew J. Membrane fouling mechanisms by BSA in aqueous-organic solvent mixtures. Journal of Industrial and Engineering Chemistry 2022. [DOI: 10.1016/j.jiec.2022.01.017] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Zwain T, Taneja N, Zwayen S, Shidhaye A, Palshetkar A, Singh KK. Albumin nanoparticles—A versatile and a safe platform for drug delivery applications. Nanoparticle Therapeutics 2022. [DOI: 10.1016/b978-0-12-820757-4.00008-9] [Reference Citation Analysis]
37 Peptu CA, Băcăiță ES, Savin Logigan CL, Luțcanu M, Agop M. Hydrogels Based on Alginates and Carboxymethyl Cellulose with Modulated Drug Release-An Experimental and Theoretical Study. Polymers (Basel) 2021;13:4461. [PMID: 34961013 DOI: 10.3390/polym13244461] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
38 Cheng Z, Huang Y, Shen Q, Zhao Y, Wang L, Yu J, Lu W. A camptothecin-based, albumin-binding prodrug enhances efficacy and safety in vivo. Eur J Med Chem 2021;226:113851. [PMID: 34547508 DOI: 10.1016/j.ejmech.2021.113851] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
39 Yoon H, Lee H, Shin SY, Jodat YA, Jhun H, Lim W, Seo JW, Kim G, Mun JY, Zhang K, Wan KT, Noh S, Park YJ, Baek SH, Hwang YS, Shin SR, Bae H. Photo-Cross-Linkable Human Albumin Colloidal Gels Facilitate In Vivo Vascular Integration for Regenerative Medicine. ACS Omega 2021;6:33511-22. [PMID: 34926900 DOI: 10.1021/acsomega.1c04292] [Reference Citation Analysis]
40 Abisoye-Ogunniyan A, Carrano IM, Weilhammer DR, Gilmore SF, Fischer NO, Pal S, de la Maza LM, Coleman MA, Rasley A. A Survey of Preclinical Studies Evaluating Nanoparticle-Based Vaccines Against Non-Viral Sexually Transmitted Infections. Front Pharmacol 2021;12:768461. [PMID: 34899322 DOI: 10.3389/fphar.2021.768461] [Reference Citation Analysis]
41 Aziz A, Sefidbakht Y, Rezaei S, Kouchakzadeh H, Uskoković V. Doxorubicin-loaded, pH-sensitive Albumin Nanoparticles for Lung Cancer Cell Targeting. J Pharm Sci 2021:S0022-3549(21)00679-1. [PMID: 34896345 DOI: 10.1016/j.xphs.2021.12.006] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
42 Maeda H, Ishima Y, Saruwatari J, Mizuta Y, Minayoshi Y, Ichimizu S, Yanagisawa H, Nagasaki T, Yasuda K, Oshiro S, Taura M, McConnell MJ, Oniki K, Sonoda K, Wakayama T, Kinoshita M, Shuto T, Kai H, Tanaka M, Sasaki Y, Iwakiri Y, Otagiri M, Watanabe H, Maruyama T. Nitric oxide facilitates the targeting Kupffer cells of a nano-antioxidant for the treatment of NASH. J Control Release 2021;341:457-74. [PMID: 34856227 DOI: 10.1016/j.jconrel.2021.11.039] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Jagusiak A, Chłopaś K, Zemanek G, Kościk I, Roterman I. Interaction of Supramolecular Congo Red and Congo Red-Doxorubicin Complexes with Proteins for Drug Carrier Design. Pharmaceutics 2021;13:2027. [PMID: 34959309 DOI: 10.3390/pharmaceutics13122027] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
44 Haque ST, Saha SK, Haque ME, Biswas N. Nanotechnology-based therapeutic applications: in vitro and in vivo clinical studies for diabetic wound healing. Biomater Sci 2021;9:7705-47. [PMID: 34709244 DOI: 10.1039/d1bm01211h] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
45 Helal DO, Rouatbi N, Han S, Tzu-Wen Wang J, Walters AA, Abdel-Mottaleb MMA, Kamel AO, Geneidi AS, Awad GAS, Al-Jamal KT. A Natural Protein Based Platform for the Delivery of Temozolomide Acid to Glioma Cells. Eur J Pharm Biopharm 2021:S0939-6411(21)00262-9. [PMID: 34678408 DOI: 10.1016/j.ejpb.2021.10.007] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
46 Liu G, Yang L, Chen G, Xu F, Yang F, Yu H, Li L, Dong X, Han J, Cao C, Qi J, Su J, Xu X, Li X, Li B. A Review on Drug Delivery System for Tumor Therapy. Front Pharmacol 2021;12:735446. [PMID: 34675807 DOI: 10.3389/fphar.2021.735446] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
47 Yu J, Zhang J, Jin J, Jiang W. Microenvironment-responsive DNA-conjugated albumin nanocarriers for targeted therapy. J Mater Chem B 2021;9:8424-36. [PMID: 34542145 DOI: 10.1039/d1tb01022k] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
48 Putri AD, Chen PS, Su YL, Lin JP, Liou JP, Hsieh CM. Optimization and Development of Selective Histone Deacetylase Inhibitor (MPT0B291)-Loaded Albumin Nanoparticles for Anticancer Therapy. Pharmaceutics 2021;13:1728. [PMID: 34684020 DOI: 10.3390/pharmaceutics13101728] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
49 Carvalho JPF, Silva ACQ, Silvestre AJD, Freire CSR, Vilela C. Spherical Cellulose Micro and Nanoparticles: A Review of Recent Developments and Applications. Nanomaterials (Basel) 2021;11:2744. [PMID: 34685185 DOI: 10.3390/nano11102744] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
50 Juhász Á, Ungor D, Várkonyi EZ, Varga N, Csapó E. The pH-Dependent Controlled Release of Encapsulated Vitamin B1 from Liposomal Nanocarrier. Int J Mol Sci 2021;22:9851. [PMID: 34576015 DOI: 10.3390/ijms22189851] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
51 Li L, Chen Y, Wang Q, Li Z, Liu Z, Hua X, Han J, Chang C, Wang Z, Li D. Albumin-encapsulated Nanoparticles of Naproxen Platinum(IV) Complexes with Inflammation Inhibitory Competence Displaying Effective Antitumor Activities in vitro and in vivo. Int J Nanomedicine 2021;16:5513-29. [PMID: 34429597 DOI: 10.2147/IJN.S322688] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
52 Mishra V, Heath RJ. Structural and Biochemical Features of Human Serum Albumin Essential for Eukaryotic Cell Culture. Int J Mol Sci 2021;22:8411. [PMID: 34445120 DOI: 10.3390/ijms22168411] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 11.0] [Reference Citation Analysis]
