BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Pranatharthiharan S, Patel MD, Malshe VC, Pujari V, Gorakshakar A, Madkaikar M, Ghosh K, Devarajan PV. Asialoglycoprotein receptor targeted delivery of doxorubicin nanoparticles for hepatocellular carcinoma. Drug Deliv 2017;24:20-9. [PMID: 28155331 DOI: 10.1080/10717544.2016.1225856] [Cited by in Crossref: 43] [Cited by in F6Publishing: 49] [Article Influence: 8.6] [Reference Citation Analysis]
Number Citing Articles
1 U A, Shetty S, Kulkarni SD, B HK, Pai KSR, A JM, Kumar R, Bharati S. Anticancer therapeutic potential of phosphorylated galactosylated chitosan against N-nitrosodiethyl amine-induced hepatocarcinogenesis. Arch Biochem Biophys 2022;728:109375. [PMID: 35970414 DOI: 10.1016/j.abb.2022.109375] [Reference Citation Analysis]
2 Hp S, Bs U, J S, Mg A, Joseph MM, Gu P, Ks A, Pl R, R S, Tt S. Bio fabrication of galactomannan capped silver nanoparticles to apprehend Ehrlich ascites carcinoma solid tumor in mice. Journal of Drug Delivery Science and Technology 2022;76:103649. [DOI: 10.1016/j.jddst.2022.103649] [Reference Citation Analysis]
3 Dhilip Kumar SS, Abrahamse H. Recent advances in the development of biocompatible nanocarriers and their cancer cell targeting efficiency in photodynamic therapy. Front Chem 2022;10:969809. [DOI: 10.3389/fchem.2022.969809] [Reference Citation Analysis]
4 Mazumder A, Dwivedi A, Assawapanumat W, Saeeng R, Sungkarat W, Nasongkla N. In vitro galactose-targeted study of RSPP050-loaded micelles against liver hepatocellular carcinoma. Pharm Dev Technol 2022;:1-13. [PMID: 35388736 DOI: 10.1080/10837450.2022.2063891] [Reference Citation Analysis]
5 Li F, Wei Y, Zhao J, Zhang L, Li Q. In vivo pharmacokinetic study of a Cucurbita moschata polysaccharide after oral administration. International Journal of Biological Macromolecules 2022;203:19-28. [DOI: 10.1016/j.ijbiomac.2022.01.111] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
6 Warrier DU, Dhanabalan AK, Krishnasamy G, Kolge H, Ghormade V, Gupta CR, Ambre PK, Shinde UA. Novel derivatives of arabinogalactan, pullulan & lactobionic acid for targeting asialoglycoprotein receptor: Biomolecular interaction, synthesis & evaluation. Int J Biol Macromol 2022;207:683-99. [PMID: 35248606 DOI: 10.1016/j.ijbiomac.2022.02.176] [Reference Citation Analysis]
7 Gupta MK, Sansare V, Shrivastava B, Jadhav S, Gurav P. Fabrication and evaluation of mannose decorated curcumin loaded nanostructured lipid carriers for hepatocyte targeting: In vivo hepatoprotective activity in Wistar rats. Current Research in Pharmacology and Drug Discovery 2022;3:100083. [DOI: 10.1016/j.crphar.2022.100083] [Reference Citation Analysis]
8 Dayani L, Dehghani M, Aghaei M, Taymouri S, Taheri A. Preparation and evaluation of targeted albumin lipid nanoparticles with lactobionic acid for targeted drug delivery of sorafenib in hepatocellular carcinoma. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.103142] [Reference Citation Analysis]
9 Bakrania A, Zheng G, Bhat M. Nanomedicine in Hepatocellular Carcinoma: A New Frontier in Targeted Cancer Treatment. Pharmaceutics 2021;14:41. [PMID: 35056937 DOI: 10.3390/pharmaceutics14010041] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
