BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Oliveira FP, Tavares JM. Medical image registration: a review. Comput Methods Biomech Biomed Engin 2014;17:73-93. [PMID: 22435355 DOI: 10.1080/10255842.2012.670855] [Cited by in Crossref: 331] [Cited by in F6Publishing: 146] [Article Influence: 33.1] [Reference Citation Analysis]
Number Citing Articles
1 Kalla MP, Economopoulos TL, Matsopoulos GK. 3D dental image registration using exhaustive deformable models: a comparative study. Dentomaxillofac Radiol 2017;46:20160390. [PMID: 28402714 DOI: 10.1259/dmfr.20160390] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
2 Yan M, Liu H, Song E, Qian Y, Jin L, Hung C. Sparse patch‐based representation with combined information of atlas for multi‐atlas label fusion. IET Image Processing 2018;12:1345-53. [DOI: 10.1049/iet-ipr.2017.1108] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
3 Fu Y, Zhao X, Liang Y, Zhao T, Wang C, Zhang D. Change detection based on unsupervised sparse representation for fundus image pair. Sci Rep 2022;12:9820. [PMID: 35701500 DOI: 10.1038/s41598-022-13754-5] [Reference Citation Analysis]
4 Samant P, Agarwal R. Analysis of computational techniques for diabetes diagnosis using the combination of iris-based features and physiological parameters. Neural Comput & Applic 2019;31:8441-53. [DOI: 10.1007/s00521-019-04551-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Alyami W, Kyme A, Bourne R. Histological Validation of MRI: A Review of Challenges in Registration of Imaging and Whole-Mount Histopathology. J Magn Reson Imaging 2020. [PMID: 33128424 DOI: 10.1002/jmri.27409] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
6 Memiş A, Varlı S, Bilgili F. A novel approach for computerized quantitative image analysis of proximal femur bone shape deformities based on the hip joint symmetry. Artif Intell Med 2021;115:102057. [PMID: 34001317 DOI: 10.1016/j.artmed.2021.102057] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Miao X, Zhang L, Wang Y, Wang L, Fu X, Gan M, Li X. Characterisation of wellbore cement microstructure alteration under geologic carbon storage using X-ray computed micro-tomography: A framework for fast CT image registration and carbonate shell morphology quantification. Cement and Concrete Composites 2020;108:103524. [DOI: 10.1016/j.cemconcomp.2020.103524] [Cited by in Crossref: 12] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
8 Feng Y, Kawrakow I, Olsen J, Parikh PJ, Noel C, Wooten O, Du D, Mutic S, Hu Y. A comparative study of automatic image segmentation algorithms for target tracking in MR‐IGRT. Journal of Applied Clinical Medical Physics 2016;17:441-60. [DOI: 10.1120/jacmp.v17i2.5820] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
9 Liu Y, Lu G, Zhang D. An Effective 3D Ear Acquisition System. PLoS One 2015;10:e0129439. [PMID: 26061553 DOI: 10.1371/journal.pone.0129439] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
10 Ren W, Skulason H, Schlegel F, Rudin M, Klohs J, Ni R. Automated registration of magnetic resonance imaging and optoacoustic tomography data for experimental studies. Neurophotonics 2019;6:025001. [PMID: 30989087 DOI: 10.1117/1.NPh.6.2.025001] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
11 Pawar A, Zhang YJ, Anitescu C, Rabczuk T. Joint image segmentation and registration based on a dynamic level set approach using truncated hierarchical B-splines. Computers & Mathematics with Applications 2019;78:3250-67. [DOI: 10.1016/j.camwa.2019.04.026] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
12 Wang S, Li H, Zou B, Zhang W. A novel contour-based registration of lateral cephalogram and profile photograph. Comput Med Imaging Graph 2018;63:9-23. [PMID: 29370955 DOI: 10.1016/j.compmedimag.2018.01.007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
13 Bandeira Diniz JO, Bandeira Diniz PH, Azevedo Valente TL, Corrêa Silva A, de Paiva AC, Gattass M. Detection of mass regions in mammograms by bilateral analysis adapted to breast density using similarity indexes and convolutional neural networks. Computer Methods and Programs in Biomedicine 2018;156:191-207. [DOI: 10.1016/j.cmpb.2018.01.007] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
14 Joshi AA. Registration. Neuromethods 2018;136:3-12. [PMID: 30842692 DOI: 10.1007/978-1-4939-7647-8_1] [Reference Citation Analysis]
15 Dong Y, Jiao W, Long T, Liu L, He G, Gong C, Guo Y. Local Deep Descriptor for Remote Sensing Image Feature Matching. Remote Sensing 2019;11:430. [DOI: 10.3390/rs11040430] [Cited by in Crossref: 17] [Cited by in F6Publishing: 2] [Article Influence: 5.7] [Reference Citation Analysis]
16 Kong X, Li J. Non-contact fatigue crack detection in civil infrastructure through image overlapping and crack breathing sensing. Automation in Construction 2019;99:125-39. [DOI: 10.1016/j.autcon.2018.12.011] [Cited by in Crossref: 19] [Cited by in F6Publishing: 4] [Article Influence: 6.3] [Reference Citation Analysis]
17 Boveiri HR, Khayami R, Javidan R, Mehdizadeh A. Medical image registration using deep neural networks: A comprehensive review. Computers & Electrical Engineering 2020;87:106767. [DOI: 10.1016/j.compeleceng.2020.106767] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
18 Belzunce MA, Henckel J, Di Laura A, Hart A. Uncemented femoral stem orientation and position in total hip arthroplasty: A CT study. J Orthop Res 2020;38:1486-96. [PMID: 32056292 DOI: 10.1002/jor.24627] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
19 Hachemi-benziane S, Benyettou A. On the influence of anisotropic diffusion filter on dorsal hand authentication using eigenveins. Multidim Syst Sign Process 2018;29:1507-28. [DOI: 10.1007/s11045-017-0514-8] [Reference Citation Analysis]
20 Huang X, Mao L, Wang X, Teng Z, Shao M, Gao J, Xia M, Shao Z. Multi-Sequence MRI Registration of Atherosclerotic Carotid Arteries Based on Cross-Scale Siamese Network. Front Cardiovasc Med 2021;8:785523. [PMID: 35004897 DOI: 10.3389/fcvm.2021.785523] [Reference Citation Analysis]
21 Lundervold AS, Lundervold A. An overview of deep learning in medical imaging focusing on MRI. Z Med Phys. 2019;29:102-127. [PMID: 30553609 DOI: 10.1016/j.zemedi.2018.11.002] [Cited by in Crossref: 398] [Cited by in F6Publishing: 217] [Article Influence: 99.5] [Reference Citation Analysis]
22 Adel SM, Vaid NR, El-Harouni N, Kassem H, Zaher AR. Digital model superimpositions: are different software algorithms equally accurate in quantifying linear tooth movements? BMC Oral Health 2022;22:103. [PMID: 35361187 DOI: 10.1186/s12903-022-02129-x] [Reference Citation Analysis]
23 Elboushaki A, Hannane R, Afdel K, Koutti L. A robust approach for object matching and classification using Partial Dominant Orientation Descriptor. Pattern Recognition 2017;64:168-86. [DOI: 10.1016/j.patcog.2016.11.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
24 Beare R, Lowekamp B, Yaniv Z. Image Segmentation, Registration and Characterization in R with SimpleITK. J Stat Softw 2018;86:8. [PMID: 30288153 DOI: 10.18637/jss.v086.i08] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
25 Babel H, Wägeli L, Sonmez B, Thiran JP, Omoumi P, Jolles BM, Favre J. A Registration Method for Three-Dimensional Analysis of Bone Mineral Density in the Proximal Tibia. J Biomech Eng 2021;143:014502. [PMID: 32879939 DOI: 10.1115/1.4048335] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
26 Fan J, Cao X, Yap PT, Shen D. BIRNet: Brain image registration using dual-supervised fully convolutional networks. Med Image Anal 2019;54:193-206. [PMID: 30939419 DOI: 10.1016/j.media.2019.03.006] [Cited by in Crossref: 67] [Cited by in F6Publishing: 32] [Article Influence: 22.3] [Reference Citation Analysis]
27 Rabatel G, Labbé S. Registration of visible and near infrared unmanned aerial vehicle images based on Fourier-Mellin transform. Precision Agric 2016;17:564-87. [DOI: 10.1007/s11119-016-9437-x] [Cited by in Crossref: 16] [Cited by in F6Publishing: 4] [Article Influence: 2.7] [Reference Citation Analysis]