53 Wang X, Mohammad IS, Fan L, Zhao Z, Nurunnabi M, Sallam MA, Wu J, Chen Z, Yin L, He W. Delivery strategies of amphotericin B for invasive fungal infections. Acta Pharm Sin B 2021;11:2585-604. [PMID: 34522599 DOI: 10.1016/j.apsb.2021.04.010] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 12.0] [Reference Citation Analysis]
54 Prasanthan P, Kishore N. HSA nanoparticles in drug recognition: mechanistic insights with naproxen, diclofenac and methimazole. J Biomol Struct Dyn 2021;:1-13. [PMID: 34296662 DOI: 10.1080/07391102.2021.1953605] [Reference Citation Analysis]
55 Tao HY, Wang RQ, Sheng WJ, Zhen YS. The development of human serum albumin-based drugs and relevant fusion proteins for cancer therapy. Int J Biol Macromol 2021;187:24-34. [PMID: 34284054 DOI: 10.1016/j.ijbiomac.2021.07.080] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
56 Prajapati R, Somoza Á. Albumin Nanostructures for Nucleic Acid Delivery in Cancer: Current Trend, Emerging Issues, and Possible Solutions. Cancers (Basel) 2021;13:3454. [PMID: 34298666 DOI: 10.3390/cancers13143454] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
57 Alves ACS, Bruinsmann FA, Guterres SS, Pohlmann AR. Organic Nanocarriers for Bevacizumab Delivery: An Overview of Development, Characterization and Applications. Molecules 2021;26:4127. [PMID: 34299401 DOI: 10.3390/molecules26144127] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
58 Radwan SE, El-Kamel A, Zaki EI, Burgalassi S, Zucchetti E, El-Moslemany RM. Hyaluronic-Coated Albumin Nanoparticles for the Non-Invasive Delivery of Apatinib in Diabetic Retinopathy. Int J Nanomedicine 2021;16:4481-94. [PMID: 34239300 DOI: 10.2147/IJN.S316564] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 15.0] [Reference Citation Analysis]
59 Pápay ZE, Magramane S, Király M, Szalkai P, Ludányi K, Horváth P, Antal I. Optimization and Development of Albumin-Biopolymer Bioconjugates with Solubility-Improving Properties. Biomedicines 2021;9:737. [PMID: 34206983 DOI: 10.3390/biomedicines9070737] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
60 Kumari N, Mathe VL, Krishna CM, Dongre PM. BSA-drug-ZnO-PEI conjugates interaction with glycans of gp60 endothelial cell receptor protein for targeted drug delivery: a comprehensive spectroscopic study. J Biomol Struct Dyn 2021;:1-17. [PMID: 34018472 DOI: 10.1080/07391102.2021.1925155] [Reference Citation Analysis]
61 Friedrich B, Auger JP, Dutz S, Cicha I, Schreiber E, Band J, Boccacccini AR, Krönke G, Alexiou C, Tietze R. Hydroxyapatite-Coated SPIONs and Their Influence on Cytokine Release. Int J Mol Sci 2021;22:4143. [PMID: 33923700 DOI: 10.3390/ijms22084143] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
62 Darwish AMG, Soliman TN, Elhendy HA, El-Kholy WM. Nano-encapsulated Iron and Folic Acid-Fortified Functional Yogurt Enhance Anemia in Albino Rats. Front Nutr 2021;8:654624. [PMID: 33898503 DOI: 10.3389/fnut.2021.654624] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
63 Esposito TVF, Stütz H, Rodríguez-Rodríguez C, Bergamo M, Charles L, Geczy R, Blackadar C, Kutter JP, Saatchi K, Häfeli UO. Preparation of Heat-Denatured Macroaggregated Albumin for Biomedical Applications Using a Microfluidics Platform. ACS Biomater Sci Eng 2021;7:2823-34. [PMID: 33826291 DOI: 10.1021/acsbiomaterials.1c00284] [Reference Citation Analysis]
64 Carriles R, Zavala-García LE, Nava-Coronel S, Sánchez-Arreguín A, López MG, Sánchez-Segura L. Post-synthesis nanostructuration of BSA-Capsaicin nanoparticles generated by sucrose excipient. Sci Rep 2021;11:7549. [PMID: 33824363 DOI: 10.1038/s41598-021-87241-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
65 Spada A, Emami J, Tuszynski JA, Lavasanifar A. The Uniqueness of Albumin as a Carrier in Nanodrug Delivery. Mol Pharm 2021;18:1862-94. [PMID: 33787270 DOI: 10.1021/acs.molpharmaceut.1c00046] [Cited by in Crossref: 45] [Cited by in F6Publishing: 59] [Article Influence: 45.0] [Reference Citation Analysis]
66 Voci S, Gagliardi A, Molinaro R, Fresta M, Cosco D. Recent Advances of Taxol-Loaded Biocompatible Nanocarriers Embedded in Natural Polymer-Based Hydrogels. Gels 2021;7:33. [PMID: 33804970 DOI: 10.3390/gels7020033] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
67 Maciążek-Jurczyk M, Morak-Młodawska B, Jeleń M, Kopeć W, Szkudlarek A, Owczarzy A, Kulig K, Rogóż W, Pożycka J. The Influence of Oxidative Stress on Serum Albumin Structure as a Carrier of Selected Diazaphenothiazine with Potential Anticancer Activity. Pharmaceuticals (Basel) 2021;14:285. [PMID: 33806875 DOI: 10.3390/ph14030285] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
68 Shchegravina ES, Sachkova AA, Usova SD, Nyuchev AV, Gracheva YA, Fedorov AY. Carbohydrate Systems in Targeted Drug Delivery: Expectation and Reality. Russ J Bioorg Chem 2021;47:71-98. [DOI: 10.1134/s1068162021010222] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
69 Bharathala S, Kotarkonda LK, Singh VP, Singh R, Sharma P. In silico and experimental studies of bovine serum albumin-encapsulated carbenoxolone nanoparticles with reduced cytotoxicity. Colloids Surf B Biointerfaces 2021;202:111670. [PMID: 33740634 DOI: 10.1016/j.colsurfb.2021.111670] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
70 Manandhar S, Sjöholm E, Bobacka J, Rosenholm JM, Bansal KK. Polymer-Drug Conjugates as Nanotheranostic Agents. JNT 2021;2:63-81. [DOI: 10.3390/jnt2010005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
71 Gagliardi A, Giuliano E, Venkateswararao E, Fresta M, Bulotta S, Awasthi V, Cosco D. Biodegradable Polymeric Nanoparticles for Drug Delivery to Solid Tumors. Front Pharmacol 2021;12:601626. [PMID: 33613290 DOI: 10.3389/fphar.2021.601626] [Cited by in Crossref: 81] [Cited by in F6Publishing: 87] [Article Influence: 81.0] [Reference Citation Analysis]
