BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yasuda D, Ohe T, Takahashi K, Imamura R, Kojima H, Okabe T, Ichimura Y, Komatsu M, Yamamoto M, Nagano T, Mashino T. Inhibitors of the protein-protein interaction between phosphorylated p62 and Keap1 attenuate chemoresistance in a human hepatocellular carcinoma cell line. Free Radic Res. 2020;1-13. [PMID: 32075457 DOI: 10.1080/10715762.2020.1732955] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 5.5] [Reference Citation Analysis]
Number Citing Articles
1 Emanuele S, Lauricella M, D'Anneo A, Carlisi D, De Blasio A, Di Liberto D, Giuliano M. p62: Friend or Foe? Evidences for OncoJanus and NeuroJanus Roles. Int J Mol Sci 2020;21:E5029. [PMID: 32708719 DOI: 10.3390/ijms21145029] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
2 Panieri E, Saso L. Inhibition of the NRF2/KEAP1 Axis: A Promising Therapeutic Strategy to Alter Redox Balance of Cancer Cells. Antioxid Redox Signal 2021;34:1428-83. [PMID: 33403898 DOI: 10.1089/ars.2020.8146] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
3 Choi BH, Kim JM, Kwak MK. The multifaceted role of NRF2 in cancer progression and cancer stem cells maintenance. Arch Pharm Res 2021;44:263-80. [PMID: 33754307 DOI: 10.1007/s12272-021-01316-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
4 Naito Y, Uchida K, Toyokuni S. The new era for redox research. Free Radic Res 2020;54:787-9. [PMID: 32450729 DOI: 10.1080/10715762.2020.1774177] [Reference Citation Analysis]
5 Taguchi K, Yamamoto M. The KEAP1-NRF2 System as a Molecular Target of Cancer Treatment. Cancers (Basel) 2020;13:E46. [PMID: 33375248 DOI: 10.3390/cancers13010046] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
6 Lian C, Chu B, Xia W, Wang Z, Fan R, Wang L. Persistent activation of Nrf2 in a p62-dependent non-canonical manner aggravates lead-induced kidney injury by promoting apoptosis and inhibiting autophagy. Journal of Advanced Research 2022. [DOI: 10.1016/j.jare.2022.04.016] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Tan CT, Soh NJH, Chang HC, Yu VC. p62/SQSTM1 in liver diseases: the usual suspect with multifarious identities. FEBS J 2021. [PMID: 34882306 DOI: 10.1111/febs.16317] [Reference Citation Analysis]
8 Li J, Liu X, Nan S, Xu C. Silencing of long non-coding RNA LINC00520 promotes radiosensitivity of head and neck squamous cell carcinoma cells. Free Radic Res 2020;54:254-70. [PMID: 32462956 DOI: 10.1080/10715762.2020.1752373] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
9 Mattu S, Zavattari P, Kowalik MA, Serra M, Sulas P, Pal R, Puliga E, Sutti S, Foglia B, Parola M, Albano E, Giordano S, Perra A, Columbano A. Nrf2 Mutation/Activation Is Dispensable for the Development of Chemically Induced Mouse HCC. Cell Mol Gastroenterol Hepatol 2021;13:113-27. [PMID: 34530178 DOI: 10.1016/j.jcmgh.2021.08.011] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Zhou L, Yu KH, Wong TL, Zhang Z, Chan CH, Loong JH, Che N, Yu HJ, Tan KV, Tong M, Ngan ES, Ho JW, Ma S. Lineage tracing and single-cell analysis reveal proliferative Prom1+ tumour-propagating cells and their dynamic cellular transition during liver cancer progression. Gut 2021:gutjnl-2021-324321. [PMID: 34588223 DOI: 10.1136/gutjnl-2021-324321] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
11 Celesia A, Morana O, Fiore T, Pellerito C, D'Anneo A, Lauricella M, Carlisi D, De Blasio A, Calvaruso G, Giuliano M, Emanuele S. ROS-Dependent ER Stress and Autophagy Mediate the Anti-Tumor Effects of Tributyltin (IV) Ferulate in Colon Cancer Cells. Int J Mol Sci 2020;21:E8135. [PMID: 33143349 DOI: 10.3390/ijms21218135] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
12 Paiboonrungruang C, Simpson E, Xiong Z, Huang C, Li J, Li Y, Chen X. Development of targeted therapy of NRF2high esophageal squamous cell carcinoma. Cell Signal 2021;86:110105. [PMID: 34358647 DOI: 10.1016/j.cellsig.2021.110105] [Reference Citation Analysis]
13 Fan RF, Tang KK, Wang ZY, Wang L. Persistent activation of Nrf2 promotes a vicious cycle of oxidative stress and autophagy inhibition in cadmium-induced kidney injury. Toxicology 2021;464:152999. [PMID: 34695510 DOI: 10.1016/j.tox.2021.152999] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Orrù C, Giordano S, Columbano A. Nrf2 in Neoplastic and Non-Neoplastic Liver Diseases. Cancers (Basel) 2020;12:E2932. [PMID: 33053665 DOI: 10.3390/cancers12102932] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
15 Cerda-Troncoso C, Varas-Godoy M, Burgos PV. Pro-Tumoral Functions of Autophagy Receptors in the Modulation of Cancer Progression. Front Oncol 2020;10:619727. [PMID: 33634029 DOI: 10.3389/fonc.2020.619727] [Reference Citation Analysis]
16 Niu ZS, Wang WH, Dong XN, Tian LML. Role of long noncoding RNA-mediated competing endogenous RNA regulatory network in hepatocellular carcinoma. World J Gastroenterol 2020; 26(29): 4240-4260 [PMID: 32848331 DOI: 10.3748/wjg.v26.i29.4240] [Cited by in CrossRef: 17] [Cited by in F6Publishing: 19] [Article Influence: 8.5] [Reference Citation Analysis]
17 Chen Y, Li Q, Li Q, Xing S, Liu Y, Liu Y, Chen Y, Liu W, Feng F, Sun H. p62/SQSTM1, a Central but Unexploited Target: Advances in Its Physiological/Pathogenic Functions and Small Molecular Modulators. J Med Chem 2020;63:10135-57. [DOI: 10.1021/acs.jmedchem.9b02038] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]