28 Moulton CR, House MJ, Lye V, Tang CI, Krawiec M, Joseph DJ, Denham JW, Ebert MA. Registering prostate external beam radiotherapy with a boost from high-dose-rate brachytherapy: a comparative evaluation of deformable registration algorithms. Radiat Oncol 2015;10:254. [PMID: 26666538 DOI: 10.1186/s13014-015-0563-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
29 Valente IRS, Cortez PC, Neto EC, Soares JM, de Albuquerque VHC, Tavares JMR. Automatic 3D pulmonary nodule detection in CT images: A survey. Computer Methods and Programs in Biomedicine 2016;124:91-107. [DOI: 10.1016/j.cmpb.2015.10.006] [Cited by in Crossref: 114] [Cited by in F6Publishing: 63] [Article Influence: 19.0] [Reference Citation Analysis]
30 Abbasi S, Tavakoli M, Boveiri HR, Mosleh Shirazi MA, Khayami R, Khorasani H, Javidan R, Mehdizadeh A. Medical image registration using unsupervised deep neural network: A scoping literature review. Biomedical Signal Processing and Control 2022;73:103444. [DOI: 10.1016/j.bspc.2021.103444] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Gil N, Lipton ML, Fleysher R. Registration quality filtering improves robustness of voxel-wise analyses to the choice of brain template. Neuroimage 2021;227:117657. [PMID: 33338620 DOI: 10.1016/j.neuroimage.2020.117657] [Reference Citation Analysis]
32 Malik A, Lhachemi H, Ploennigs J, Ba A, Shorten R. An Application of 3D Model Reconstruction and Augmented Reality for Real-Time Monitoring of Additive Manufacturing. Procedia CIRP 2019;81:346-51. [DOI: 10.1016/j.procir.2019.03.060] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
33 Keszei AP, Berkels B, Deserno TM. Survey of Non-Rigid Registration Tools in Medicine. J Digit Imaging 2017;30:102-16. [PMID: 27730414 DOI: 10.1007/s10278-016-9915-8] [Cited by in Crossref: 31] [Cited by in F6Publishing: 14] [Article Influence: 7.8] [Reference Citation Analysis]
34 Zhang J, Wang J, Wang X, Gao X, Feng D. Physical Constraint Finite Element Model for Medical Image Registration. PLoS One 2015;10:e0140567. [PMID: 26495841 DOI: 10.1371/journal.pone.0140567] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
35 Alberdi A, Aztiria A, Basarab A. On the early diagnosis of Alzheimer's Disease from multimodal signals: A survey. Artif Intell Med 2016;71:1-29. [PMID: 27506128 DOI: 10.1016/j.artmed.2016.06.003] [Cited by in Crossref: 64] [Cited by in F6Publishing: 35] [Article Influence: 10.7] [Reference Citation Analysis]
36 Hervella ÁS, Rouco J, Novo J, Ortega M. Multimodal registration of retinal images using domain-specific landmarks and vessel enhancement. Procedia Computer Science 2018;126:97-104. [DOI: 10.1016/j.procs.2018.07.213] [Cited by in Crossref: 20] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
37 Chen X. Reconstruction individual three-dimensional model of fractured long bone based on feature points. Comp Appl Math 2020;39. [DOI: 10.1007/s40314-020-01165-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
38 Tatano R, Berkels B, Deserno TM. Mesh-to-raster region-of-interest-based nonrigid registration of multimodal images. J Med Imaging (Bellingham) 2017;4:044002. [PMID: 29098167 DOI: 10.1117/1.JMI.4.4.044002] [Cited by in Crossref: 2] [Article Influence: 0.4] [Reference Citation Analysis]
39 Li X, Zhou Z, Kleiven S. An anatomically detailed and personalizable head injury model: Significance of brain and white matter tract morphological variability on strain. Biomech Model Mechanobiol 2021;20:403-31. [PMID: 33037509 DOI: 10.1007/s10237-020-01391-8] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
40 Yang X, Kwitt R, Styner M, Niethammer M. Quicksilver: Fast predictive image registration - A deep learning approach. Neuroimage 2017;158:378-96. [PMID: 28705497 DOI: 10.1016/j.neuroimage.2017.07.008] [Cited by in Crossref: 192] [Cited by in F6Publishing: 98] [Article Influence: 38.4] [Reference Citation Analysis]
41 Oliveira FPM, Faria DB, Costa DC, Castelo-branco M, Tavares JMRS. Extraction, selection and comparison of features for an effective automated computer-aided diagnosis of Parkinson’s disease based on [123I]FP-CIT SPECT images. Eur J Nucl Med Mol Imaging 2018;45:1052-62. [DOI: 10.1007/s00259-017-3918-7] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 4.6] [Reference Citation Analysis]
42 Poblador Rodriguez E, Moser P, Auno S, Eckstein K, Dymerska B, van der Kouwe A, Gruber S, Trattnig S, Bogner W. Real-time motion and retrospective coil sensitivity correction for CEST using volumetric navigators (vNavs) at 7T. Magn Reson Med 2021;85:1909-23. [PMID: 33165952 DOI: 10.1002/mrm.28555] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
43 Li Y, Zhu R, Yeh M, Qu A. Dermoscopic Image Classification with Neural Style Transfer. Journal of Computational and Graphical Statistics. [DOI: 10.1080/10618600.2022.2061496] [Reference Citation Analysis]
44 Zhang L, Lai ZW, Shah MA. Construction of 3D model of knee joint motion based on MRI image registration. Journal of Intelligent Systems 2021;31:15-26. [DOI: 10.1515/jisys-2021-0161] [Reference Citation Analysis]
45 Chen J. An improved registration method using the criterion of five-coplanar points. Optik 2016;127:390-5. [DOI: 10.1016/j.ijleo.2015.10.023] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
46 Song Z, Jiang H, Yang Q, Wang Z, Zhang G. A Registration Method Based on Contour Point Cloud for 3D Whole-Body PET and CT Images. Biomed Res Int 2017;2017:5380742. [PMID: 28316979 DOI: 10.1155/2017/5380742] [Cited by in Crossref: 3] [Article Influence: 0.6] [Reference Citation Analysis]
47 Nachmani A, Schurr R, Joskowicz L, Mezer AA. The effect of motion correction interpolation on quantitative T1 mapping with MRI. Med Image Anal 2019;52:119-27. [PMID: 30529225 DOI: 10.1016/j.media.2018.11.012] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
48 Bhushan C, Haldar JP, Choi S, Joshi AA, Shattuck DW, Leahy RM. Co-registration and distortion correction of diffusion and anatomical images based on inverse contrast normalization. Neuroimage 2015;115:269-80. [PMID: 25827811 DOI: 10.1016/j.neuroimage.2015.03.050] [Cited by in Crossref: 47] [Cited by in F6Publishing: 41] [Article Influence: 6.7] [Reference Citation Analysis]
49 Bessa S, Gouveia PF, Carvalho PH, Rodrigues C, Silva NL, Cardoso F, Cardoso JS, Oliveira HP, Cardoso MJ. 3D digital breast cancer models with multimodal fusion algorithms. Breast 2020;49:281-90. [PMID: 31986378 DOI: 10.1016/j.breast.2019.12.016] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
50 Hauler F, Furtado H, Jurisic M, Polanec SH, Spick C, Laprie A, Nestle U, Sabatini U, Birkfellner W. Automatic quantification of multi-modal rigid registration accuracy using feature detectors. Phys Med Biol 2016;61:5198-214. [DOI: 10.1088/0031-9155/61/14/5198] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
51 Lin J, Zheng Y, Jiao W, Zhao B, Zhang S, Gee J, Xiao R. Groupwise registration of sequential images from multispectral imaging (MSI) of the retina and choroid. Opt Express 2016;24:25277-90. [PMID: 27828466 DOI: 10.1364/OE.24.025277] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
52 Kanda T, Kitajima K, Suenaga Y, Konishi J, Sasaki R, Morimoto K, Saito M, Otsuki N, Nibu K, Sugimura K. Value of retrospective image fusion of 18F-FDG PET and MRI for preoperative staging of head and neck cancer: Comparison with PET/CT and contrast-enhanced neck MRI. European Journal of Radiology 2013;82:2005-10. [DOI: 10.1016/j.ejrad.2013.06.025] [Cited by in Crossref: 52] [Cited by in F6Publishing: 44] [Article Influence: 5.8] [Reference Citation Analysis]
53 Zheng Q, Wang Q, Ba X, Liu S, Nan J, Zhang S. A Medical Image Registration Method Based on Progressive Images. Comput Math Methods Med 2021;2021:4504306. [PMID: 34367316 DOI: 10.1155/2021/4504306] [Reference Citation Analysis]
54 del-Castillo E, Basañez L, Gil E. Modeling non-linear viscoelastic behavior under large deformations. International Journal of Non-Linear Mechanics 2013;57:154-62. [DOI: 10.1016/j.ijnonlinmec.2013.07.001] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 1.2] [Reference Citation Analysis]
55 Shuvaev S, Lazutkin A, Kiryanov R, Anokhin K, Enikolopov G, Koulakov AA. Spatiotemporal 3D image registration for mesoscale studies of brain development. Sci Rep 2022;12:3648. [PMID: 35256622 DOI: 10.1038/s41598-022-06871-8] [Reference Citation Analysis]