72 Uma Maheswari P, Muthappa R, Bindhya KP, Meera Sheriffa Begum K. Evaluation of folic acid functionalized BSA-CaFe2O4 nanohybrid carrier for the controlled delivery of natural cytotoxic drugs hesperidin and eugenol. Journal of Drug Delivery Science and Technology 2021;61:102105. [DOI: 10.1016/j.jddst.2020.102105] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
73 Alfatama M, Shah KU, Nawaz A. Polyphenols-Enhanced Functionality Via Nanotechnology Approaches. Polyphenols-based Nanotherapeutics for Cancer Management 2021. [DOI: 10.1007/978-981-16-4935-6_11] [Reference Citation Analysis]
74 Tabassum H, Ahmad IZ. Nanoformulations Loaded with Microalgal Bioactive Compounds for Disease Therapy. Nanotechnology in the Life Sciences 2021. [DOI: 10.1007/978-3-030-81557-8_10] [Reference Citation Analysis]
75 Maurya P, Singh S, Mishra N, Pal R, Singh N, Parashar P, Saraf SA. Albumin-based nanomaterials in drug delivery and biomedical applications. Biopolymer-Based Nanomaterials in Drug Delivery and Biomedical Applications 2021. [DOI: 10.1016/b978-0-12-820874-8.00012-9] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
76 Wang N, Wang W, Mao W, Wang K, Zhang H, Ma Q, Kuerbantayi N, Wang Y. New Approved First-line Combining Therapy of NSCLC in 2020. E3S Web Conf 2021;245:03057. [DOI: 10.1051/e3sconf/202124503057] [Reference Citation Analysis]
77 Naat JN, Neolaka YAB, Lawa Y, Wolu CL, Lestarani D, Sugiarti S, Iswantini D; Chemistry Education Department, Faculty of Education and Teachers Training, Universitas Nusa Cendana, Kupang, East Nusa Tenggara, 85001, Indonesia, Department of Chemistry, Bogor Agricultural University, Bogor, 16144, Indonesia. 2@BSA) for biogenic amines compound adsorbent]]>. AIMSMATES 2021;9:36-55. [DOI: 10.3934/matersci.2022003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
78 Abbasi YF, Panda P, Arora S, Layek B, Bera H. Introduction to tailor-made biopolymers in drug delivery applications. Tailor-Made and Functionalized Biopolymer Systems 2021. [DOI: 10.1016/b978-0-12-821437-4.00015-3] [Reference Citation Analysis]
79 Islam W, Matsumoto Y, Fang J, Harada A, Niidome T, Ono K, Tsutsuki H, Sawa T, Imamura T, Sakurai K, Fukumitsu N, Yamamoto H, Maeda H. Polymer-conjugated glucosamine complexed with boric acid shows tumor-selective accumulation and simultaneous inhibition of glycolysis. Biomaterials 2021;269:120631. [PMID: 33450582 DOI: 10.1016/j.biomaterials.2020.120631] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
80 Bhattacharjee S. Understanding the burst release phenomenon: toward designing effective nanoparticulate drug-delivery systems. Ther Deliv 2021;12:21-36. [PMID: 33353422 DOI: 10.4155/tde-2020-0099] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
81 Gharbavi M, Johari B, Rismani E, Mousazadeh N, Taromchi AH, Sharafi A. NANOG Decoy Oligodeoxynucleotide-Encapsulated Niosomes Nanocarriers: A Promising Approach to Suppress the Metastatic Properties of U87 Human Glioblastoma Multiforme Cells. ACS Chem Neurosci 2020;11:4499-515. [PMID: 33283497 DOI: 10.1021/acschemneuro.0c00699] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 8.5] [Reference Citation Analysis]
82 Tao Y, Chan HF, Shi B, Li M, Leong KW. Light: A Magical Tool for Controlled Drug Delivery. Adv Funct Mater 2020;30:2005029. [PMID: 34483808 DOI: 10.1002/adfm.202005029] [Cited by in Crossref: 65] [Cited by in F6Publishing: 66] [Article Influence: 32.5] [Reference Citation Analysis]
83 Sozer SC, Egesoy TO, Basol M, Cakan-akdogan G, Akdogan Y. A simple desolvation method for production of cationic albumin nanoparticles with improved drug loading and cell uptake. Journal of Drug Delivery Science and Technology 2020;60:101931. [DOI: 10.1016/j.jddst.2020.101931] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
84 Rabiee N, Ahmadi S, Afshari R, Khalaji S, Rabiee M, Bagherzadeh M, Fatahi Y, Dinarvand R, Tahriri M, Tayebi L, Hamblin MR, Webster TJ. Polymeric Nanoparticles for Nasal Drug Delivery to the Brain: Relevance to Alzheimer's Disease. Adv Therap 2021;4:2000076. [DOI: 10.1002/adtp.202000076] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 15.0] [Reference Citation Analysis]
85 Borah PK, Das AS, Mukhopadhyay R, Sarkar A, Duary RK. Macromolecular design of folic acid functionalized amylopectin–albumin core–shell nanogels for improved physiological stability and colon cancer cell targeted delivery of curcumin. Journal of Colloid and Interface Science 2020;580:561-72. [DOI: 10.1016/j.jcis.2020.07.056] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
86 Lighvan ZM, Khonakdar HA, Heydari A, Rafiee M, Jahromi MD, Derakhshani A, Momtazi‐borojeni AA. Spectral and molecular docking studies of nucleic acids/protein binding interactions of a novel organometallic palladium (II) complex containing bioactive PTA ligands: Its synthesis, anticancer effects and encapsulation in albumin nanoparticles. Appl Organomet Chem 2020;34. [DOI: 10.1002/aoc.5839] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
87 Li C, Naveed M, Dar K, Liu Z, Baig MMFA, Lv R, Saeed M, Dingding C, Feng Y, Xiaohui Z. Therapeutic advances in cardiac targeted drug delivery: from theory to practice. J Drug Target 2021;29:235-48. [PMID: 32933319 DOI: 10.1080/1061186X.2020.1818761] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
88 Hassanin IA, Elzoghby AO. Self-assembled non-covalent protein-drug nanoparticles: an emerging delivery platform for anti-cancer drugs. Expert Opinion on Drug Delivery 2020;17:1437-58. [DOI: 10.1080/17425247.2020.1813713] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
