BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bing C, Staruch RM, Tillander M, Köhler MO, Mougenot C, Ylihautala M, Laetsch TW, Chopra R. Drift correction for accurate PRF-shift MR thermometry during mild hyperthermia treatments with MR-HIFU. Int J Hyperthermia 2016;32:673-87. [PMID: 27210733 DOI: 10.1080/02656736.2016.1179799] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 3.6] [Reference Citation Analysis]
Number Citing Articles
1 Kim K, Diederich C, Narsinh K, Ozhinsky E. Motion-robust, multi-slice, real-time MR thermometry for MR-guided thermal therapy in abdominal organs. Int J Hyperthermia 2023;40:2151649. [PMID: 36535967 DOI: 10.1080/02656736.2022.2151649] [Reference Citation Analysis]
2 Hensen B, Hellms S, Werlein C, Jonigk D, Gronski PA, Bruesch I, Rumpel R, Wittauer E, Vondran FWR, Parker DL, Wacker F, Gutberlet M. Correction of heat-induced susceptibility changes in respiratory-triggered 2D-PRF-based thermometry for monitoring of magnetic resonance-guided hepatic microwave ablation in a human-like in vivo porcine model. International Journal of Hyperthermia 2022;39:1387-1396. [DOI: 10.1080/02656736.2022.2138987] [Reference Citation Analysis]
3 Parker DL, Payne A, Odéen H. A k-space-based method to measure and correct for temporal B0 field variations in MR temperature imaging. Magn Reson Med 2022. [PMID: 35576148 DOI: 10.1002/mrm.29275] [Reference Citation Analysis]
4 Boehm C, Goeger-Neff M, Mulder HT, Zilles B, Lindner LH, van Rhoon GC, Karampinos DC, Wu M. Susceptibility artifact correction in MR thermometry for monitoring of mild radiofrequency hyperthermia using total field inversion. Magn Reson Med 2022. [PMID: 35313384 DOI: 10.1002/mrm.29191] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Andrés D, Vappou J, Jiménez N, Camarena F. Thermal holographic patterns for ultrasound hyperthermia. Appl Phys Lett 2022;120:084102. [DOI: 10.1063/5.0081565] [Reference Citation Analysis]
6 Cheng B, Bing C, Staruch RM, Shaikh S, Wodzak Staruch M, Szczepanski D, Williams NS, Laetsch TW, Chopra R. The effect of injected dose on localized tumor accumulation and cardiac uptake of doxorubicin in a Vx2 rabbit tumor model using MR-HIFU mild hyperthermia and thermosensitive liposomes. Int J Hyperthermia 2020;37:1052-9. [PMID: 32892667 DOI: 10.1080/02656736.2020.1812737] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
7 Blackwell J, Kraśny MJ, O'Brien A, Ashkan K, Galligan J, Destrade M, Colgan N. Proton Resonance Frequency Shift Thermometry: A Review of Modern Clinical Practices. J Magn Reson Imaging 2020. [PMID: 33217099 DOI: 10.1002/jmri.27446] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
8 Algarawi M, Erkol H, Luk A, Ha S, Burcin Unlu M, Gulsen G, Nouizi F. Multi-Wavelength Photo-Magnetic Imaging System for Photothermal Therapy Guidance. Lasers Surg Med 2021;53:713-21. [PMID: 33169857 DOI: 10.1002/lsm.23350] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
9 Faridi P, Bossmann SH, Prakash P. Simulation-based design and characterization of a microwave applicator for MR-guided hyperthermia experimental studies in small animals. Biomed Phys Eng Express 2020;6:015001. [PMID: 32999735 DOI: 10.1088/2057-1976/ab36dd] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
10 Zhu L, Lam D, Pacia CP, Gach HM, Partanen A, Talcott MR, Greco SC, Zoberi I, Hallahan DE, Chen H, Altman MB. Characterization of magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU)-induced large-volume hyperthermia in deep and superficial targets in a porcine model. International Journal of Hyperthermia 2020;37:1159-73. [DOI: 10.1080/02656736.2020.1825836] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
11 Lutz NW, Bernard M. Contactless Thermometry by MRI and MRS: Advanced Methods for Thermotherapy and Biomaterials. iScience 2020;23:101561. [PMID: 32954229 DOI: 10.1016/j.isci.2020.101561] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
12 Zhu L, Partanen A, Talcott MR, Gach HM, Greco SC, Henke LE, Contreras JA, Zoberi I, Hallahan DE, Chen H, Altman MB. Feasibility and safety assessment of magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU)-mediated mild hyperthermia in pelvic targets evaluated using an in vivo porcine model. Int J Hyperthermia 2019;36:1147-59. [PMID: 31752562 DOI: 10.1080/02656736.2019.1685684] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
13 Paulides MM, Dobsicek Trefna H, Curto S, Rodrigues DB. Recent technological advancements in radiofrequency- andmicrowave-mediated hyperthermia for enhancing drug delivery. Adv Drug Deliv Rev 2020;163-164:3-18. [PMID: 32229271 DOI: 10.1016/j.addr.2020.03.004] [Cited by in Crossref: 42] [Cited by in F6Publishing: 36] [Article Influence: 14.0] [Reference Citation Analysis]