56 Hu LH, Zhang WB, Yu Y, Peng X. Accuracy of multimodal image fusion for oral and maxillofacial tumors: A revised evaluation method and its application. J Craniomaxillofac Surg 2020;48:741-50. [PMID: 32536539 DOI: 10.1016/j.jcms.2020.05.009] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
57 Jones C, Christens-barry WA, Terras M, Toth MB, Gibson A. Affine registration of multispectral images of historical documents for optimized feature recovery. Digital Scholarship in the Humanities 2019. [DOI: 10.1093/llc/fqz054] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
58 Vidal FP, Mitchell IT, Létang JM. Use of fast realistic simulations on GPU to extract CAD models from microtomographic data in the presence of strong CT artefacts. Precision Engineering 2022;74:110-25. [DOI: 10.1016/j.precisioneng.2021.10.014] [Reference Citation Analysis]
59 Ma L, Fan Z, Ning G, Zhang X, Liao H. 3D Visualization and Augmented Reality for Orthopedics. In: Zheng G, Tian W, Zhuang X, editors. Intelligent Orthopaedics. Singapore: Springer; 2018. pp. 193-205. [DOI: 10.1007/978-981-13-1396-7_16] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
60 Jiang Z, Witz J, Lecomte-grosbras P, Dequidt J, Cotin S, Rubod C, Duriez C, Brieu M. Multiorgan motion tracking in dynamic magnetic resonance imaging for evaluation of pelvic system mobility and shear strain: Jiang et al . Strain 2017;53:e12224. [DOI: 10.1111/str.12224] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
61 Wilke M, Altaye M, Holland SK; CMIND Authorship Consortium. CerebroMatic: A Versatile Toolbox for Spline-Based MRI Template Creation. Front Comput Neurosci 2017;11:5. [PMID: 28275348 DOI: 10.3389/fncom.2017.00005] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 4.8] [Reference Citation Analysis]
62 Ferretti R, Dellepiane SG. Multitemporal Volume Registration for the Analysis of Rheumatoid Arthritis Evolution in the Wrist. Int J Biomed Imaging 2017;2017:7232751. [PMID: 29201039 DOI: 10.1155/2017/7232751] [Reference Citation Analysis]
63 Sang Y, Ruan D. Scale-adaptive deep network for deformable image registration. Med Phys 2021;48:3815-26. [PMID: 33977562 DOI: 10.1002/mp.14935] [Reference Citation Analysis]
64 Monsky W, Keravnou C, Averkiou M. Contrast-enhanced ultrasound to ultrasound fusion during microwave ablation: feasibility study in a perfused porcine liver model. J Ultrasound 2019;22:323-35. [PMID: 30811016 DOI: 10.1007/s40477-019-00366-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
65 Oliveira FP, Faria DB, Tavares JM. Automated segmentation of the incus and malleus ossicles in conventional tri-dimensional computed tomography images. Proc Inst Mech Eng H 2014;228:810-8. [PMID: 25085697 DOI: 10.1177/0954411914546123] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
66 Glitzner M, de Senneville BD, Lagendijk JJW, Raaymakers BW, Crijns SPM. On-line 3 D motion estimation using low resolution MRI. Phys Med Biol 2015;60:N301-10. [DOI: 10.1088/0031-9155/60/16/n301] [Cited by in Crossref: 20] [Cited by in F6Publishing: 4] [Article Influence: 2.9] [Reference Citation Analysis]
67 Perrot R, Bourdon P, Helbert D. Confidence-based dynamic optimization model for biomedical image mosaicking. J Opt Soc Am A Opt Image Sci Vis 2019;36:C28-39. [PMID: 31873691 DOI: 10.1364/JOSAA.36.000C28] [Reference Citation Analysis]
68 Wang Z, Nguyen H, Quisberth J. Audio extraction from silent high-speed video using an optical technique. Opt Eng 2014;53:110502. [DOI: 10.1117/1.oe.53.11.110502] [Cited by in Crossref: 16] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
69 Karimi A, Rahmati SM, Razaghi R. A combination of experimental measurement, constitutive damage model, and diffusion tensor imaging to characterize the mechanical properties of the human brain. Computer Methods in Biomechanics and Biomedical Engineering 2017;20:1350-63. [DOI: 10.1080/10255842.2017.1362694] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.4] [Reference Citation Analysis]
70 Fu Y, Liu S, Li HH, Yang D. Automatic and hierarchical segmentation of the human skeleton in CT images. Phys Med Biol 2017;62:2812-33. [DOI: 10.1088/1361-6560/aa6055] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
71 Wodzinski M, Müller H. DeepHistReg: Unsupervised Deep Learning Registration Framework for Differently Stained Histology Samples. Comput Methods Programs Biomed 2021;198:105799. [PMID: 33137701 DOI: 10.1016/j.cmpb.2020.105799] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
72 Babel H, Omoumi P, Cosendey K, Stanovici J, Cadas H, Jolles BM, Favre J. An Expert-Supervised Registration Method for Multiparameter Description of the Knee Joint Using Serial Imaging. JCM 2022;11:548. [DOI: 10.3390/jcm11030548] [Reference Citation Analysis]
73 Gulo CASJ, de Arruda HF, de Araujo AF, Sementille AC, Tavares JMRS. Efficient parallelization on GPU of an image smoothing method based on a variational model. J Real-Time Image Proc 2019;16:1249-61. [DOI: 10.1007/s11554-016-0623-x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
74 Laaksonen L, Claridge E, Fält P, Hauta-kasari M, Uusitalo H, Lensu L. Comparison of image registration methods for composing spectral retinal images. Biomedical Signal Processing and Control 2017;36:234-45. [DOI: 10.1016/j.bspc.2017.03.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
75 Castillo E, Vinogradskiy Y, Castillo R. Robust HU-based CT ventilation from an integrated mass conservation formulation. Med Phys 2019;46:5036-46. [PMID: 31514235 DOI: 10.1002/mp.13817] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
76 Fei B, Nieh PT, Master VA, Zhang Y, Osunkoya AO, Schuster DM. Molecular imaging and fusion targeted biopsy of the prostate. Clin Transl Imaging 2017;5:29-43. [PMID: 28971090 DOI: 10.1007/s40336-016-0214-7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
77 Chen H, Kluijtmans L, Bakker M, Dunning H, Kang Y, van de Groes S, Sprengers AMJ, Verdonschot N. A robust and semi-automatic quantitative measurement of patellofemoral instability based on four dimensional computed tomography. Med Eng Phys 2020;78:29-38. [PMID: 32115353 DOI: 10.1016/j.medengphy.2020.01.012] [Reference Citation Analysis]
78 De Wilde D, Trachet B, Van der Donckt C, Vandeghinste B, Descamps B, Vanhove C, De Meyer GRY, Segers P. Vulnerable Plaque Detection and Quantification with Gold Particle–Enhanced Computed Tomography in Atherosclerotic Mouse Models. Mol Imaging 2015;14:7290.2015.00009. [DOI: 10.2310/7290.2015.00009] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
79 Oliveira FP, Castelo-Branco M. Computer-aided diagnosis of Parkinson's disease based on [(123)I]FP-CIT SPECT binding potential images, using the voxels-as-features approach and support vector machines. J Neural Eng 2015;12:026008. [PMID: 25710187 DOI: 10.1088/1741-2560/12/2/026008] [Cited by in Crossref: 29] [Cited by in F6Publishing: 19] [Article Influence: 4.1] [Reference Citation Analysis]
80 Cheng L, Chen S, Liu X, Xu H, Wu Y, Li M, Chen Y. Registration of Laser Scanning Point Clouds: A Review. Sensors (Basel) 2018;18:E1641. [PMID: 29883397 DOI: 10.3390/s18051641] [Cited by in Crossref: 53] [Cited by in F6Publishing: 9] [Article Influence: 13.3] [Reference Citation Analysis]
81 Bruijnen T, Stemkens B, Terhaard CHJ, Lagendijk JJW, Raaijmakers CPJ, Tijssen RHN. Intrafraction motion quantification and planning target volume margin determination of head-and-neck tumors using cine magnetic resonance imaging. Radiother Oncol 2019;130:82-8. [PMID: 30336955 DOI: 10.1016/j.radonc.2018.09.015] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
82 Amaral-silva H, Wichert-ana L, Murta L, Romualdo-suzuki L, Itikawa E, Bussato G, Azevedo-marques P. The Superiority of Tsallis Entropy over Traditional Cost Functions for Brain MRI and SPECT Registration. Entropy 2014;16:1632-51. [DOI: 10.3390/e16031632] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
83 Jafargholi Rangraz E, Coudyzer W, Maleux G, Baete K, Deroose CM, Nuyts J. Multi-modal image analysis for semi-automatic segmentation of the total liver and liver arterial perfusion territories for radioembolization. EJNMMI Res 2019;9:19. [PMID: 30788640 DOI: 10.1186/s13550-019-0485-x] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