89 Farjadian F, Abbaspour S, Sadatlu MAA, Mirkiani S, Ghasemi A, Hoseini‐ghahfarokhi M, Mozaffari N, Karimi M, Hamblin MR. Recent Developments in Graphene and Graphene Oxide: Properties, Synthesis, and Modifications: A Review. ChemistrySelect 2020;5:10200-19. [DOI: 10.1002/slct.202002501] [Cited by in Crossref: 47] [Cited by in F6Publishing: 47] [Article Influence: 23.5] [Reference Citation Analysis]
90 Sorolla A, Sorolla MA, Wang E, Ceña V. Peptides, proteins and nanotechnology: a promising synergy for breast cancer targeting and treatment. Expert Opin Drug Deliv 2020;17:1597-613. [PMID: 32835538 DOI: 10.1080/17425247.2020.1814733] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
91 Zhang S, Asghar S, Yu F, Hu Z, Ping Q, Chen Z, Shao F, Xiao Y. The enhancement of N-acetylcysteine on intestinal absorption and oral bioavailability of hydrophobic curcumin. Eur J Pharm Sci 2020;154:105506. [PMID: 32763460 DOI: 10.1016/j.ejps.2020.105506] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
92 Zhang S, Cho WJ, Jin AT, Kok LY, Shi Y, Heller DE, Lee YL, Zhou Y, Xie X, Korzenik JR, Lennerz JK, Traverso G. Heparin-Coated Albumin Nanoparticles for Drug Combination in Targeting Inflamed Intestine. Adv Healthc Mater 2020;9:e2000536. [PMID: 32597571 DOI: 10.1002/adhm.202000536] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
93 Park T, Lee S, Amatya R, Cheong H, Moon C, Kwak HD, Min KA, Shin MC. ICG-Loaded PEGylated BSA-Silver Nanoparticles for Effective Photothermal Cancer Therapy. Int J Nanomedicine 2020;15:5459-71. [PMID: 32801700 DOI: 10.2147/IJN.S255874] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 16.0] [Reference Citation Analysis]
94 Wang W, Hao Y, Liu Y, Li R, Huang DB, Pan YY. Nanomedicine in lung cancer: Current states of overcoming drug resistance and improving cancer immunotherapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;13:e1654. [PMID: 32700465 DOI: 10.1002/wnan.1654] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
95 Ambrósio JAR, Pinto BCDS, da Silva BGM, Passos JCDS, Beltrame Junior M, Costa MS, Simioni AR. BSA nanoparticles loaded-methylene blue for photodynamic antimicrobial chemotherapy (PACT): effect on both growth and biofilm formation by Candida albicans. Journal of Biomaterials Science, Polymer Edition 2020;31:2182-98. [DOI: 10.1080/09205063.2020.1795461] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
96 Russo Krauss I, Picariello A, Vitiello G, De Santis A, Koutsioubas A, Houston JE, Fragneto G, Paduano L. Interaction with Human Serum Proteins Reveals Biocompatibility of Phosphocholine-Functionalized SPIONs and Formation of Albumin-Decorated Nanoparticles. Langmuir 2020;36:8777-91. [PMID: 32575987 DOI: 10.1021/acs.langmuir.0c01083] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
97 de Arcocha-torres M, Quincoces G, Martínez-lópez A, Erhard A, Collantes M, Martínez-rodríguez I, Ecay M, Banzo I, Irache J, Peñuelas I. Preparation, radiolabeling with 99mTc and 67Ga and biodistribution studies of albumin nanoparticles coated with polymers. Revista Española de Medicina Nuclear e Imagen Molecular (English Edition) 2020;39:225-32. [DOI: 10.1016/j.remnie.2020.04.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
98 Hwang HH, Lee DY. Protein-Based Drug Delivery in Brain Tumor Therapy. Adv Exp Med Biol 2020;1249:203-21. [PMID: 32602099 DOI: 10.1007/978-981-15-3258-0_13] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
99 Rafipour A, Yari A, Farhadi K, Pakdel FG. Encapsulation of L‐dopa and catechol in bovine serum albumin nanocarrier using desolvation method and their in vitro release studies. J Chin Chem Soc 2020;67:2082-90. [DOI: 10.1002/jccs.202000018] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
100 Shetab Boushehri MA, Dietrich D, Lamprecht A. Nanotechnology as a Platform for the Development of Injectable Parenteral Formulations: A Comprehensive Review of the Know-Hows and State of the Art. Pharmaceutics 2020;12:E510. [PMID: 32503171 DOI: 10.3390/pharmaceutics12060510] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 8.5] [Reference Citation Analysis]
101 Martínez-lópez AL, Pangua C, Reboredo C, Campión R, Morales-gracia J, Irache JM. Protein-based nanoparticles for drug delivery purposes. International Journal of Pharmaceutics 2020;581:119289. [DOI: 10.1016/j.ijpharm.2020.119289] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 15.5] [Reference Citation Analysis]
102 Chen Y, Lu Y, Lee RJ, Xiang G. Nano Encapsulated Curcumin: And Its Potential for Biomedical Applications. Int J Nanomedicine 2020;15:3099-120. [PMID: 32431504 DOI: 10.2147/IJN.S210320] [Cited by in Crossref: 58] [Cited by in F6Publishing: 63] [Article Influence: 29.0] [Reference Citation Analysis]
103 Deng S, Gigliobianco MR, Censi R, Di Martino P. Polymeric Nanocapsules as Nanotechnological Alternative for Drug Delivery System: Current Status, Challenges and Opportunities. Nanomaterials (Basel) 2020;10:E847. [PMID: 32354008 DOI: 10.3390/nano10050847] [Cited by in Crossref: 78] [Cited by in F6Publishing: 88] [Article Influence: 39.0] [Reference Citation Analysis]
104 Haque ST, Karim ME, Abidin SAZ, Othman I, Holl MMB, Chowdhury EH. Fe/Mg-Modified Carbonate Apatite with Uniform Particle Size and Unique Transport Protein-Related Protein Corona Efficiently Delivers Doxorubicin into Breast Cancer Cells. Nanomaterials (Basel) 2020;10:E834. [PMID: 32349272 DOI: 10.3390/nano10050834] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
105 Da Silva FLO, Marques MBDF, Kato KC, Carneiro G. Nanonization techniques to overcome poor water-solubility with drugs. Expert Opinion on Drug Discovery 2020;15:853-64. [DOI: 10.1080/17460441.2020.1750591] [Cited by in Crossref: 26] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
