BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ke R, Zitzmann C, Ho DD, Ribeiro RM, Perelson AS. In vivo kinetics of SARS-CoV-2 infection and its relationship with a person's infectiousness. Proc Natl Acad Sci U S A 2021;118. [PMID: 34857628 DOI: 10.1073/pnas.2111477118] [Cited by in Crossref: 52] [Cited by in F6Publishing: 48] [Article Influence: 26.0] [Reference Citation Analysis]
Number Citing Articles
1 Phan T, Brozak S, Pell B, Gitter A, Xiao A, Mena KD, Kuang Y, Wu F. A simple SEIR-V model to estimate COVID-19 prevalence and predict SARS-CoV-2 transmission using wastewater-based surveillance data. Sci Total Environ 2023;857:159326. [PMID: 36220466 DOI: 10.1016/j.scitotenv.2022.159326] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Hattaf K, El Karimi MI, Mohsen AA, Hajhouji Z, El Younoussi M, Yousfi N. Mathematical Modeling and Analysis of the Dynamics of RNA Viruses in Presence of Immunity and Treatment: A Case Study of SARS-CoV-2. Vaccines 2023;11:201. [DOI: 10.3390/vaccines11020201] [Reference Citation Analysis]
3 Gazeau S, Deng X, Ooi HK, Mostefai F, Hussin J, Heffernan J, Jenner AL, Craig M. The race to understand immunopathology in COVID-19: perspectives on the impact of quantitative approaches to understand within-host interactions. Immunoinformatics (Amst) 2023;:100021. [PMID: 36643886 DOI: 10.1016/j.immuno.2023.100021] [Reference Citation Analysis]
4 Xue Y, Chen D, Smith SR, Ruan X, Tang S. Coupling the Within-Host Process and Between-Host Transmission of COVID-19 Suggests Vaccination and School Closures are Critical. Bull Math Biol 2022;85:6. [PMID: 36536179 DOI: 10.1007/s11538-022-01104-5] [Reference Citation Analysis]
5 Song H, Yuan Z, Liu S, Jin Z, Sun G. Mathematical modeling the dynamics of SARS-CoV-2 infection with antibody-dependent enhancement. Nonlinear Dyn 2023;111:2943-58. [PMID: 36246668 DOI: 10.1007/s11071-022-07939-w] [Reference Citation Analysis]
6 Al-Darabsah I, Liao KL, Portet S. A simple in-host model for COVID-19 with treatments: model prediction and calibration. J Math Biol 2023;86:20. [PMID: 36625956 DOI: 10.1007/s00285-022-01849-6] [Reference Citation Analysis]
7 Lyu X, Luo Z, Shao L, Awbi H, Lo Piano S. Safe CO(2) threshold limits for indoor long-range airborne transmission control of COVID-19. Build Environ 2022;:109967. [PMID: 36597420 DOI: 10.1016/j.buildenv.2022.109967] [Reference Citation Analysis]
8 Aristotelous AC, Chen A, Forest MG. A hybrid discrete-continuum model of immune responses to SARS-CoV-2 infection in the lung alveolar region, with a focus on interferon induced innate response. J Theor Biol 2022;555:111293. [PMID: 36208668 DOI: 10.1016/j.jtbi.2022.111293] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Elaiw AM, Shflot AS, Hobiny AD. Global Stability of Delayed SARS-CoV-2 and HTLV-I Coinfection Models within a Host. Mathematics 2022;10:4756. [DOI: 10.3390/math10244756] [Reference Citation Analysis]
10 Churkin A, Barash D. Mathematical and Computational Biology of Viruses at the Molecular or Cellular Levels. Mathematics 2022;10:4446. [DOI: 10.3390/math10234446] [Reference Citation Analysis]
11 Elaiw AM, Alsulami RS, Hobiny AD. Modeling and Stability Analysis of Within-Host IAV/SARS-CoV-2 Coinfection with Antibody Immunity. Mathematics 2022;10:4382. [DOI: 10.3390/math10224382] [Reference Citation Analysis]