84 Xing Q, Chitnis P, Sikdar S, Alshiek J, Shobeiri SA, Wei Q. M3VR-A multi-stage, multi-resolution, and multi-volumes-of-interest volume registration method applied to 3D endovaginal ultrasound. PLoS One 2019;14:e0224583. [PMID: 31751356 DOI: 10.1371/journal.pone.0224583] [Reference Citation Analysis]
85 Kjer HM, Fagertun J, Vera S, Gil D, González Ballester MÁ, Paulsen RR. Free-form image registration of human cochlear μ CT data using skeleton similarity as anatomical prior. Pattern Recognition Letters 2016;76:76-82. [DOI: 10.1016/j.patrec.2015.07.017] [Cited by in Crossref: 8] [Article Influence: 1.3] [Reference Citation Analysis]
86 Oster S, Fritsch T, Ulbricht A, Mohr G, Bruno G, Maierhofer C, Altenburg SJ. On the Registration of Thermographic In Situ Monitoring Data and Computed Tomography Reference Data in the Scope of Defect Prediction in Laser Powder Bed Fusion. Metals 2022;12:947. [DOI: 10.3390/met12060947] [Reference Citation Analysis]
87 Karthick S, Maniraj S. Different Medical Image Registration Techniques: A Comparative Analysis. CMIR 2019;15:911-21. [DOI: 10.2174/1573405614666180905094032] [Cited by in Crossref: 39] [Cited by in F6Publishing: 2] [Article Influence: 13.0] [Reference Citation Analysis]
88 Si L, Li N, Huang T, Du S, Dong Y, Yao Y, Ma H. Computational image translation from Mueller matrix polarimetry to bright-field microscopy. J Biophotonics 2021;:e202100242. [PMID: 34775685 DOI: 10.1002/jbio.202100242] [Reference Citation Analysis]
89 Chai Y, Xu B, Zhang K, Lepore N, Wood J. MRI restoration using edge-guided adversarial learning. IEEE Access 2020;8:83858-70. [PMID: 33747672 DOI: 10.1109/access.2020.2992204] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
90 Tan W, Thitøn W, Xiang P, Zhou H. Multi-modal brain image fusion based on multi-level edge-preserving filtering. Biomedical Signal Processing and Control 2021;64:102280. [DOI: 10.1016/j.bspc.2020.102280] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
91 Gambaruto AM. Processing the image gradient field using a topographic primal sketch approach. Int J Numer Method Biomed Eng 2015;31:e02706. [PMID: 25655837 DOI: 10.1002/cnm.2706] [Cited by in Crossref: 4] [Article Influence: 0.6] [Reference Citation Analysis]
92 Fumagalli I, Fedele M, Vergara C, Dede' L, Ippolito S, Nicolò F, Antona C, Scrofani R, Quarteroni A. An image-based computational hemodynamics study of the Systolic Anterior Motion of the mitral valve. Comput Biol Med 2020;123:103922. [PMID: 32741752 DOI: 10.1016/j.compbiomed.2020.103922] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
93 Yan WY, Easa SM, Shaker A. Polygon-based image registration: a new approach for geo-referencing historical maps. Remote Sensing Letters 2017;8:703-12. [DOI: 10.1080/2150704x.2017.1317928] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
94 Liu C, Ma J, Ma Y, Huang J. Retinal image registration via feature-guided Gaussian mixture model. J Opt Soc Am A 2016;33:1267. [DOI: 10.1364/josaa.33.001267] [Cited by in Crossref: 18] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
95 Hao L, Huang Y, Gao Y, Chen X, Wang P. Nonrigid Registration of Prostate Diffusion-Weighted MRI. J Healthc Eng 2017;2017:9296354. [PMID: 29065667 DOI: 10.1155/2017/9296354] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
96 Abdi AH, Hannam AG, Fels S. Fiducial-based fusion of 3D dental models with magnetic resonance imaging. Int J Comput Assist Radiol Surg 2018;13:1109-15. [PMID: 29663272 DOI: 10.1007/s11548-018-1767-x] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
97 Su F, Tian Y. Non-rigid Registration for Two-photon Imaging Using Triangulation and Piecewise Affine Transformation. Neuroscience 2022;491:1-12. [PMID: 35367292 DOI: 10.1016/j.neuroscience.2022.03.034] [Reference Citation Analysis]
98 Ma J, Zhao J, Ma Y, Tian J. Non-rigid visible and infrared face registration via regularized Gaussian fields criterion. Pattern Recognition 2015;48:772-84. [DOI: 10.1016/j.patcog.2014.09.005] [Cited by in Crossref: 162] [Cited by in F6Publishing: 24] [Article Influence: 23.1] [Reference Citation Analysis]
99 Tang A, Scalzo F. Similarity Metric Learning for 2D to 3D Registration of Brain Vasculature. Adv Vis Comput 2016;10072:3-12. [PMID: 30656290 DOI: 10.1007/978-3-319-50835-1_1] [Cited by in Crossref: 3] [Article Influence: 0.5] [Reference Citation Analysis]
100 Liu H, Liu S, Guo D, Zheng Y, Tang P, Dan G. Original intensity preserved inhomogeneity correction and segmentation for liver magnetic resonance imaging. Biomedical Signal Processing and Control 2019;47:231-9. [DOI: 10.1016/j.bspc.2018.08.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
101 Chetty IJ, Rosu-Bubulac M. Deformable Registration for Dose Accumulation. Semin Radiat Oncol 2019;29:198-208. [PMID: 31027637 DOI: 10.1016/j.semradonc.2019.02.002] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 10.3] [Reference Citation Analysis]
102 Derbel H, Kobeiter H, Pizaine G, Ridouani F, Luciani A, Radaelli A, Van der Sterren W, Chiaradia M, Tacher V. Accuracy of a Cone-Beam CT Virtual Parenchymal Perfusion Algorithm for Liver Cancer Targeting during Intra-arterial Therapy. J Vasc Interv Radiol 2018;29:254-261.e2. [PMID: 29191614 DOI: 10.1016/j.jvir.2017.08.023] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.2] [Reference Citation Analysis]
103 Lu Y, Gao K, Zhang T, Xu T. A novel image registration approach via combining local features and geometric invariants. PLoS One 2018;13:e0190383. [PMID: 29293595 DOI: 10.1371/journal.pone.0190383] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
104 Gao Q, Lin S, Bai P, Du M, Ni X, Ke D, Tong T. FZUImageReg: A toolbox for medical image registration and dose fusion in cervical cancer radiotherapy. PLoS One 2017;12:e0174926. [PMID: 28388623 DOI: 10.1371/journal.pone.0174926] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
105 Wei DW, Deegan AJ, Wang RK. Automatic motion correction for in vivo human skin optical coherence tomography angiography through combined rigid and nonrigid registration. J Biomed Opt 2017;22:66013. [PMID: 28636065 DOI: 10.1117/1.JBO.22.6.066013] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
106 Jones MA, Cho SH, Patterson NH, Van de Plas R, Spraggins JM, Boothby MR, Caprioli RM. Discovering New Lipidomic Features Using Cell Type Specific Fluorophore Expression to Provide Spatial and Biological Specificity in a Multimodal Workflow with MALDI Imaging Mass Spectrometry. Anal Chem 2020;92:7079-86. [PMID: 32298091 DOI: 10.1021/acs.analchem.0c00446] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
107 El Naqa I, Haider MA, Giger ML, Ten Haken RK. Artificial Intelligence: reshaping the practice of radiological sciences in the 21st century. Br J Radiol 2020;93:20190855. [PMID: 31965813 DOI: 10.1259/bjr.20190855] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 11.0] [Reference Citation Analysis]
108 Kearney V, Huang Y, Mao W, Yuan B, Tang L. Canny edge-based deformable image registration. Phys Med Biol 2017;62:966-85. [PMID: 28081014 DOI: 10.1088/1361-6560/aa5342] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
109 Tian S, Hou Z, Zuo X, Xiong W, Huang G. Automatic Registration of the Mass Spectrometry Imaging Data of Sagittal Brain Slices to the Reference Atlas. J Am Soc Mass Spectrom 2021;32:1789-97. [PMID: 34096712 DOI: 10.1021/jasms.1c00137] [Reference Citation Analysis]
110 Yadav SP, Yadav S. Image fusion using hybrid methods in multimodality medical images. Med Biol Eng Comput 2020;58:669-87. [PMID: 31993885 DOI: 10.1007/s11517-020-02136-6] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 5.5] [Reference Citation Analysis]
111 Liu C, Lu Z, Ma L, Wang L, Jin X, Si W. A modality conversion approach to MV‐DRs and KV‐DRRs registration using information bottlenecked conditional generative adversarial network. Med Phys 2019;46:4575-87. [DOI: 10.1002/mp.13770] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
112 Sang Y, Xing X, Wu Y, Ruan D. Imposing implicit feasibility constraints on deformable image registration using a statistical generative model. J Med Imaging (Bellingham) 2020;7:064005. [PMID: 33392357 DOI: 10.1117/1.JMI.7.6.064005] [Reference Citation Analysis]