106 de Arcocha-Torres M, Quincoces G, Martínez-López AL, Erhard A, Collantes M, Martínez-Rodríguez I, Ecay M, Banzo I, Irache JM, Peñuelas I. Preparation, radiolabeling with 99mTc and 67Ga and biodistribution studies of albumin nanoparticles covered with polymers. Rev Esp Med Nucl Imagen Mol (Engl Ed) 2020;39:225-32. [PMID: 32201272 DOI: 10.1016/j.remn.2020.02.002] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
107 Saha S, Kundu J, Verma RJ, Chowdhury PK. Albumin coated polymer nanoparticles loaded with plant extract derived quercetin for modulation of inflammation. Materialia 2020;9:100605. [DOI: 10.1016/j.mtla.2020.100605] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
108 Karami E, Behdani M, Kazemi-lomedasht F. Albumin nanoparticles as nanocarriers for drug delivery: Focusing on antibody and nanobody delivery and albumin-based drugs. Journal of Drug Delivery Science and Technology 2020;55:101471. [DOI: 10.1016/j.jddst.2019.101471] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 13.0] [Reference Citation Analysis]
109 Lamichhane S, Lee S. Albumin nanoscience: homing nanotechnology enabling targeted drug delivery and therapy. Arch Pharm Res 2020;43:118-33. [PMID: 31916145 DOI: 10.1007/s12272-020-01204-7] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 18.0] [Reference Citation Analysis]
110 Karami K, Jamshidian N, Hajiaghasi A, Amirghofran Z. BSA nanoparticles as controlled release carriers for isophethalaldoxime palladacycle complex; synthesis, characterization, in vitro evaluation, cytotoxicity and release kinetics analysis. New J Chem 2020;44:4394-405. [DOI: 10.1039/c9nj05847h] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
111 Sharma V, Yañez O, Alegría-arcos M, Kumar A, Thakur RC, Cantero-lópez P. A physicochemical and conformational study of co-solvent effect on the molecular interactions between similarly charged protein surfactant (BSA-SDBS) system. The Journal of Chemical Thermodynamics 2020;142:106022. [DOI: 10.1016/j.jct.2019.106022] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
112 Kovačević AB. Nanotechnological approaches for delivery of antiinflammatory drugs. Drug Delivery Aspects 2020. [DOI: 10.1016/b978-0-12-821222-6.00010-5] [Reference Citation Analysis]
113 Aljabali AAA, Bakshi HA, Hakkim FL, Haggag YA, Al-Batanyeh KM, Al Zoubi MS, Al-Trad B, Nasef MM, Satija S, Mehta M, Pabreja K, Mishra V, Khan M, Abobaker S, Azzouz IM, Dureja H, Pabari RM, Dardouri AAK, Kesharwani P, Gupta G, Dhar Shukla S, Prasher P, Charbe NB, Negi P, Kapoor DN, Chellappan DK, Webba da Silva M, Thompson P, Dua K, McCarron P, Tambuwala MM. Albumin Nano-Encapsulation of Piceatannol Enhances Its Anticancer Potential in Colon Cancer Via Downregulation of Nuclear p65 and HIF-1α. Cancers (Basel) 2020;12:E113. [PMID: 31906321 DOI: 10.3390/cancers12010113] [Cited by in Crossref: 51] [Cited by in F6Publishing: 54] [Article Influence: 25.5] [Reference Citation Analysis]
114 Mota AH, Sousa A, Figueira M, Amaral M, Sousa B, Rocha J, Fattal E, Almeida AJ, Reis CP. Natural-based consumer health nanoproducts: medicines, cosmetics, and food supplements. Handbook of Functionalized Nanomaterials for Industrial Applications. Elsevier; 2020. pp. 527-78. [DOI: 10.1016/b978-0-12-816787-8.00019-3] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
115 Kumar SSD, Houreld NN, Abrahamse H. Biopolymer-Based Composites for Medical Applications. Encyclopedia of Renewable and Sustainable Materials 2020. [DOI: 10.1016/b978-0-12-803581-8.10557-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
116 Wang M, Zhang M, Fu L, Lin J, Zhou X, Zhou P, Huang P, Hu H, Han Y. Liver-targeted delivery of TSG-6 by calcium phosphate nanoparticles for the management of liver fibrosis. Theranostics 2020;10:36-49. [PMID: 31903104 DOI: 10.7150/thno.37301] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 12.0] [Reference Citation Analysis]
117 Patra P, Chattopadhyay D. Sustainable release of nanodrugs: A new biosafe approach. Green Approaches in Medicinal Chemistry for Sustainable Drug Design. Elsevier; 2020. pp. 603-15. [DOI: 10.1016/b978-0-12-817592-7.00017-4] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
118 Liu J, Miao L, Sui J, Hao Y, Huang G. Nanoparticle cancer vaccines: Design considerations and recent advances. Asian J Pharm Sci 2020;15:576-90. [PMID: 33193861 DOI: 10.1016/j.ajps.2019.10.006] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 9.7] [Reference Citation Analysis]
119 Zhang S, Asghar S, Yang L, Hu Z, Chen Z, Shao F, Xiao Y. Borneol and poly (ethylene glycol) dual modified BSA nanoparticles as an itraconazole vehicle for brain targeting. Int J Pharm 2020;575:119002. [PMID: 31893546 DOI: 10.1016/j.ijpharm.2019.119002] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
120 Hapuarachchige S, Huang CT, Donnelly MC, Bařinka C, Lupold SE, Pomper MG, Artemov D. Cellular Delivery of Bioorthogonal Pretargeting Therapeutics in PSMA-Positive Prostate Cancer. Mol Pharm 2020;17:98-108. [PMID: 31840521 DOI: 10.1021/acs.molpharmaceut.9b00788] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
121 Santos-Rebelo A, Kumar P, Pillay V, Choonara YE, Eleutério C, Figueira M, Viana AS, Ascensão L, Molpeceres J, Rijo P, Correia I, Amaral J, Solá S, Rodrigues CMP, Gaspar MM, Reis CP. Development and Mechanistic Insight into the Enhanced Cytotoxic Potential of Parvifloron D Albumin Nanoparticles in EGFR-Overexpressing Pancreatic Cancer Cells. Cancers (Basel) 2019;11:E1733. [PMID: 31694306 DOI: 10.3390/cancers11111733] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
