BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hoeferlin LA, Fekry B, Ogretmen B, Krupenko SA, Krupenko NI. Folate stress induces apoptosis via p53-dependent de novo ceramide synthesis and up-regulation of ceramide synthase 6. J Biol Chem 2013;288:12880-90. [PMID: 23519469 DOI: 10.1074/jbc.M113.461798] [Cited by in Crossref: 50] [Cited by in F6Publishing: 29] [Article Influence: 5.6] [Reference Citation Analysis]
Number Citing Articles
1 Krupenko NI, Sharma J, Fogle HM, Pediaditakis P, Strickland KC, Du X, Helke KL, Sumner S, Krupenko SA. Knockout of Putative Tumor Suppressor Aldh1l1 in Mice Reprograms Metabolism to Accelerate Growth of Tumors in a Diethylnitrosamine (DEN) Model of Liver Carcinogenesis. Cancers (Basel) 2021;13:3219. [PMID: 34203215 DOI: 10.3390/cancers13133219] [Reference Citation Analysis]
2 Jensen SA, Calvert AE, Volpert G, Kouri FM, Hurley LA, Luciano JP, Wu Y, Chalastanis A, Futerman AH, Stegh AH. Bcl2L13 is a ceramide synthase inhibitor in glioblastoma. Proc Natl Acad Sci U S A 2014;111:5682-7. [PMID: 24706805 DOI: 10.1073/pnas.1316700111] [Cited by in Crossref: 51] [Cited by in F6Publishing: 51] [Article Influence: 6.4] [Reference Citation Analysis]
3 Fekry B, Jeffries KA, Esmaeilniakooshkghazi A, Szulc ZM, Knagge KJ, Kirchner DR, Horita DA, Krupenko SA, Krupenko NI. C16-ceramide is a natural regulatory ligand of p53 in cellular stress response. Nat Commun 2018;9:4149. [PMID: 30297838 DOI: 10.1038/s41467-018-06650-y] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 9.8] [Reference Citation Analysis]
4 Carper MB, Denvir J, Boskovic G, Primerano DA, Claudio PP. RGS16, a novel p53 and pRb cross-talk candidate inhibits migration and invasion of pancreatic cancer cells. Genes Cancer 2014;5:420-35. [PMID: 25568667 DOI: 10.18632/genesandcancer.43] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
5 Fekry B, Jeffries KA, Esmaeilniakooshkghazi A, Ogretmen B, Krupenko SA, Krupenko NI. CerS6 Is a Novel Transcriptional Target of p53 Protein Activated by Non-genotoxic Stress. J Biol Chem 2016;291:16586-96. [PMID: 27302066 DOI: 10.1074/jbc.M116.716902] [Cited by in Crossref: 28] [Cited by in F6Publishing: 19] [Article Influence: 4.7] [Reference Citation Analysis]
6 Krupenko SA, Krupenko NI. Loss of ALDH1L1 folate enzyme confers a selective metabolic advantage for tumor progression. Chem Biol Interact 2019;302:149-55. [PMID: 30794800 DOI: 10.1016/j.cbi.2019.02.013] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
7 Guo J, Zhang T, Gu J, Cai K, Deng X, Chen K, Huang K, Wang G, Li H, Wang J. Oleic Acid Protects against Hepatic Ischemia and Reperfusion Injury in Mice by Inhibiting AKT/mTOR Pathways. Oxid Med Cell Longev 2019;2019:4842592. [PMID: 31915509 DOI: 10.1155/2019/4842592] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
8 Horita DA, Krupenko SA. Modeling of interactions between functional domains of ALDH1L1. Chem Biol Interact 2017;276:23-30. [PMID: 28414156 DOI: 10.1016/j.cbi.2017.04.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
9 Reichel M, Rhein C, Hofmann LM, Monti J, Japtok L, Langgartner D, Füchsl AM, Kleuser B, Gulbins E, Hellerbrand C, Reber SO, Kornhuber J. Chronic Psychosocial Stress in Mice Is Associated With Increased Acid Sphingomyelinase Activity in Liver and Serum and With Hepatic C16:0-Ceramide Accumulation. Front Psychiatry 2018;9:496. [PMID: 30386262 DOI: 10.3389/fpsyt.2018.00496] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