10 Heiat M, Hashemi Yeganeh H, Alavian SM, Rezaie E. Immunotoxins Immunotherapy against Hepatocellular Carcinoma: A Promising Prospect. Toxins (Basel) 2021;13:719. [PMID: 34679012 DOI: 10.3390/toxins13100719] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
11 Al-Mansoori L, Elsinga P, Goda SK. Bio-vehicles of cytotoxic drugs for delivery to tumor specific targets for cancer precision therapy. Biomed Pharmacother 2021;144:112260. [PMID: 34607105 DOI: 10.1016/j.biopha.2021.112260] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Mintz KJ, Leblanc RM. The use of nanotechnology to combat liver cancer: Progress and perspectives. Biochim Biophys Acta Rev Cancer 2021;1876:188621. [PMID: 34454983 DOI: 10.1016/j.bbcan.2021.188621] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
13 Sharma R, Porterfield JE, An HT, Jimenez AS, Lee S, Kannan S, Sharma A, Kannan RM. Rationally Designed Galactose Dendrimer for Hepatocyte-Specific Targeting and Intracellular Drug Delivery for the Treatment of Liver Disorders. Biomacromolecules 2021;22:3574-89. [PMID: 34324818 DOI: 10.1021/acs.biomac.1c00649] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
14 Chowdhury MMH, Salazar CJJ, Nurunnabi M. Recent advances in bionanomaterials for liver cancer diagnosis and treatment. Biomater Sci 2021;9:4821-42. [PMID: 34032223 DOI: 10.1039/d1bm00167a] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
15 Fawzi Kabil M, Nasr M, El-Sherbiny IM. Conventional and hybrid nanoparticulate systems for the treatment of hepatocellular carcinoma: An updated review. Eur J Pharm Biopharm 2021;167:9-37. [PMID: 34271117 DOI: 10.1016/j.ejpb.2021.07.003] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
16 kianfar E. Magnetic Nanoparticles in Targeted Drug Delivery: a Review. J Supercond Nov Magn 2021;34:1709-35. [DOI: 10.1007/s10948-021-05932-9] [Cited by in Crossref: 8] [Cited by in F6Publishing: 21] [Article Influence: 8.0] [Reference Citation Analysis]
17 Farinha D, Migawa M, Sarmento-Ribeiro A, Faneca H. A Combined Antitumor Strategy Mediated by a New Targeted Nanosystem to Hepatocellular Carcinoma. Int J Nanomedicine 2021;16:3385-405. [PMID: 34040370 DOI: 10.2147/IJN.S302288] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
18 Tanhaei A, Mohammadi M, Hamishehkar H, Hamblin MR. Electrospraying as a novel method of particle engineering for drug delivery vehicles. Journal of Controlled Release 2021;330:851-65. [DOI: 10.1016/j.jconrel.2020.10.059] [Cited by in Crossref: 7] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
19 Faris TM, Harisa GI, Alanazi FK, Samy AM, Nasr FA. Developed simvastatin chitosan nanoparticles co-crosslinked with tripolyphosphate and chondroitin sulfate for ASGPR-mediated targeted HCC delivery with enhanced oral bioavailability. Saudi Pharm J 2020;28:1851-67. [PMID: 33424274 DOI: 10.1016/j.jsps.2020.11.012] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
20 Kunjiappan S, Pavadai P, Vellaichamy S, Ram Kumar Pandian S, Ravishankar V, Palanisamy P, Govindaraj S, Srinivasan G, Premanand A, Sankaranarayanan M, Theivendren P. Surface receptor‐mediated targeted drug delivery systems for enhanced cancer treatment: A state‐of‐the‐art review. Drug Dev Res 2021;82:309-40. [DOI: 10.1002/ddr.21758] [Cited by in Crossref: 7] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