122 Khodashenas B, Ardjmand M, Sharifzadeh Baei M, Shokuhi Rad A, Akbarzadeh Khiyavi A. Bovine serum albumin/gold nanoparticles as a drug delivery system for Curcumin: experimental and computational studies. Journal of Biomolecular Structure and Dynamics 2020;38:4644-54. [DOI: 10.1080/07391102.2019.1683073] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
123 Damera DP, Kaja S, Janardhanam LSL, Alim S, Venuganti VVK, Nag A. Synthesis, Detailed Characterization, and Dual Drug Delivery Application of BSA Loaded Aquasomes. ACS Appl Bio Mater 2019;2:4471-4484. [DOI: 10.1021/acsabm.9b00635] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
124 Sun J, Zhang L, Zhang Y, Yue C, Lin J, Wang H, Fang Z, Wu J. Smart albumin-loaded Rose Bengal and doxorubicin nanoparticles for breast cancer therapy. Journal of Microencapsulation 2019;36:728-37. [DOI: 10.1080/02652048.2019.1671908] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
125 Huang J, Wu B, Zhou Z, Hu S, Xu H, Piao Y, Zheng H, Tang J, Liu X, Shen Y. Drug-binding albumins forming stabilized nanoparticles for efficient anticancer therapy. Nanomedicine: Nanotechnology, Biology and Medicine 2019;21:102058. [DOI: 10.1016/j.nano.2019.102058] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
126 Rezende JP, Hudson EA, De Paula HMC, Meinel RS, Da Silva AD, Da Silva LHM, Pires ACDS. Human serum albumin-resveratrol complex formation: Effect of the phenolic chemical structure on the kinetic and thermodynamic parameters of the interactions. Food Chem 2020;307:125514. [PMID: 31639576 DOI: 10.1016/j.foodchem.2019.125514] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
127 Sikder S, Gote V, Alshamrani M, Sicotte J, Pal D. Long-term delivery of protein and peptide therapeutics for cancer therapies. Expert Opinion on Drug Delivery 2019;16:1113-31. [DOI: 10.1080/17425247.2019.1662785] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
128 Tian R, Zeng Q, Zhu S, Lau J, Chandra S, Ertsey R, Hettie KS, Teraphongphom T, Hu Z, Niu G, Kiesewetter DO, Sun H, Zhang X, Antaris AL, Brooks BR, Chen X. Albumin-chaperoned cyanine dye yields superbright NIR-II fluorophore with enhanced pharmacokinetics. Sci Adv 2019;5:eaaw0672. [PMID: 31548981 DOI: 10.1126/sciadv.aaw0672] [Cited by in Crossref: 103] [Cited by in F6Publishing: 109] [Article Influence: 34.3] [Reference Citation Analysis]
129 Zhang S, Asghar S, Yu F, Chen Z, Hu Z, Ping Q, Shao F, Xiao Y. BSA Nanoparticles Modified with N-Acetylcysteine for Improving the Stability and Mucoadhesion of Curcumin in the Gastrointestinal Tract. J Agric Food Chem 2019;67:9371-81. [PMID: 31379162 DOI: 10.1021/acs.jafc.9b02272] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
130 Krumkacheva OA, Timofeev IO, Politanskaya LV, Polienko YF, Tretyakov EV, Rogozhnikova OY, Trukhin DV, Tormyshev VM, Chubarov AS, Bagryanskaya EG, Fedin MV. Triplet Fullerenes as Prospective Spin Labels for Nanoscale Distance Measurements by Pulsed Dipolar EPR Spectroscopy. Angew Chem 2019;131:13405-9. [DOI: 10.1002/ange.201904152] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
131 Krumkacheva OA, Timofeev IO, Politanskaya LV, Polienko YF, Tretyakov EV, Rogozhnikova OY, Trukhin DV, Tormyshev VM, Chubarov AS, Bagryanskaya EG, Fedin MV. Triplet Fullerenes as Prospective Spin Labels for Nanoscale Distance Measurements by Pulsed Dipolar EPR Spectroscopy. Angew Chem Int Ed Engl 2019;58:13271-5. [PMID: 31322814 DOI: 10.1002/anie.201904152] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 4.7] [Reference Citation Analysis]
132 Bolaños K, Kogan MJ, Araya E. Capping gold nanoparticles with albumin to improve their biomedical properties. Int J Nanomedicine 2019;14:6387-406. [PMID: 31496693 DOI: 10.2147/IJN.S210992] [Cited by in Crossref: 74] [Cited by in F6Publishing: 78] [Article Influence: 24.7] [Reference Citation Analysis]
133 Hu M, Wang K, Shang W, Han Z, Jiang H, Fang C, Tian J. Boosting Postsurgical Outcomes of Orthotopic Hepatocellular Carcinoma via an EpCAM‐Targeting Theranostic Nanoparticle. Part Part Syst Charact 2019;36:1900085. [DOI: 10.1002/ppsc.201900085] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
134 Mou J, Liu Z, Liu J, Lu J, Zhu W, Pei D. Hydrogel containing minocycline and zinc oxide-loaded serum albumin nanopartical for periodontitis application: preparation, characterization and evaluation. Drug Deliv 2019;26:179-87. [PMID: 30822158 DOI: 10.1080/10717544.2019.1571121] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 10.3] [Reference Citation Analysis]
135 Mobaraki M, Abbasi R, Omidian Vandchali S, Ghaffari M, Moztarzadeh F, Mozafari M. Corneal Repair and Regeneration: Current Concepts and Future Directions. Front Bioeng Biotechnol 2019;7:135. [PMID: 31245365 DOI: 10.3389/fbioe.2019.00135] [Cited by in Crossref: 64] [Cited by in F6Publishing: 75] [Article Influence: 21.3] [Reference Citation Analysis]
136 Park JY, Song MG, Kim WH, Kim KW, Lodhi NA, Choi JY, Kim YJ, Kim JY, Chung H, Oh C, Lee YS, Kang KW, Im HJ, Seok SH, Lee DS, Kim EE, Jeong JM. Versatile and Finely Tuned Albumin Nanoplatform based on Click Chemistry. Theranostics 2019;9:3398-409. [PMID: 31281486 DOI: 10.7150/thno.33143] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
137 Agrawal S, Patel PR, Gundloori RVN. Proteins as Nanocarriers To Regulate Parenteral Delivery of Tramadol. ACS Omega 2019;4:6301-10. [PMID: 31459770 DOI: 10.1021/acsomega.8b02060] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
138 Qu N, Sun Y, Li Y, Hao F, Qiu P, Teng L, Xie J, Gao Y. Docetaxel-loaded human serum albumin (HSA) nanoparticles: synthesis, characterization, and evaluation. Biomed Eng Online 2019;18:11. [PMID: 30704488 DOI: 10.1186/s12938-019-0624-7] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 8.7] [Reference Citation Analysis]