113 Oliveira FPM, Tavares JMRS. Enhanced spatio-temporal alignment of plantar pressure image sequences using B-splines. Med Biol Eng Comput 2013;51:267-76. [DOI: 10.1007/s11517-012-0988-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
114 Yang S, Zhao Y, Zhang F, Liao M, Yang Z, Wang Y, Yu L. An efficient two-step multi-organ registration on abdominal CT via deep-learning based segmentation. Biomedical Signal Processing and Control 2021;70:103027. [DOI: 10.1016/j.bspc.2021.103027] [Reference Citation Analysis]
115 Ha HG, Jung K, Lee S, Lee H, Hong J. Heterogeneous Stitching of X-ray Images According to Homographic Evaluation. J Digit Imaging 2021;34:1249-63. [PMID: 34505959 DOI: 10.1007/s10278-021-00503-9] [Reference Citation Analysis]
116 Mehrabian H, Richmond L, Lu Y, Martel AL. Deformable Registration for Longitudinal Breast MRI Screening. J Digit Imaging 2018;31:718-26. [PMID: 29654424 DOI: 10.1007/s10278-018-0063-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
117 Belle A, Thiagarajan R, Soroushmehr SM, Navidi F, Beard DA, Najarian K. Big Data Analytics in Healthcare. Biomed Res Int 2015;2015:370194. [PMID: 26229957 DOI: 10.1155/2015/370194] [Cited by in Crossref: 216] [Cited by in F6Publishing: 75] [Article Influence: 30.9] [Reference Citation Analysis]
118 de Jong JJA, Christen P, Plett RM, Chapurlat R, Geusens PP, van den Bergh JPW, Müller R, van Rietbergen B. Feasibility of rigid 3D image registration of high-resolution peripheral quantitative computed tomography images of healing distal radius fractures. PLoS One 2017;12:e0179413. [PMID: 28742828 DOI: 10.1371/journal.pone.0179413] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
119 Klimont M, Oronowicz-Jaśkowiak A, Flieger M, Rzeszutek J, Juszkat R, Jończyk-Potoczna K. Deep learning for cerebral angiography segmentation from non-contrast computed tomography. PLoS One 2020;15:e0237092. [PMID: 32735633 DOI: 10.1371/journal.pone.0237092] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
120 Kashani AH, Asanad S, Chan JW, Singer MB, Zhang J, Sharifi M, Khansari MM, Abdolahi F, Shi Y, Biffi A, Chui H, Ringman JM. Past, present and future role of retinal imaging in neurodegenerative disease. Prog Retin Eye Res 2021;83:100938. [PMID: 33460813 DOI: 10.1016/j.preteyeres.2020.100938] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
121 Oláh T, Reinhard J, Gao L, Goebel LKH, Madry H. Reliable landmarks for precise topographical analyses of pathological structural changes of the ovine tibial plateau in 2-D and 3-D subspaces. Sci Rep 2018;8:75. [PMID: 29311696 DOI: 10.1038/s41598-017-18426-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
122 Gómez O, Ibáñez O, Valsecchi A, Cordón O, Kahana T. 3D-2D silhouette-based image registration for comparative radiography-based forensic identification. Pattern Recognition 2018;83:469-80. [DOI: 10.1016/j.patcog.2018.06.011] [Cited by in Crossref: 13] [Cited by in F6Publishing: 2] [Article Influence: 3.3] [Reference Citation Analysis]
123 Guan S, Wang T, Meng C, Wang J. A Review of Point Feature Based Medical Image Registration. Chin J Mech Eng 2018;31. [DOI: 10.1186/s10033-018-0275-9] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
124 Tacchella J, Roullot E, Lefort M, Cohen M, Guillevin R, Petrirena G, Delattre J, Habert M, Yeni N, Kas A, Frouin F. An efficient strategy based on an individualized selection of registration methods. Application to the coregistration of MR and SPECT images in neuro-oncology. Phys Med Biol 2014;59:6997-7011. [DOI: 10.1088/0031-9155/59/22/6997] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
125 Fu T, Li Q, Zhu J, Ai D, Huang Y, Song H, Jiang Y, Wang Y, Yang J. Sparse deformation prediction using Markove Decision Processes (MDP) for Non-rigid registration of MR image. Comput Methods Programs Biomed 2018;162:47-59. [PMID: 29903494 DOI: 10.1016/j.cmpb.2018.04.024] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
126 Leon R, Fabelo H, Ortega S, Piñeiro JF, Szolna A, Hernandez M, Espino C, O'Shanahan AJ, Carrera D, Bisshopp S, Sosa C, Marquez M, Morera J, Clavo B, Callico GM. VNIR-NIR hyperspectral imaging fusion targeting intraoperative brain cancer detection. Sci Rep 2021;11:19696. [PMID: 34608237 DOI: 10.1038/s41598-021-99220-0] [Reference Citation Analysis]
127 Han Y, Oakley E, Shafirstein G, Rabin Y, Kara LB. Reconstruction of a Deformed Tumor Based on Fiducial Marker Registration: A Computational Feasibility Study. Technol Cancer Res Treat 2018;17:1533034618766792. [PMID: 29658392 DOI: 10.1177/1533034618766792] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
128 Mustafa AA. Probabilistic binary similarity distance for quick binary image matching. IET image process 2018;12:1844-56. [DOI: 10.1049/iet-ipr.2017.1333] [Cited by in Crossref: 5] [Article Influence: 1.3] [Reference Citation Analysis]
129 Wildeboer RR, van Sloun RJG, Postema AW, Mannaerts CK, Gayet M, Beerlage HP, Wijkstra H, Mischi M. Accurate validation of ultrasound imaging of prostate cancer: a review of challenges in registration of imaging and histopathology. J Ultrasound 2018;21:197-207. [PMID: 30062440 DOI: 10.1007/s40477-018-0311-8] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
130 Zhou B, Duan X, Wei W, Ye D, Wozniak M, Damasevicius R. An Adaptive Local Descriptor Embedding Zernike Moments for Image Matching. IEEE Access 2019;7:183971-84. [DOI: 10.1109/access.2019.2960203] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 3.7] [Reference Citation Analysis]
131 Shi L, He Y, Yuan Z, Benedict S, Valicenti R, Qiu J, Rong Y. Radiomics for Response and Outcome Assessment for Non-Small Cell Lung Cancer. Technol Cancer Res Treat 2018;17:1533033818782788. [PMID: 29940810 DOI: 10.1177/1533033818782788] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 7.5] [Reference Citation Analysis]
132 Connolly L, Jamzad A, Kaufmann M, Farquharson CE, Ren K, Rudan JF, Fichtinger G, Mousavi P. Combined Mass Spectrometry and Histopathology Imaging for Perioperative Tissue Assessment in Cancer Surgery. J Imaging 2021;7:203. [PMID: 34677289 DOI: 10.3390/jimaging7100203] [Reference Citation Analysis]
133 Lv G, Teng SW, Lu G. Enhancing SIFT-based image registration performance by building and selecting highly discriminating descriptors. Pattern Recognition Letters 2016;84:156-62. [DOI: 10.1016/j.patrec.2016.09.011] [Cited by in Crossref: 20] [Cited by in F6Publishing: 1] [Article Influence: 3.3] [Reference Citation Analysis]
134 Liu F, Seipel S. Infrared-visible image registration for augmented reality-based thermographic building diagnostics. Vis in Eng 2015;3. [DOI: 10.1186/s40327-015-0028-0] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
135 Abbasi-asl R, Ghaffari A, Fatemizadeh E. Robust Registration of Medical Images in the Presence of Spatially-Varying Noise. Algorithms 2022;15:58. [DOI: 10.3390/a15020058] [Reference Citation Analysis]
136 Bashiri FS, Baghaie A, Rostami R, Yu Z, D'Souza RM. Multi-Modal Medical Image Registration with Full or Partial Data: A Manifold Learning Approach. J Imaging 2018;5:5. [PMID: 34470183 DOI: 10.3390/jimaging5010005] [Cited by in Crossref: 13] [Cited by in F6Publishing: 2] [Article Influence: 3.3] [Reference Citation Analysis]
137 Dong J, Lu K, Xue J, Dai S, Zhai R, Pan W. Accelerated nonrigid image registration using improved Levenberg–Marquardt method. Information Sciences 2018;423:66-79. [DOI: 10.1016/j.ins.2017.09.059] [Cited by in Crossref: 13] [Cited by in F6Publishing: 2] [Article Influence: 3.3] [Reference Citation Analysis]
138 Abi-Jaoudeh N, Kobeiter H, Xu S, Wood BJ. Image fusion during vascular and nonvascular image-guided procedures. Tech Vasc Interv Radiol 2013;16:168-76. [PMID: 23993079 DOI: 10.1053/j.tvir.2013.02.012] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 3.8] [Reference Citation Analysis]
139 Schmidt F, Fleming RW. Visual perception of complex shape-transforming processes. Cogn Psychol 2016;90:48-70. [PMID: 27631704 DOI: 10.1016/j.cogpsych.2016.08.002] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