21 R S, Joseph MM, Pillai KR, G U P, T T S. A biocompatible glycol-capped nano-delivery system with stimuli-responsive drug release kinetics abrogates cancer cell survival. Int J Biol Macromol 2020;165:568-81. [PMID: 32961196 DOI: 10.1016/j.ijbiomac.2020.09.121] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
22 Hoober JK. ASGR1 and Its Enigmatic Relative, CLEC10A. Int J Mol Sci 2020;21:E4818. [PMID: 32650396 DOI: 10.3390/ijms21144818] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
23 Zheng QC, Jiang S, Wu YZ, Shang D, Zhang Y, Hu SB, Cheng X, Zhang C, Sun P, Gao Y, Song ZF, Li M. Dual-Targeting Nanoparticle-Mediated Gene Therapy Strategy for Hepatocellular Carcinoma by Delivering Small Interfering RNA. Front Bioeng Biotechnol 2020;8:512. [PMID: 32587849 DOI: 10.3389/fbioe.2020.00512] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
24 Shetab Boushehri MA, Dietrich D, Lamprecht A. Nanotechnology as a Platform for the Development of Injectable Parenteral Formulations: A Comprehensive Review of the Know-Hows and State of the Art. Pharmaceutics 2020;12:E510. [PMID: 32503171 DOI: 10.3390/pharmaceutics12060510] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
25 Ozcan M, Altay O, Lam S, Turkez H, Aksoy Y, Nielsen J, Uhlen M, Boren J, Mardinoglu A. Improvement in the Current Therapies for Hepatocellular Carcinoma Using a Systems Medicine Approach. Adv Biosyst 2020;4:e2000030. [PMID: 32529800 DOI: 10.1002/adbi.202000030] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
26 Xia X, Pollock N, Zhou J, Rossi J. Tissue-Specific Delivery of Oligonucleotides. Methods Mol Biol 2019;2036:17-50. [PMID: 31410789 DOI: 10.1007/978-1-4939-9670-4_2] [Reference Citation Analysis]
27 Al-nadaf AH, Dahabiyeh LA, Bardaweel S, Mahmoud NN, Jawarneh S. Functionalized mesoporous silica nanoparticles by lactose and hydrophilic polymer as a hepatocellular carcinoma drug delivery system. Journal of Drug Delivery Science and Technology 2020;56:101504. [DOI: 10.1016/j.jddst.2020.101504] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
28 Chakraborty S, Dlie ZY, Chakraborty S, Roy S, Mukherjee B, Besra SE, Dewanjee S, Mukherjee A, Ojha PK, Kumar V, Sen R. Aptamer-Functionalized Drug Nanocarrier Improves Hepatocellular Carcinoma toward Normal by Targeting Neoplastic Hepatocytes. Mol Ther Nucleic Acids 2020;20:34-49. [PMID: 32146417 DOI: 10.1016/j.omtn.2020.01.034] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
29 Nair AB, Shah J, Al-Dhubiab BE, Patel SS, Morsy MA, Patel V, Chavda V, Jacob S, Sreeharsha N, Shinu P, Attimarad M, Venugopala KN. Development of Asialoglycoprotein Receptor-Targeted Nanoparticles for Selective Delivery of Gemcitabine to Hepatocellular Carcinoma. Molecules 2019;24:E4566. [PMID: 31847085 DOI: 10.3390/molecules24244566] [Cited by in Crossref: 14] [Cited by in F6Publishing: 21] [Article Influence: 4.7] [Reference Citation Analysis]
30 Li M, Wang Y, Jiang S, Gao Y, Zhang W, Hu S, Cheng X, Zhang C, Sun P, Ke W, Wang G, Song Z, Zhang Y, Zheng QC. Biodistribution and biocompatibility of glycyrrhetinic acid and galactose-modified chitosan nanoparticles as a novel targeting vehicle for hepatocellular carcinoma. Nanomedicine (Lond) 2020;15:145-61. [PMID: 31782335 DOI: 10.2217/nnm-2018-0455] [Cited by in Crossref: 6] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