10 Elhady SS, Habib ES, Abdelhameed RFA, Goda MS, Hazem RM, Mehanna ET, Helal MA, Hosny KM, Diri RM, Hassanean HA, Ibrahim AK, Eltamany EE, Abdelmohsen UR, Ahmed SA. Anticancer Effects of New Ceramides Isolated from the Red Sea Red Algae Hypnea musciformis in a Model of Ehrlich Ascites Carcinoma: LC-HRMS Analysis Profile and Molecular Modeling. Mar Drugs 2022;20:63. [PMID: 35049918 DOI: 10.3390/md20010063] [Reference Citation Analysis]
11 Shamseddine AA, Clarke CJ, Carroll B, Airola MV, Mohammed S, Rella A, Obeid LM, Hannun YA. P53-dependent upregulation of neutral sphingomyelinase-2: role in doxorubicin-induced growth arrest. Cell Death Dis 2015;6:e1947. [PMID: 26512957 DOI: 10.1038/cddis.2015.268] [Cited by in Crossref: 40] [Cited by in F6Publishing: 38] [Article Influence: 5.7] [Reference Citation Analysis]
12 Hernández-Corbacho MJ, Canals D, Adada MM, Liu M, Senkal CE, Yi JK, Mao C, Luberto C, Hannun YA, Obeid LM. Tumor Necrosis Factor-α (TNFα)-induced Ceramide Generation via Ceramide Synthases Regulates Loss of Focal Adhesion Kinase (FAK) and Programmed Cell Death. J Biol Chem 2015;290:25356-73. [PMID: 26318452 DOI: 10.1074/jbc.M115.658658] [Cited by in Crossref: 35] [Cited by in F6Publishing: 28] [Article Influence: 5.0] [Reference Citation Analysis]
13 Machala M, Procházková J, Hofmanová J, Králiková L, Slavík J, Tylichová Z, Ovesná P, Kozubík A, Vondráček J. Colon Cancer and Perturbations of the Sphingolipid Metabolism. Int J Mol Sci 2019;20:E6051. [PMID: 31801289 DOI: 10.3390/ijms20236051] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
14 Booth L, Roberts JL, Poklepovic A, Dent P. [pemetrexed + sildenafil], via autophagy-dependent HDAC downregulation, enhances the immunotherapy response of NSCLC cells. Cancer Biol Ther 2017;18:705-14. [PMID: 28812434 DOI: 10.1080/15384047.2017.1362511] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 7.3] [Reference Citation Analysis]
15 Jackson RA, Nguyen ML, Barrett AN, Tan YY, Choolani MA, Chen ES. Synthetic combinations of missense polymorphic genetic changes underlying Down syndrome susceptibility. Cell Mol Life Sci 2016;73:4001-17. [PMID: 27245382 DOI: 10.1007/s00018-016-2276-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
16 Barron KA, Jeffries KA, Krupenko NI. Sphingolipids and the link between alcohol and cancer. Chem Biol Interact 2020;322:109058. [PMID: 32171848 DOI: 10.1016/j.cbi.2020.109058] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
17 Francis M, Abou Daher A, Azzam P, Mroueh M, Zeidan YH. Modulation of DNA Damage Response by Sphingolipid Signaling: An Interplay that Shapes Cell Fate. Int J Mol Sci 2020;21:E4481. [PMID: 32599736 DOI: 10.3390/ijms21124481] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
18 Sharma J, Krupenko SA. Folate pathways mediating the effects of ethanol in tumorigenesis. Chem Biol Interact 2020;324:109091. [PMID: 32283069 DOI: 10.1016/j.cbi.2020.109091] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
19 Lee SC, Lin KH, Balogh A, Norman DD, Bavaria M, Kuo B, Yue J, Balázs L, Benyó Z, Tigyi G. Dysregulation of lysophospholipid signaling by p53 in malignant cells and the tumor microenvironment. Cell Signal 2021;78:109850. [PMID: 33253914 DOI: 10.1016/j.cellsig.2020.109850] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
20 Bae M, Bandaru VV, Patel N, Haughey NJ. Ceramide metabolism analysis in a model of binge drinking reveals both neuroprotective and toxic effects of ethanol. J Neurochem 2014;131:645-54. [PMID: 25060779 DOI: 10.1111/jnc.12834] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