140 Moghadas-dastjerdi H, Ahmadzadeh M, Karami E, Karami M, Samani A. Lung CT image based automatic technique for COPD GOLD stage assessment. Expert Systems with Applications 2017;85:194-203. [DOI: 10.1016/j.eswa.2017.05.036] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
141 Devine J, Aponte JD, Katz DC, Liu W, Lo Vercio LD, Forkert ND, Marcucio R, Percival CJ, Hallgrímsson B. A Registration and Deep Learning Approach to Automated Landmark Detection for Geometric Morphometrics. Evol Biol 2020;47:246-59. [PMID: 33583965 DOI: 10.1007/s11692-020-09508-8] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 5.5] [Reference Citation Analysis]
142 Fujiwara E, Ri Y, Wu YT, Fujimoto H, Suzuki CK. Evaluation of image matching techniques for optical fiber specklegram sensor analysis. Appl Opt 2018;57:9845. [DOI: 10.1364/ao.57.009845] [Cited by in Crossref: 12] [Article Influence: 3.0] [Reference Citation Analysis]
143 Noyel G, Thomas R, Bhakta G, Crowder A, Owens D, Boyle P. Superimposition of eye fundus images for longitudinal analysis from large public health databases. Biomed Phys Eng Express 2017;3:045015. [DOI: 10.1088/2057-1976/aa7d16] [Cited by in Crossref: 8] [Article Influence: 1.6] [Reference Citation Analysis]
144 Arce‐santana ER, Campos‐delgado DU, Reducindo I, Mejia‐rodriguez AR. Multimodal image registration based on the expectation–maximisation methodology. IET image process 2017;11:1246-53. [DOI: 10.1049/iet-ipr.2017.0234] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
145 Guryanov F, Krylov A. Fast medical image registration using bidirectional empirical mode decomposition. Signal Processing: Image Communication 2017;59:12-7. [DOI: 10.1016/j.image.2017.04.003] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 1.4] [Reference Citation Analysis]
146 João A, Gambaruto A, Sequeira A. Anisotropic gradient-based filtering for object segmentation in medical images. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 2020;8:621-30. [DOI: 10.1080/21681163.2020.1776642] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
147 Li Q, Li S, Wu Y, Guo W, Qi S, Huang G, Chen S, Liu Z, Chen X. Orientation-independent Feature Matching (OIFM) for Multimodal Retinal Image Registration. Biomedical Signal Processing and Control 2020;60:101957. [DOI: 10.1016/j.bspc.2020.101957] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
148 Wu J, Brigham KG, Simon MA, Brigham JC. An implementation of independent component analysis for 3D statistical shape analysis. Biomedical Signal Processing and Control 2014;13:345-56. [DOI: 10.1016/j.bspc.2014.06.003] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
149 Nguyen H, Liang J, Wang Y, Wang Z. Accuracy assessment of fringe projection profilometry and digital image correlation techniques for three-dimensional shape measurements. J Phys Photonics 2021;3:014004. [DOI: 10.1088/2515-7647/abcbe4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
150 Cui S, Xu M, Ma A, Zhong Y. Modality-Free Feature Detector and Descriptor for Multimodal Remote Sensing Image Registration. Remote Sensing 2020;12:2937. [DOI: 10.3390/rs12182937] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
151 Filho PPR, Moreira FDL, Xavier FGL, Gomes SL, Santos JCD, Freitas FNC, Freitas RG. New Analysis Method Application in Metallographic Images through the Construction of Mosaics Via Speeded Up Robust Features and Scale Invariant Feature Transform. Materials (Basel) 2015;8:3864-82. [PMID: 28793412 DOI: 10.3390/ma8073864] [Cited by in Crossref: 17] [Cited by in F6Publishing: 3] [Article Influence: 2.4] [Reference Citation Analysis]
152 Hong S, Wiggenhauser H, Helmerich R, Dong B, Dong P, Xing F. Long-term monitoring of reinforcement corrosion in concrete using ground penetrating radar. Corrosion Science 2017;114:123-32. [DOI: 10.1016/j.corsci.2016.11.003] [Cited by in Crossref: 51] [Cited by in F6Publishing: 12] [Article Influence: 10.2] [Reference Citation Analysis]
153 Zhao Y, Zhang S, Chen H, Zhang W, Jinglei L, Jiang X, Shen D, Liu T. A Novel Framework for Groupwise Registration of fMRI Images based on Common Functional Networks. Proc IEEE Int Symp Biomed Imaging 2017;2017:485-9. [PMID: 29276573 DOI: 10.1109/ISBI.2017.7950566] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
154 Ghaheri A, Shoar S, Naderan M, Hoseini SS. The Applications of Genetic Algorithms in Medicine. Oman Med J 2015;30:406-16. [PMID: 26676060 DOI: 10.5001/omj.2015.82] [Cited by in Crossref: 59] [Cited by in F6Publishing: 15] [Article Influence: 8.4] [Reference Citation Analysis]
155 Daniel E, Anitha J, Kamaleshwaran K, Rani I. Optimum spectrum mask based medical image fusion using Gray Wolf Optimization. Biomedical Signal Processing and Control 2017;34:36-43. [DOI: 10.1016/j.bspc.2017.01.003] [Cited by in Crossref: 58] [Cited by in F6Publishing: 9] [Article Influence: 11.6] [Reference Citation Analysis]
156 Hu W, Zhang X, Wang B, Liu J, Duan H, Dai N, Si J. Homographic Patch Feature Transform: A Robustness Registration for Gastroscopic Surgery. PLoS One 2016;11:e0153202. [PMID: 27054567 DOI: 10.1371/journal.pone.0153202] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
157 Nacereddine N, Tabbone S, Ziou D. Similarity transformation parameters recovery based on Radon transform. Application in image registration and object recognition. Pattern Recognition 2015;48:2227-40. [DOI: 10.1016/j.patcog.2015.01.017] [Cited by in Crossref: 11] [Cited by in F6Publishing: 1] [Article Influence: 1.6] [Reference Citation Analysis]
158 Jiang X, Fox T, Cordova JS, Schreibmann E. Automated Verification of IGRT-based Patient Positioning. J Appl Clin Med Phys 2015;16:484-9. [PMID: 26699548 DOI: 10.1120/jacmp.v16i6.5295] [Reference Citation Analysis]
159 Nielsen MS, Østergaard LR, Carl J. A new method to validate thoracic CT-CT deformable image registration using auto-segmented 3D anatomical landmarks. Acta Oncol 2015;54:1515-20. [PMID: 26140536 DOI: 10.3109/0284186X.2015.1061215] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
160 Nogueira MA, Abreu PH, Martins P, Machado P, Duarte H, Santos J. Image descriptors in radiology images: a systematic review. Artif Intell Rev 2017;47:531-59. [DOI: 10.1007/s10462-016-9492-8] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
161 Sommer C, Gerlich DW. Machine learning in cell biology - teaching computers to recognize phenotypes. J Cell Sci 2013;126:5529-39. [PMID: 24259662 DOI: 10.1242/jcs.123604] [Cited by in Crossref: 183] [Cited by in F6Publishing: 138] [Article Influence: 20.3] [Reference Citation Analysis]
162 Khan RA, Luo Y, Wu F. Machine learning based liver disease diagnosis: A systematic review. Neurocomputing 2022;468:492-509. [DOI: 10.1016/j.neucom.2021.08.138] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
163 Yelampalli PKR, Nayak J, Gaidhane VH. Daubechies wavelet‐based local feature descriptor for multimodal medical image registration. IET image process 2018;12:1692-702. [DOI: 10.1049/iet-ipr.2017.1305] [Cited by in Crossref: 14] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
164 Barbier M, Bottelbergs A, Nuydens R, Ebneth A, De Vos WH, Murphy R. SliceMap: an algorithm for automated brain region annotation. Bioinformatics 2018;34:718-20. [DOI: 10.1093/bioinformatics/btx658] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
165 Yanase J, Triantaphyllou E. The seven key challenges for the future of computer-aided diagnosis in medicine. International Journal of Medical Informatics 2019;129:413-22. [DOI: 10.1016/j.ijmedinf.2019.06.017] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 3.3] [Reference Citation Analysis]
166 Araki T, Ikeda N, Dey N, Chakraborty S, Saba L, Kumar D, Godia EC, Jiang X, Gupta A, Radeva P, Laird JR, Nicolaides A, Suri JS. A comparative approach of four different image registration techniques for quantitative assessment of coronary artery calcium lesions using intravascular ultrasound. Computer Methods and Programs in Biomedicine 2015;118:158-72. [DOI: 10.1016/j.cmpb.2014.11.006] [Cited by in Crossref: 37] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