139 J. B, M. M. B, Chanda K. Evolutionary approaches in protein engineering towards biomaterial construction. RSC Adv 2019;9:34720-34. [DOI: 10.1039/c9ra06807d] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
140 Singh AK, Yadav TP, Pandey B, Gupta V, Singh SP. Engineering Nanomaterials for Smart Drug Release. Applications of Targeted Nano Drugs and Delivery Systems 2019. [DOI: 10.1016/b978-0-12-814029-1.00015-6] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
141 Sharma P, Sen D, Neelakantan V, Shankar V, Jhunjhunwala S. Disparate effects of PEG or albumin based surface modification on the uptake of nano- and micro-particles. Biomater Sci 2019;7:1411-21. [DOI: 10.1039/c8bm01545g] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
142 De Luca E, Pedone D, Moglianetti M, Pulcini D, Perrelli A, Retta SF, Pompa PP. Multifunctional Platinum@BSA-Rapamycin Nanocarriers for the Combinatorial Therapy of Cerebral Cavernous Malformation. ACS Omega 2018;3:15389-98. [PMID: 30556006 DOI: 10.1021/acsomega.8b01653] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 5.5] [Reference Citation Analysis]
143 Boldyrev A, Ziganshin M, Osipov A, Mukhametzyanov T, Lyadov N, Klimovitskii A, Gerasimov A. Lysozyme-Based Composite Drug Preparations for Inhalation Administration. BioNanoSci 2019;9:131-40. [DOI: 10.1007/s12668-018-0576-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
144 Karimi M, Zangabad PS, Mehdizadeh F, Malekzad H, Ghasemi A, Bahrami S, Zare H, Moghoofei M, Hekmatmanesh A, Hamblin MR. Nanocaged platforms: modification, drug delivery and nanotoxicity. Opening synthetic cages to release the tiger. Nanoscale 2017;9:1356-92. [PMID: 28067384 DOI: 10.1039/c6nr07315h] [Cited by in Crossref: 90] [Cited by in F6Publishing: 96] [Article Influence: 22.5] [Reference Citation Analysis]
145 Raoufinia R, Balkani S, Keyhanvar N, Mahdavipor B, Abdolalizadeh J. Human albumin purification: a modified and concise method. Journal of Immunoassay and Immunochemistry 2018;39:687-95. [DOI: 10.1080/15321819.2018.1531884] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
146 Zhang K, Gao YJ, Yang PP, Qi GB, Zhang JP, Wang L, Wang H. Self-Assembled Fluorescent Organic Nanomaterials for Biomedical Imaging. Adv Healthc Mater 2018;7:e1800344. [PMID: 30137689 DOI: 10.1002/adhm.201800344] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 5.8] [Reference Citation Analysis]
147 Siddiqi KS, Husen A, Sohrab SS, Yassin MO. Recent Status of Nanomaterial Fabrication and Their Potential Applications in Neurological Disease Management. Nanoscale Res Lett 2018;13:231. [PMID: 30097809 DOI: 10.1186/s11671-018-2638-7] [Cited by in Crossref: 56] [Cited by in F6Publishing: 57] [Article Influence: 14.0] [Reference Citation Analysis]
148 Zhao Q, Fang Z, Chen M, Li M, Zhou Z, Du B, Zhang Q. Albumin nanoparticles fabricated from microscaled PLGA templates using layer‐by‐layer assembly. Micro & Nano Letters 2018;13:835-7. [DOI: 10.1049/mnl.2017.0696] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
149 Karimi M, Bahrami S, Mirshekari H, Basri SM, Nik AB, Aref AR, Akbari M, Hamblin MR. Microfluidic systems for stem cell-based neural tissue engineering. Lab Chip 2016;16:2551-71. [PMID: 27296463 DOI: 10.1039/c6lc00489j] [Cited by in Crossref: 75] [Cited by in F6Publishing: 77] [Article Influence: 18.8] [Reference Citation Analysis]
150 Bajpai VK, Shukla S, Kang SM, Hwang SK, Song X, Huh YS, Han YK. Developments of Cyanobacteria for Nano-Marine Drugs: Relevance of Nanoformulations in Cancer Therapies. Mar Drugs 2018;16:E179. [PMID: 29882898 DOI: 10.3390/md16060179] [Cited by in Crossref: 40] [Cited by in F6Publishing: 40] [Article Influence: 10.0] [Reference Citation Analysis]
151 Gou Y, Miao D, Zhou M, Wang L, Zhou H, Su G. Bio-Inspired Protein-Based Nanoformulations for Cancer Theranostics. Front Pharmacol 2018;9:421. [PMID: 29755355 DOI: 10.3389/fphar.2018.00421] [Cited by in Crossref: 51] [Cited by in F6Publishing: 52] [Article Influence: 12.8] [Reference Citation Analysis]
152 Gianak O, Pavlidou E, Sarafidis C, Karageorgiou V, Deliyanni E. Silk Fibroin Nanoparticles for Drug Delivery: Effect of Bovine Serum Albumin and Magnetic Nanoparticles Addition on Drug Encapsulation and Release. Separations 2018;5:25. [DOI: 10.3390/separations5020025] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 6.0] [Reference Citation Analysis]
153 Rajendrakumar SK, Cherukula K, Park HJ, Uthaman S, Jeong YY, Lee BI, Park IK. Dual-stimuli-responsive albumin-polyplex nanoassembly for spatially controlled gene release in metastatic breast cancer. J Control Release 2018;276:72-83. [PMID: 29499218 DOI: 10.1016/j.jconrel.2018.02.039] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
154 Liu Z, Zhang Y, Yu D, Wu D, Li H. Fabrication of sustained-release zein nanoparticles via modified coaxial electrospraying. Chemical Engineering Journal 2018;334:807-16. [DOI: 10.1016/j.cej.2017.10.098] [Cited by in Crossref: 64] [Cited by in F6Publishing: 64] [Article Influence: 16.0] [Reference Citation Analysis]
155 Mofazzal Jahromi MA, Sahandi Zangabad P, Moosavi Basri SM, Sahandi Zangabad K, Ghamarypour A, Aref AR, Karimi M, Hamblin MR. Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing. Adv Drug Deliv Rev 2018;123:33-64. [PMID: 28782570 DOI: 10.1016/j.addr.2017.08.001] [Cited by in Crossref: 216] [Cited by in F6Publishing: 235] [Article Influence: 54.0] [Reference Citation Analysis]
156 Ngandeu Neubi GM, Opoku-damoah Y, Gu X, Han Y, Zhou J, Ding Y. Bio-inspired drug delivery systems: an emerging platform for targeted cancer therapy. Biomater Sci 2018;6:958-73. [DOI: 10.1039/c8bm00175h] [Cited by in Crossref: 60] [Cited by in F6Publishing: 65] [Article Influence: 15.0] [Reference Citation Analysis]