31 Nie H, Qiu B, Yang QX, Zhao Y, Liu XM, Zhang YT, Liao FL, Zhang SY. Effect of gal/GalNAc regioisomerism in galactosylated liposomes on asialoglycoprotein receptor-mediated hepatocyte-selective targeting in vivo. J Liposome Res 2021;31:79-89. [PMID: 31691619 DOI: 10.1080/08982104.2019.1682606] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
32 Ashree J, Wang Q, Chao Y. Glyco-functionalised quantum dots and their progress in cancer diagnosis and treatment. Front Chem Sci Eng 2020;14:365-77. [DOI: 10.1007/s11705-019-1863-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
33 Rotman SG, Thompson K, Grijpma DW, Richards RG, Moriarty TF, Eglin D, Guillaume O. Development of bone seeker-functionalised microspheres as a targeted local antibiotic delivery system for bone infections. J Orthop Translat 2020;21:136-45. [PMID: 32309139 DOI: 10.1016/j.jot.2019.07.006] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
34 Elnaggar MH, Abushouk AI, Hassan AHE, Lamloum HM, Benmelouka A, Moatamed SA, Abd-Elmegeed H, Attia S, Samir A, Amr N, Johar D, Zaky S. Nanomedicine as a putative approach for active targeting of hepatocellular carcinoma. Semin Cancer Biol 2021;69:91-9. [PMID: 31421265 DOI: 10.1016/j.semcancer.2019.08.016] [Cited by in Crossref: 5] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
35 Taghipour-sabzevar V, Sharifi T, Moghaddam MM. Polymeric nanoparticles as carrier for targeted and controlled delivery of anticancer agents. Therapeutic Delivery 2019;10:527-50. [DOI: 10.4155/tde-2019-0044] [Cited by in Crossref: 14] [Cited by in F6Publishing: 19] [Article Influence: 4.7] [Reference Citation Analysis]
36 Wang H, Liu Y, Xu M, Cheng J. Azido-galactose outperforms azido-mannose for metabolic labeling and targeting of hepatocellular carcinoma. Biomater Sci 2019;7:4166-73. [PMID: 31368459 DOI: 10.1039/c9bm00898e] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
37 Sun Y, Ma W, Yang Y, He M, Li A, Bai L, Yu B, Yu Z. Cancer nanotechnology: Enhancing tumor cell response to chemotherapy for hepatocellular carcinoma therapy. Asian J Pharm Sci 2019;14:581-94. [PMID: 32104485 DOI: 10.1016/j.ajps.2019.04.005] [Cited by in Crossref: 65] [Cited by in F6Publishing: 69] [Article Influence: 21.7] [Reference Citation Analysis]
38 Zheng G, Zheng M, Yang B, Fu H, Li Y. Improving breast cancer therapy using doxorubicin loaded solid lipid nanoparticles: Synthesis of a novel arginine-glycine-aspartic tripeptide conjugated, pH sensitive lipid and evaluation of the nanomedicine in vitro and in vivo. Biomed Pharmacother 2019;116:109006. [PMID: 31152925 DOI: 10.1016/j.biopha.2019.109006] [Cited by in Crossref: 26] [Cited by in F6Publishing: 38] [Article Influence: 8.7] [Reference Citation Analysis]
39 Grigoras AG. Drug delivery systems using pullulan, a biocompatible polysaccharide produced by fungal fermentation of starch. Environ Chem Lett 2019;17:1209-23. [DOI: 10.1007/s10311-019-00862-4] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
40 Zhang Z, Yang L, Hou J, Xia X, Wang J, Ning Q, Jiang S. Promising positive liver targeting delivery system based on arabinogalactan-anchored polymeric micelles of norcantharidin. Artif Cells Nanomed Biotechnol. 2018;46:S630-S640. [PMID: 30449176 DOI: 10.1080/21691401.2018.1505742] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