167 Sánchez Y, Anvari A, Samir AE, Arellano RS, Prabhakar AM, Uppot RN. Navigational Guidance and Ablation Planning Tools for Interventional Radiology. Current Problems in Diagnostic Radiology 2017;46:225-33. [DOI: 10.1067/j.cpradiol.2016.11.002] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.2] [Reference Citation Analysis]
168 Gerard IJ, Kersten-Oertel M, Petrecca K, Sirhan D, Hall JA, Collins DL. Brain shift in neuronavigation of brain tumors: A review. Med Image Anal 2017;35:403-20. [PMID: 27585837 DOI: 10.1016/j.media.2016.08.007] [Cited by in Crossref: 108] [Cited by in F6Publishing: 72] [Article Influence: 18.0] [Reference Citation Analysis]
169 Hou B, Khanal B, Alansary A, McDonagh S, Davidson A, Rutherford M, Hajnal JV, Rueckert D, Glocker B, Kainz B. 3-D Reconstruction in Canonical Co-Ordinate Space From Arbitrarily Oriented 2-D Images. IEEE Trans Med Imaging 2018;37:1737-50. [PMID: 29994453 DOI: 10.1109/TMI.2018.2798801] [Cited by in Crossref: 18] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
170 Zou B, He Z, Zhao R, Zhu C, Liao W, Li S. Non-rigid retinal image registration using an unsupervised structure-driven regression network. Neurocomputing 2020;404:14-25. [DOI: 10.1016/j.neucom.2020.04.122] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
171 Adel SM, Vaid NR, El-harouni N, Kassem H, Zaher AR. TIP, TORQUE & ROTATIONS: How accurately do digital superimposition software packages quantify tooth movement? Prog Orthod 2022;23. [DOI: 10.1186/s40510-022-00402-x] [Reference Citation Analysis]
172 Schurink NW, van Kranen SR, Berbee M, van Elmpt W, Bakers FCH, Roberti S, van Griethuysen JJM, Min LA, Lahaye MJ, Maas M, Beets GL, Beets-Tan RGH, Lambregts DMJ. Studying local tumour heterogeneity on MRI and FDG-PET/CT to predict response to neoadjuvant chemoradiotherapy in rectal cancer. Eur Radiol 2021;31:7031-8. [PMID: 33569624 DOI: 10.1007/s00330-021-07724-0] [Reference Citation Analysis]
173 Venkatesan B, Ragupathy US. Integrated fusion framework using hybrid domain and deep neural network for multimodal medical images. Multidim Syst Sign Process. [DOI: 10.1007/s11045-021-00813-9] [Reference Citation Analysis]
174 Rannulu C, Onal S, Omran M. A graphical user interface for automated 2- or 3-dimensional image registration in dental treatment recovery planning: the DentIR application. Oral Radiol 2021;37:101-8. [PMID: 32189132 DOI: 10.1007/s11282-020-00431-4] [Reference Citation Analysis]
175 Chen Y, Zhu N, Wu Q, Wu C, Niu W, Wang Y. MRSI: A multimodal proximity remote sensing data set for environment perception in rail transit. Int J of Intelligent Sys. [DOI: 10.1002/int.22801] [Reference Citation Analysis]
176 Meng Q, Lu X, Zhang B, Gu Y, Ren G, Huang X. Research on the ROI registration algorithm of the cardiac CT image time series. Biomedical Signal Processing and Control 2018;40:71-82. [DOI: 10.1016/j.bspc.2017.09.011] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
177 Pradhan S, Patra D. Enhanced mutual information based medical image registration. IET Image Processing 2016;10:418-27. [DOI: 10.1049/iet-ipr.2015.0346] [Cited by in Crossref: 12] [Article Influence: 2.0] [Reference Citation Analysis]
178 Gong X, Yao F, Ma J, Jiang J, Lu T, Zhang Y, Zhou H. Feature Matching for Remote-Sensing Image Registration via Neighborhood Topological and Affine Consistency. Remote Sensing 2022;14:2606. [DOI: 10.3390/rs14112606] [Reference Citation Analysis]
179 Rossetti BJ, Wang F, Zhang P, Teodoro G, Brat DJ, Kong J. DYNAMIC REGISTRATION FOR GIGAPIXEL SERIAL WHOLE SLIDE IMAGES. Proc IEEE Int Symp Biomed Imaging 2017;2017:424-8. [PMID: 28804569 DOI: 10.1109/ISBI.2017.7950552] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.4] [Reference Citation Analysis]
180 Stadelmann VA, Zderic I, Baur A, Unholz C, Eberli U, Gueorguiev B. Composite time-lapse computed tomography and micro finite element simulations: A new imaging approach for characterizing cement flows and mechanical benefits of vertebroplasty. Medical Engineering & Physics 2016;38:97-107. [DOI: 10.1016/j.medengphy.2015.10.007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
181 Krumbholz K, Hardy AJ, de Boer J. Automated extraction of auditory brainstem response latencies and amplitudes by means of non-linear curve registration. Comput Methods Programs Biomed 2020;196:105595. [PMID: 32563894 DOI: 10.1016/j.cmpb.2020.105595] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
182 Gui P, Ling W, Zhang D, Xiang Y, Shao D, Ma L. Cross‐cumulative residual entropy‐based medical image registration via hybrid differential search algorithm. Int J Imaging Syst Technol 2019;29:701-10. [DOI: 10.1002/ima.22356] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
183 Gómez O, Ibáñez O, Valsecchi A, Bermejo E, Molina D, Cordón O. Performance analysis of real-coded evolutionary algorithms under a computationally expensive optimization scenario: 3D–2D Comparative Radiography. Applied Soft Computing 2020;97:106793. [DOI: 10.1016/j.asoc.2020.106793] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
184 Stoll KE, Miles JD, White JK, Punt SE, Conrad EU 3rd, Ching RP. Assessment of registration accuracy during computer-aided oncologic limb-salvage surgery. Int J Comput Assist Radiol Surg 2015;10:1469-75. [PMID: 25578991 DOI: 10.1007/s11548-014-1146-1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.9] [Reference Citation Analysis]
185 Gueziri HE, Santaguida C, Collins DL. The state-of-the-art in ultrasound-guided spine interventions. Med Image Anal 2020;65:101769. [PMID: 32668375 DOI: 10.1016/j.media.2020.101769] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
186 [DOI: 10.1117/12.2216302] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
187 da Silva GLF, Diniz PS, Ferreira JL, França JVF, Silva AC, de Paiva AC, de Cavalcanti EAA. Superpixel-based deep convolutional neural networks and active contour model for automatic prostate segmentation on 3D MRI scans. Med Biol Eng Comput 2020;58:1947-64. [DOI: 10.1007/s11517-020-02199-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
188 Lai Z, Qu X, Lu H, Peng X, Guo D, Yang Y, Guo G, Chen Z. Sparse MRI reconstruction using multi-contrast image guided graph representation. Magnetic Resonance Imaging 2017;43:95-104. [DOI: 10.1016/j.mri.2017.07.009] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
189 Nakane T, Xie H, Zhang C. Image Deformation Estimation via Multiobjective Optimization. IEEE Access 2022;10:53307-23. [DOI: 10.1109/access.2022.3174360] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
190 Kalavathi P, Surya Prasath VB. Automatic segmentation of cerebral hemispheres in MR human head scans: Automatic Segmentation of Cerebral Hemispheres in MR Human Head Scans. Int J Imaging Syst Technol 2016;26:15-23. [DOI: 10.1002/ima.22152] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
191 Miao Y, Gao J, Zhang K, Shi W, Li Y, Zhao J, Jiang Z, Yang H, He F, He W, Qin J, Chen T. Logarithmic Fuzzy Entropy Function for Similarity Measurement in Multimodal Medical Images Registration. Comput Math Methods Med 2020;2020:5487168. [PMID: 32104203 DOI: 10.1155/2020/5487168] [Reference Citation Analysis]
192 Wu J, Tang X. A Large Deformation Diffeomorphic Framework for Fast Brain Image Registration via Parallel Computing and Optimization. Neuroinformatics 2020;18:251-66. [PMID: 31701342 DOI: 10.1007/s12021-019-09438-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
193 Liu L, Tian Z, Zhang Z, Fei B. Computer-aided Detection of Prostate Cancer with MRI: Technology and Applications. Acad Radiol 2016;23:1024-46. [PMID: 27133005 DOI: 10.1016/j.acra.2016.03.010] [Cited by in Crossref: 38] [Cited by in F6Publishing: 29] [Article Influence: 6.3] [Reference Citation Analysis]
194 Wang C, Li Y, Tsuboshita Y, Sakurai T, Goto T, Yamaguchi H, Yamashita Y, Sekiguchi A, Tachimori H; Alzheimer’s Disease Neuroimaging Initiative. A high-generalizability machine learning framework for predicting the progression of Alzheimer's disease using limited data. NPJ Digit Med 2022;5:43. [PMID: 35414651 DOI: 10.1038/s41746-022-00577-x] [Reference Citation Analysis]
195 Guo Y, Wu X, Wang Z, Pei X, Xu XG. End-to-end unsupervised cycle-consistent fully convolutional network for 3D pelvic CT-MR deformable registration. J Appl Clin Med Phys 2020;21:193-200. [PMID: 32657533 DOI: 10.1002/acm2.12968] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