21 Barron K, Ogretmen B, Krupenko N. Dietary Folic Acid Alters Metabolism of Multiple Vitamins in a CerS6- and Sex-Dependent Manner. Front Nutr 2021;8:758403. [PMID: 34805245 DOI: 10.3389/fnut.2021.758403] [Reference Citation Analysis]
22 Voelkel-Johnson C. Sphingolipids in embryonic development, cell cycle regulation, and stemness - Implications for polyploidy in tumors. Semin Cancer Biol 2021:S1044-579X(21)00006-7. [PMID: 33429049 DOI: 10.1016/j.semcancer.2020.12.027] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
23 Matsuura K, Canfield K, Feng W, Kurokawa M. Metabolic Regulation of Apoptosis in Cancer. Int Rev Cell Mol Biol. 2016;327:43-87. [PMID: 27692180 DOI: 10.1016/bs.ircmb.2016.06.006] [Cited by in Crossref: 64] [Cited by in F6Publishing: 62] [Article Influence: 10.7] [Reference Citation Analysis]
24 Fekry B, Esmaeilniakooshkghazi A, Krupenko SA, Krupenko NI. Ceramide Synthase 6 Is a Novel Target of Methotrexate Mediating Its Antiproliferative Effect in a p53-Dependent Manner. PLoS One 2016;11:e0146618. [PMID: 26783755 DOI: 10.1371/journal.pone.0146618] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 5.0] [Reference Citation Analysis]
25 Jęśko H, Stępień A, Lukiw WJ, Strosznajder RP. The Cross-Talk Between Sphingolipids and Insulin-Like Growth Factor Signaling: Significance for Aging and Neurodegeneration. Mol Neurobiol 2019;56:3501-21. [PMID: 30140974 DOI: 10.1007/s12035-018-1286-3] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 8.0] [Reference Citation Analysis]
26 Holmes RS, Barron KA, Krupenko NI. Ceramide Synthase 6: Comparative Analysis, Phylogeny and Evolution. Biomolecules 2018;8:E111. [PMID: 30297675 DOI: 10.3390/biom8040111] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
27 Jeffries KA, Krupenko NI. Ceramide Signaling and p53 Pathways. Adv Cancer Res 2018;140:191-215. [PMID: 30060809 DOI: 10.1016/bs.acr.2018.04.011] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 6.5] [Reference Citation Analysis]
28 Li M, Hou T, Gao T, Lu X, Yang Q, Zhu Q, Li Z, Liu C, Mu G, Liu G, Bao Y, Wen H, Wang L, Wang H, Zhao Y, Gu W, Yang Y, Zhu WG. p53 cooperates with SIRT6 to regulate cardiolipin de novo biosynthesis. Cell Death Dis 2018;9:941. [PMID: 30237540 DOI: 10.1038/s41419-018-0984-0] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
29 Lacroix M, Riscal R, Arena G, Linares LK, Le Cam L. Metabolic functions of the tumor suppressor p53: Implications in normal physiology, metabolic disorders, and cancer. Mol Metab 2020;33:2-22. [PMID: 31685430 DOI: 10.1016/j.molmet.2019.10.002] [Cited by in Crossref: 53] [Cited by in F6Publishing: 52] [Article Influence: 17.7] [Reference Citation Analysis]
30 Zhu G, Liao X, Han C, Liu X, Yu L, Qin W, Lu S, Su H, Chen Z, Liu Z, Liang Y, Huang J, Yu T, Yang C, Huang K, Shang L, Ye X, Li L, Qin X, Xiao K, Peng M, Peng T. ALDH1L1 variant rs2276724 and mRNA expression predict post-operative clinical outcomes and are associated with TP53 expression in HBV-related hepatocellular carcinoma. Oncol Rep 2017;38:1451-63. [PMID: 28714006 DOI: 10.3892/or.2017.5822] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
31 Lu P, White-Gilbertson S, Nganga R, Kester M, Voelkel-Johnson C. Expression of the SNAI2 transcriptional repressor is regulated by C16-ceramide. Cancer Biol Ther 2019;20:922-30. [PMID: 30836822 DOI: 10.1080/15384047.2019.1579962] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]