41 Zhao N, Woodle MC, Mixson AJ. Advances in delivery systems for doxorubicin. J Nanomed Nanotechnol 2018;9:519. [PMID: 30613436 DOI: 10.4172/2157-7439.1000519] [Cited by in Crossref: 62] [Cited by in F6Publishing: 85] [Article Influence: 15.5] [Reference Citation Analysis]
42 Duan W, Liu Y. Targeted and synergistic therapy for hepatocellular carcinoma: monosaccharide modified lipid nanoparticles for the co-delivery of doxorubicin and sorafenib. Drug Des Devel Ther 2018;12:2149-61. [PMID: 30034219 DOI: 10.2147/DDDT.S166402] [Cited by in Crossref: 20] [Cited by in F6Publishing: 27] [Article Influence: 5.0] [Reference Citation Analysis]
43 Zhang S, Wang D, Li Y, Li L, Chen H, Xiong Q, Liu Y, Wang Y. pH- and redox-responsive nanoparticles composed of charge-reversible pullulan-based shells and disulfide-containing poly( ß -amino ester) cores for co-delivery of a gene and chemotherapeutic agent. Nanotechnology 2018;29:325101. [DOI: 10.1088/1361-6528/aac4b5] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
44 Rico L, Østergaard ME, Bell M, Seth PP, Hanessian S. Studies directed toward the asialoglycoprotein receptor mediated delivery of 5-fluoro-2'-deoxyuridine for hepatocellular carcinoma. Bioorg Med Chem Lett 2018;28:2652-4. [PMID: 30042045 DOI: 10.1016/j.bmcl.2018.06.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
45 Borker S, Pokharkar V. Engineering of pectin-capped gold nanoparticles for delivery of doxorubicin to hepatocarcinoma cells: an insight into mechanism of cellular uptake. Artificial Cells, Nanomedicine, and Biotechnology 2018;46:826-35. [DOI: 10.1080/21691401.2018.1470525] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
46 Zhang Y, Zhou T, Luo L, Cui Z, Wang N, Shu Y, Wang K. Pharmacokinetics, biodistribution and receptor mediated endocytosis of a natural Angelica sinensis polysaccharide. Artificial Cells, Nanomedicine, and Biotechnology 2018;46:254-63. [DOI: 10.1080/21691401.2017.1421210] [Cited by in Crossref: 8] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
47 Wang K, Cheng F, Pan X, Zhou T, Liu X, Zheng Z, Luo L, Zhang Y. Investigation of the transport and absorption of Angelica sinensis polysaccharide through gastrointestinal tract both in vitro and in vivo. Drug Deliv 2017;24:1360-71. [PMID: 28920748 DOI: 10.1080/10717544.2017.1375576] [Cited by in Crossref: 25] [Cited by in F6Publishing: 35] [Article Influence: 5.0] [Reference Citation Analysis]
48 Joseph MM, Nair JB, Maiti KK, Therakathinal T S. Plasmonically Enhanced Galactoxyloglucan Endowed Gold Nanoparticles Exposed Tumor Targeting Biodistribution Envisaged in a Surface-Enhanced Raman Scattering Platform. Biomacromolecules 2017;18:4041-53. [DOI: 10.1021/acs.biomac.7b01109] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 3.6] [Reference Citation Analysis]
49 Iacobazzi RM, Porcelli L, Lopedota AA, Laquintana V, Lopalco A, Cutrignelli A, Altamura E, Di Fonte R, Azzariti A, Franco M, Denora N. Targeting human liver cancer cells with lactobionic acid-G(4)-PAMAM-FITC sorafenib loaded dendrimers. Int J Pharm 2017;528:485-97. [PMID: 28624661 DOI: 10.1016/j.ijpharm.2017.06.049] [Cited by in Crossref: 34] [Cited by in F6Publishing: 40] [Article Influence: 6.8] [Reference Citation Analysis]