196 Van Ende A, Van de Casteele E, Depypere M, De Munck J, Li X, Maes F, Wevers M, Van Meerbeek B. 3D volumetric displacement and strain analysis of composite polymerization. Dental Materials 2015;31:453-61. [DOI: 10.1016/j.dental.2015.01.018] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 3.6] [Reference Citation Analysis]
197 Baghaie A, Schnell S, Bakhshinejad A, Fathi MF, D'Souza RM, Rayz VL. Curvelet Transform-based volume fusion for correcting signal loss artifacts in Time-of-Flight Magnetic Resonance Angiography data. Comput Biol Med 2018;99:142-53. [PMID: 29929053 DOI: 10.1016/j.compbiomed.2018.06.008] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
198 Boutegrabet W, Guenot D, Bouché O, Boulagnon-Rombi C, Marchal Bressenot A, Piot O, Gobinet C. Automatic Identification of Paraffin Pixels on FTIR Images Acquired on FFPE Human Samples. Anal Chem 2021;93:3750-61. [PMID: 33590761 DOI: 10.1021/acs.analchem.0c03910] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
199 Moshaei-Nezhad Y, Müller J, Oelschlägel M, Kirsch M, Tetzlaff R. Registration of IRT and visible light images in neurosurgery: analysis and comparison of automatic intensity-based registration approaches. Int J Comput Assist Radiol Surg 2022. [PMID: 35175502 DOI: 10.1007/s11548-022-02562-x] [Reference Citation Analysis]
200 S P, A ET. A Study on Robustness of Various Deformable Image Registration Algorithms on Image Reconstruction Using 4DCT Thoracic Images. J Biomed Phys Eng 2019;9:559-68. [PMID: 31750270 DOI: 10.31661/jbpe.v0i0.377] [Reference Citation Analysis]
201 Jiang Y, Zheng Y, Hou S, Chang Y, Gee J. Multimodal Image Alignment via Linear Mapping between Feature Modalities. J Healthc Eng 2017;2017:8625951. [PMID: 29065656 DOI: 10.1155/2017/8625951] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
202 Parra NA, Lu H, Li Q, Stoyanova R, Pollack A, Punnen S, Choi J, Abdalah M, Lopez C, Gage K, Park JY, Kosj Y, Pow-Sang JM, Gillies RJ, Balagurunathan Y. Predicting clinically significant prostate cancer using DCE-MRI habitat descriptors. Oncotarget 2018;9:37125-36. [PMID: 30647849 DOI: 10.18632/oncotarget.26437] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
203 Abdel-Nasser M, Moreno A, Puig D. Temporal mammogram image registration using optimized curvilinear coordinates. Comput Methods Programs Biomed 2016;127:1-14. [PMID: 27000285 DOI: 10.1016/j.cmpb.2016.01.019] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
204 Boekestijn I, Azargoshasb S, Schilling C, Navab N, Rietbergen D, van Oosterom MN. PET- and SPECT-based navigation strategies to advance procedural accuracy in interventional radiology and image-guided surgery. Q J Nucl Med Mol Imaging 2021;65:244-60. [PMID: 34105338 DOI: 10.23736/S1824-4785.21.03361-6] [Reference Citation Analysis]
205 Siddique S, Chow JCL. Artificial intelligence in radiotherapy. Rep Pract Oncol Radiother. 2020;25:656-666. [PMID: 32617080 DOI: 10.1016/j.rpor.2020.03.015] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
206 Blum A, Gillet R, Rauch A, Urbaneja A, Biouichi H, Dodin G, Germain E, Lombard C, Jaquet P, Louis M, Simon L, Gondim Teixeira P. 3D reconstructions, 4D imaging and postprocessing with CT in musculoskeletal disorders: Past, present and future. Diagn Interv Imaging 2020;101:693-705. [PMID: 33036947 DOI: 10.1016/j.diii.2020.09.008] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
207 Tian J, Qian B, Zhang S, Guo R, Zhang H, Jeannon JP, Jin R, Feng X, Zhan Y, Liu J, He P, Guo J, Li L, Jia Y, Huang F, Wang B. Three-dimensional reconstruction of laryngeal cancer with whole organ serial immunohistochemical sections. Sci Rep 2020;10:18962. [PMID: 33144690 DOI: 10.1038/s41598-020-76081-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
208 Guryanov FA, Krylov AS. Optimization Method for Cell Image Registration. Program Comput Soft 2018;44:266-70. [DOI: 10.1134/s0361768818040072] [Reference Citation Analysis]
209 Dot G, Rafflenbeul F, Salmon B. Voxel-based superimposition of Cone Beam CT scans for orthodontic and craniofacial follow-up: Overview and clinical implementation. Int Orthod 2020;18:739-48. [PMID: 33011138 DOI: 10.1016/j.ortho.2020.08.001] [Reference Citation Analysis]
210 Begum N, Badshah N, Ibrahim M, Ashfaq M, Minallah N, Atta H. On Two Algorithms for Multi-Modality Image Registration Based on Gaussian Curvature and Application to Medical Images. IEEE Access 2021;9:10586-603. [DOI: 10.1109/access.2021.3050651] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
211 Alves RS, Tavares JMRS. Computer Image Registration Techniques Applied to Nuclear Medicine Images. In: Tavares JMRS, Natal Jorge R, editors. Computational and Experimental Biomedical Sciences: Methods and Applications. Cham: Springer International Publishing; 2015. pp. 173-91. [DOI: 10.1007/978-3-319-15799-3_13] [Cited by in Crossref: 16] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
212 Gascho D, Philipp H, Flach PM, Thali MJ, Kottner S. Standardized medical image registration for radiological identification of decedents based on paranasal sinuses. J Forensic Leg Med 2018;54:96-101. [PMID: 29348074 DOI: 10.1016/j.jflm.2017.12.003] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
213 Jang H, Kim H, Kang M, Kim M, Zhang B. The demand for quantitative techniques in biomedical image informatics. Biomed Eng Lett 2014;4:319-27. [DOI: 10.1007/s13534-014-0169-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
214 Martín-Noguerol T, Paulano-Godino F, Riascos RF, Calabia-Del-Campo J, Márquez-Rivas J, Luna A. Hybrid computed tomography and magnetic resonance imaging 3D printed models for neurosurgery planning. Ann Transl Med 2019;7:684. [PMID: 31930085 DOI: 10.21037/atm.2019.10.109] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
215 Budhiraja S, Sharma R, Agrawal S, Sohi BS. Infrared and visible image fusion using modified spatial frequency-based clustered dictionary. Pattern Anal Applic 2021;24:575-89. [DOI: 10.1007/s10044-020-00919-z] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
216 Almeida SD, Santinha J, Oliveira FPM, Ip J, Lisitskaya M, Lourenço J, Uysal A, Matos C, João C, Papanikolaou N. Quantification of tumor burden in multiple myeloma by atlas-based semi-automatic segmentation of WB-DWI. Cancer Imaging 2020;20:6. [PMID: 31931880 DOI: 10.1186/s40644-020-0286-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
217 Jiang Y, Ma Y. Application of hybrid particle swarm and ant colony optimization algorithms to obtain the optimum homomorphic wavelet image fusion: Introduction. Ann Transl Med 2020;8:1482. [PMID: 33313227 DOI: 10.21037/atm-20-5997] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
218 Fischer C, Boehler Q, Nelson BJ. Using Magnetic Fields to Navigate and Simultaneously Localize Catheters in Endoluminal Environments. IEEE Robot Autom Lett 2022;7:7217-23. [DOI: 10.1109/lra.2022.3181420] [Reference Citation Analysis]
219 Albers J, Svetlove A, Alves J, Kraupner A, di Lillo F, Markus MA, Tromba G, Alves F, Dullin C. Elastic transformation of histological slices allows precise co-registration with microCT data sets for a refined virtual histology approach. Sci Rep 2021;11:10846. [PMID: 34035350 DOI: 10.1038/s41598-021-89841-w] [Reference Citation Analysis]
220 Dematteis N, Giordan D. Comparison of Digital Image Correlation Methods and the Impact of Noise in Geoscience Applications. Remote Sensing 2021;13:327. [DOI: 10.3390/rs13020327] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
221 Gillies DJ, Gardi L, De Silva T, Zhao SR, Fenster A. Real-time registration of 3D to 2D ultrasound images for image-guided prostate biopsy. Med Phys 2017;44:4708-23. [PMID: 28666058 DOI: 10.1002/mp.12441] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 2.4] [Reference Citation Analysis]
222 Zheng Y, Wang Y, Jiao W, Hou S, Ren Y, Qin M, Hou D, Luo C, Wang H, Gee J, Zhao B. Joint alignment of multispectral images via semidefinite programming. Biomed Opt Express 2017;8:890-901. [PMID: 28270991 DOI: 10.1364/BOE.8.000890] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 1.8] [Reference Citation Analysis]