BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Harrington HR, Zimmer MH, Chamness LM, Nash V, Penn WD, Miller TF 3rd, Mukhopadhyay S, Schlebach JP. Cotranslational folding stimulates programmed ribosomal frameshifting in the alphavirus structural polyprotein. J Biol Chem 2020;295:6798-808. [PMID: 32169904 DOI: 10.1074/jbc.RA120.012706] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 8.3] [Reference Citation Analysis]
Number Citing Articles
1 Skidmore AM, Bradfute SB. The life cycle of the alphaviruses: From an antiviral perspective. Antiviral Res 2023;209:105476. [PMID: 36436722 DOI: 10.1016/j.antiviral.2022.105476] [Reference Citation Analysis]
2 Elmasri Z, Negi V, Kuhn RJ, Jose J. Requirement of a functional ion channel for Sindbis virus glycoprotein transport, CPV-II formation, and efficient virus budding. PLoS Pathog 2022;18:e1010892. [PMID: 36191050 DOI: 10.1371/journal.ppat.1010892] [Reference Citation Analysis]
3 Penn WD, Mukhopadhyay S. Abracadabra, One Becomes Two: The Importance of Context in Viral -1 Programmed Ribosomal Frameshifting. mBio 2022;:e0246821. [PMID: 35735745 DOI: 10.1128/mbio.02468-21] [Reference Citation Analysis]
4 Riegger RJ, Caliskan N. Thinking Outside the Frame: Impacting Genomes Capacity by Programmed Ribosomal Frameshifting. Front Mol Biosci 2022;9:842261. [DOI: 10.3389/fmolb.2022.842261] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Prescott L. Alphavirus nsP2 protease structure and cleavage prediction: Possible relevance to the pathogenesis of viral arthritis.. [DOI: 10.1101/2022.01.22.477317] [Reference Citation Analysis]
6 Harris NJ, Reading E, Booth PJ. Cell-Free Synthesis Strategies to Probe Co-translational Folding of Proteins Within Lipid Membranes. Cell-Free Gene Expression 2022. [DOI: 10.1007/978-1-0716-1998-8_17] [Reference Citation Analysis]
7 Carmody PJ, Zimmer MH, Kuntz CP, Harrington HR, Duckworth KE, Penn WD, Mukhopadhyay S, Miller TF, Schlebach JP. Coordination of -1 programmed ribosomal frameshifting by transcript and nascent chain features revealed by deep mutational scanning. Nucleic Acids Res 2021;49:12943-54. [PMID: 34871407 DOI: 10.1093/nar/gkab1172] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Leininger SE, Rodriguez J, Vu QV, Jiang Y, Li MS, Deutsch C, O'Brien EP. Ribosome Elongation Kinetics of Consecutively Charged Residues Are Coupled to Electrostatic Force. Biochemistry 2021;60:3223-35. [PMID: 34652913 DOI: 10.1021/acs.biochem.1c00507] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
9 Ren SC, Qazi SA, Towell B, Wang JC, Mukhopadhyay S. Mutations at the Alphavirus E2/E1 inter-dimer interface have host-specific phenotypes.. [DOI: 10.1101/2021.09.02.458808] [Reference Citation Analysis]
10 Roman C, Lewicka A, Koirala D, Li NS, Piccirilli JA. The SARS-CoV-2 Programmed -1 Ribosomal Frameshifting Element Crystal Structure Solved to 2.09 Å Using Chaperone-Assisted RNA Crystallography. ACS Chem Biol 2021;16:1469-81. [PMID: 34328734 DOI: 10.1021/acschembio.1c00324] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
11 Leininger SE, Rodriguez J, Vu QV, Jiang Y, Li MS, Deutsch C, O’brien EP. Ribosome elongation kinetics of consecutively charged residues are coupled to electrostatic force.. [DOI: 10.1101/2021.08.04.455055] [Reference Citation Analysis]
12 Atkins JF, O'Connor KM, Bhatt PR, Loughran G. From Recoding to Peptides for MHC Class I Immune Display: Enriching Viral Expression, Virus Vulnerability and Virus Evasion. Viruses 2021;13:1251. [PMID: 34199077 DOI: 10.3390/v13071251] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Napthine S, Hill CH, Nugent HCM, Brierley I. Modulation of Viral Programmed Ribosomal Frameshifting and Stop Codon Readthrough by the Host Restriction Factor Shiftless. Viruses 2021;13:1230. [PMID: 34202160 DOI: 10.3390/v13071230] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
14 Jiang Y, O'Brien EP. Mechanical Forces Have a Range of Effects on the Rate of Ribosome Catalyzed Peptidyl Transfer Depending on Direction. J Phys Chem B 2021;125:7128-36. [PMID: 34166592 DOI: 10.1021/acs.jpcb.1c02263] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
15 Chang KC, Wen JD. Programmed -1 ribosomal frameshifting from the perspective of the conformational dynamics of mRNA and ribosomes. Comput Struct Biotechnol J 2021;19:3580-8. [PMID: 34257837 DOI: 10.1016/j.csbj.2021.06.015] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
16 Zimmer MH, Niesen MJM, Miller TF 3rd. Force transduction creates long-ranged coupling in ribosomes stalled by arrest peptides. Biophys J 2021;120:2425-35. [PMID: 33932440 DOI: 10.1016/j.bpj.2021.03.041] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
17 Das PK, Kielian M. Molecular and Structural Insights into the Life Cycle of Rubella Virus. J Virol 2021;95:JVI. [PMID: 33627388 DOI: 10.1128/JVI.02349-20] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
18 Carmody PJ, Zimmer MH, Kuntz CP, Harrington HR, Duckworth KE, Penn WD, Mukhopadhyay S, Miller TF, Schlebach JP. Coordination of -1 Programmed Ribosomal Frameshifting by Transcript and Nascent Chain Features Revealed by Deep Mutational Scanning.. [DOI: 10.1101/2021.03.11.435011] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
19 Nicolaus F, Metola A, Mermans D, Liljenström A, Krč A, Abdullahi SM, Zimmer M, Miller Iii TF, von Heijne G. Residue-by-residue analysis of cotranslational membrane protein integration in vivo. Elife 2021;10:e64302. [PMID: 33554862 DOI: 10.7554/eLife.64302] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
20 Leininger SE, Deutsch C, O'Brien EP. Forcing the ribosome to change its message. J Biol Chem 2020;295:6809-10. [PMID: 32414911 DOI: 10.1074/jbc.H120.013747] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
21 Nicolaus F, Metola A, Mermans D, Liljenström A, Krč A, Abdullahi SM, Zimmer M, Miller TF, von Heijne G. Residue-by-residue analysis of cotranslational membrane protein integration in vivo.. [DOI: 10.1101/2020.09.27.315283] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
22 Button JM, Qazi SA, Wang JC, Mukhopadhyay S. Revisiting an old friend: new findings in alphavirus structure and assembly. Curr Opin Virol 2020;45:25-33. [PMID: 32683295 DOI: 10.1016/j.coviro.2020.06.005] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
23 Penn WD, Harrington HR, Schlebach JP, Mukhopadhyay S. Regulators of Viral Frameshifting: More Than RNA Influences Translation Events. Annu Rev Virol 2020;7:219-38. [PMID: 32600156 DOI: 10.1146/annurev-virology-012120-101548] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
24 Niesen MJM, Zimmer MH, Miller TF 3rd. Dynamics of Co-translational Membrane Protein Integration and Translocation via the Sec Translocon. J Am Chem Soc 2020;142:5449-60. [PMID: 32130863 DOI: 10.1021/jacs.9b07820] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]