157 Zhang Y, Sun T, Jiang C. Biomacromolecules as carriers in drug delivery and tissue engineering. Acta Pharm Sin B 2018;8:34-50. [PMID: 29872621 DOI: 10.1016/j.apsb.2017.11.005] [Cited by in Crossref: 187] [Cited by in F6Publishing: 155] [Article Influence: 46.8] [Reference Citation Analysis]
158 Luebbert CC, Clarke TM, Pointet R, Frahm GE, Tam S, Lorbetskie B, Sauvé S, Johnston MJW. Nanoparticle size and production efficiency are affected by the presence of fatty acids during albumin nanoparticle fabrication. PLoS One 2017;12:e0189814. [PMID: 29281685 DOI: 10.1371/journal.pone.0189814] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
159 Zangabad PS, Mirkiani S, Shahsavari S, Masoudi B, Masroor M, Hamed H, Jafari Z, Taghipour YD, Hashemi H, Karimi M, Hamblin MR. Stimulus-responsive liposomes as smart nanoplatforms for drug delivery applications. Nanotechnol Rev 2018;7:95-122. [PMID: 29404233 DOI: 10.1515/ntrev-2017-0154] [Cited by in Crossref: 63] [Cited by in F6Publishing: 66] [Article Influence: 12.6] [Reference Citation Analysis]
160 Kudarha RR, Sawant KK. Albumin based versatile multifunctional nanocarriers for cancer therapy: Fabrication, surface modification, multimodal therapeutics and imaging approaches. Materials Science and Engineering: C 2017;81:607-26. [DOI: 10.1016/j.msec.2017.08.004] [Cited by in Crossref: 64] [Cited by in F6Publishing: 59] [Article Influence: 12.8] [Reference Citation Analysis]
161 Han H, Wang J, Chen T, Yin L, Jin Q, Ji J. Enzyme-sensitive gemcitabine conjugated albumin nanoparticles as a versatile theranostic nanoplatform for pancreatic cancer treatment. Journal of Colloid and Interface Science 2017;507:217-24. [DOI: 10.1016/j.jcis.2017.07.047] [Cited by in Crossref: 36] [Cited by in F6Publishing: 39] [Article Influence: 7.2] [Reference Citation Analysis]
162 Li L, Pang X, Liu G. Near-Infrared Light-Triggered Polymeric Nanomicelles for Cancer Therapy and Imaging. ACS Biomater Sci Eng 2018;4:1928-41. [DOI: 10.1021/acsbiomaterials.7b00648] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 6.0] [Reference Citation Analysis]
163 Chakravarty R, Chakraborty S, Guleria A, Kunwar A, Sarma HD, Dash A. Facile One-Pot Synthesis of Intrinsically Radiolabeled 64 Cu-Human Serum Albumin Nanocomposite for Cancer Targeting. ChemistrySelect 2017;2:8043-51. [DOI: 10.1002/slct.201701237] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
164 An FF, Zhang XH. Strategies for Preparing Albumin-based Nanoparticles for Multifunctional Bioimaging and Drug Delivery. Theranostics 2017;7:3667-89. [PMID: 29109768 DOI: 10.7150/thno.19365] [Cited by in Crossref: 227] [Cited by in F6Publishing: 261] [Article Influence: 45.4] [Reference Citation Analysis]
165 Qasim M, Asghar K, Dharmapuri G, Das D. Investigation of novel superparamagnetic Ni0.5Zn0.5Fe2O4@albumen nanoparticles for controlled delivery of anticancer drug. Nanotechnology 2017;28:365101. [PMID: 28675377 DOI: 10.1088/1361-6528/aa7d81] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
166 Malekzad H, Mirshekari H, Sahandi Zangabad P, Moosavi Basri SM, Baniasadi F, Sharifi Aghdam M, Karimi M, Hamblin MR. Plant protein-based hydrophobic fine and ultrafine carrier particles in drug delivery systems. Crit Rev Biotechnol 2018;38:47-67. [PMID: 28434263 DOI: 10.1080/07388551.2017.1312267] [Cited by in Crossref: 60] [Cited by in F6Publishing: 49] [Article Influence: 12.0] [Reference Citation Analysis]
167 Yin L, Yuvienco C, Montclare JK. Protein based therapeutic delivery agents: Contemporary developments and challenges. Biomaterials 2017;134:91-116. [PMID: 28458031 DOI: 10.1016/j.biomaterials.2017.04.036] [Cited by in Crossref: 59] [Cited by in F6Publishing: 67] [Article Influence: 11.8] [Reference Citation Analysis]
168 Karimi M, Sahandi Zangabad P, Baghaee-Ravari S, Ghazadeh M, Mirshekari H, Hamblin MR. Smart Nanostructures for Cargo Delivery: Uncaging and Activating by Light. J Am Chem Soc 2017;139:4584-610. [PMID: 28192672 DOI: 10.1021/jacs.6b08313] [Cited by in Crossref: 266] [Cited by in F6Publishing: 277] [Article Influence: 53.2] [Reference Citation Analysis]
169 Zhao D, Zhang H, Tao W, Wei W, Sun J, He Z. A rapid albumin-binding 5-fluorouracil prodrug with a prolonged circulation time and enhanced antitumor activity. Biomater Sci 2017;5:502-10. [DOI: 10.1039/c6bm00884d] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 7.2] [Reference Citation Analysis]
170 Sharma S, Sethi K, Roy I. Magnetic nanoscale metal–organic frameworks for magnetically aided drug delivery and photodynamic therapy. New J Chem 2017;41:11860-6. [DOI: 10.1039/c7nj02032e] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 5.8] [Reference Citation Analysis]
171 Malekzad H, Zangabad PS, Mirshekari H, Karimi M, Hamblin MR. Noble metal nanoparticles in biosensors: recent studies and applications. Nanotechnol Rev 2017;6:301-29. [PMID: 29335674 DOI: 10.1515/ntrev-2016-0014] [Cited by in Crossref: 156] [Cited by in F6Publishing: 162] [Article Influence: 26.0] [Reference Citation Analysis]
172 Karimi M, Sahandi Zangabad P, Ghasemi A, Amiri M, Bahrami M, Malekzad H, Ghahramanzadeh Asl H, Mahdieh Z, Bozorgomid M, Ghasemi A, Rahmani Taji Boyuk MR, Hamblin MR. Temperature-Responsive Smart Nanocarriers for Delivery Of Therapeutic Agents: Applications and Recent Advances. ACS Appl Mater Interfaces 2016;8:21107-33. [PMID: 27349465 DOI: 10.1021/acsami.6b00371] [Cited by in Crossref: 217] [Cited by in F6Publishing: 228] [Article Influence: 36.2] [Reference Citation Analysis]