14 Eigentler TW, Winter L, Han H, Oberacker E, Kuehne A, Waiczies H, Schmitter S, Boehmert L, Prinz C, Trefna HD, Niendorf T. Wideband Self-Grounded Bow-Tie Antenna for Thermal MR. NMR Biomed 2020;33:e4274. [PMID: 32078208 DOI: 10.1002/nbm.4274] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
15 Liu X, Ellens N, Williams E, Burdette EC, Karmarkar P, Weiss CR, Kraitchman D, Bottomley PA. High-resolution intravascular MRI-guided perivascular ultrasound ablation. Magn Reson Med 2020;83:240-53. [PMID: 31402512 DOI: 10.1002/mrm.27932] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
16 Bing C, Patel P, Staruch RM, Shaikh S, Nofiele J, Wodzak Staruch M, Szczepanski D, Williams NS, Laetsch T, Chopra R. Longer heating duration increases localized doxorubicin deposition and therapeutic index in Vx2 tumors using MR-HIFU mild hyperthermia and thermosensitive liposomal doxorubicin. Int J Hyperthermia 2019;36:196-203. [PMID: 30541350 DOI: 10.1080/02656736.2018.1550815] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 5.6] [Reference Citation Analysis]
17 Wu M, Mulder HT, Zur Y, Lechner-Greite S, Menzel MI, Paulides MM, van Rhoon GC, Haase A. A phase-cycled temperature-sensitive fast spin echo sequence with conductivity bias correction for monitoring of mild RF hyperthermia with PRFS. MAGMA 2019;32:369-80. [PMID: 30515641 DOI: 10.1007/s10334-018-0725-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
18 [DOI: 10.1109/cdc.2018.8619745] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
19 Abraham CB, Loree-Spacek J, Andrew Drainville R, Pichardo S, Curiel L. Development of custom RF coils for use in a small animal platform for magnetic resonance-guided focused ultrasound hyperthermia compatible with a clinical MRI scanner. Int J Hyperthermia 2018;35:348-60. [PMID: 30295125 DOI: 10.1080/02656736.2018.1503344] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
20 Ozhinsky E, Salgaonkar VA, Diederich CJ, Rieke V. MR thermometry-guided ultrasound hyperthermia of user-defined regions using the ExAblate prostate ablation array. J Ther Ultrasound 2018;6:7. [PMID: 30123506 DOI: 10.1186/s40349-018-0115-5] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
21 Chen Y, Ge M, Ali R, Jiang H, Huang X, Qiu B. Quantitative MR thermometry based on phase-drift correction PRF shift method at 0.35 T. Biomed Eng Online 2018;17:39. [PMID: 29631576 DOI: 10.1186/s12938-018-0472-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
22 V. V. N. Kothapalli S, Altman MB, Zhu L, Partanen A, Cheng G, Gach HM, Straube W, Zoberi I, Hallahan DE, Chen H. Evaluation and selection of anatomic sites for magnetic resonance imaging-guided mild hyperthermia therapy: a healthy volunteer study. International Journal of Hyperthermia 2018;34:1381-9. [DOI: 10.1080/02656736.2017.1418536] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
23 Zhou Y. Noninvasive Thermometry in High-Intensity Focused Ultrasound Ablation. Ultrasound Quarterly 2017;33:253-60. [DOI: 10.1097/ruq.0000000000000300] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
24 Mazumder D, Vasu RM, Roy D, Kanhirodan R. A remote temperature sensor for an ultrasound hyperthermia system using the acoustic signal derived from the heating signals. Int J Hyperthermia 2018;34:122-31. [PMID: 28540819 DOI: 10.1080/02656736.2017.1324178] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
25 Scott SJ, Adams MS, Salgaonkar V, Sommer FG, Diederich CJ. Theoretical investigation of transgastric and intraductal approaches for ultrasound-based thermal therapy of the pancreas. J Ther Ultrasound 2017;5:10. [PMID: 28469915 DOI: 10.1186/s40349-017-0090-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
26 Toupin S, Bour P, Lepetit-Coiffé M, Ozenne V, Denis de Senneville B, Schneider R, Vaussy A, Chaumeil A, Cochet H, Sacher F, Jaïs P, Quesson B. Feasibility of real-time MR thermal dose mapping for predicting radiofrequency ablation outcome in the myocardium in vivo. J Cardiovasc Magn Reson 2017;19:14. [PMID: 28143574 DOI: 10.1186/s12968-017-0323-0] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 6.8] [Reference Citation Analysis]
27 Frazier N, Payne A, de Bever J, Dillon C, Panda A, Subrahmanyam N, Ghandehari H. High intensity focused ultrasound hyperthermia for enhanced macromolecular delivery. J Control Release 2016;241:186-93. [PMID: 27686583 DOI: 10.1016/j.jconrel.2016.09.030] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 3.7] [Reference Citation Analysis]