12 Hadjichrysanthou C, Beukenhorst AL, Koch CM, Alter G, Goudsmit J, Anderson RM, de Wolf F. Exploring the Role of Antiviral Nasal Sprays in the Control of Emerging Respiratory Infections in the Community. Infect Dis Ther 2022. [DOI: 10.1007/s40121-022-00710-z] [Reference Citation Analysis]
13 Chen A, Wessler T, Gregory Forest M. Antibody protection from SARS-CoV-2 respiratory tract exposure and infection. J Theor Biol 2022;:111334. [PMID: 36306828 DOI: 10.1016/j.jtbi.2022.111334] [Reference Citation Analysis]
14 Desikan R, Linderman SL, Davis C, Zarnitsyna VI, Ahmed H, Antia R. Vaccine models predict rules for updating vaccines against evolving pathogens such as SARS-CoV-2 and influenza in the context of pre-existing immunity. Front Immunol 2022;13:985478. [DOI: 10.3389/fimmu.2022.985478] [Reference Citation Analysis]
15 Kuga K. Epidemic dynamics for time-dependent transmission rate based on viral load dynamics: multi infection stage EBCM approach. J Stat Mech 2022;2022:103501. [DOI: 10.1088/1742-5468/ac8e59] [Reference Citation Analysis]
16 Chaturvedi S, Beutler N, Vasen G, Pablo M, Chen X, Calia G, Buie L, Rodick R, Smith D, Rogers T, Weinberger LS. A single-administration therapeutic interfering particle reduces SARS-CoV-2 viral shedding and pathogenesis in hamsters. Proc Natl Acad Sci U S A 2022;119:e2204624119. [PMID: 36074824 DOI: 10.1073/pnas.2204624119] [Reference Citation Analysis]
17 Grebennikov D, Karsonova A, Loguinova M, Casella V, Meyerhans A, Bocharov G. Predicting the Kinetic Coordination of Immune Response Dynamics in SARS-CoV-2 Infection: Implications for Disease Pathogenesis. Mathematics 2022;10:3154. [DOI: 10.3390/math10173154] [Reference Citation Analysis]
18 Ciupe SM, Tuncer N. Identifiability of parameters in mathematical models of SARS-CoV-2 infections in humans. Sci Rep 2022;12:14637. [PMID: 36030320 DOI: 10.1038/s41598-022-18683-x] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
19 Sanche S, Cassidy T, Chu P, Perelson AS, Ribeiro RM, Ke R. A simple model of COVID-19 explains disease severity and the effect of treatments. Sci Rep 2022;12. [DOI: 10.1038/s41598-022-18244-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Mohammadi M, Antoine D, Vitt M, Dickie JM, Sultana Jyoti S, Wall JG, Johnson PA, Wawrousek KE. A fast, ultrasensitive SERS immunoassay to detect SARS-CoV-2 in saliva. Analytica Chimica Acta 2022. [DOI: 10.1016/j.aca.2022.340290] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Phan T, Brozak S, Pell B, Gitter A, Mena KD, Kuang Y, Wu F. A simple SEIR-V model to estimate COVID-19 prevalence and predict SARS-CoV-2 transmission using wastewater-based surveillance data. medRxiv 2022:2022. [PMID: 35898336 DOI: 10.1101/2022.07.17.22277721] [Reference Citation Analysis]
22 Leekha A, Saeedi A, Sefat SR, Kumar M, Martinez-paniagua M, Damian A, Kulkarni R, Rezvan A, Mosoumi S, Liu X, Cooper LJ, Sebastian M, Hurst B, Varadarajan N. Ending transmission of SARS-CoV-2: sterilizing immunity using an intranasal subunit vaccine.. [DOI: 10.1101/2022.07.14.500068] [Reference Citation Analysis]
23 Koelle K, Lin J, Zhu H, Antia R, Lowen AC, Weissman D. Masks Do No More Than Prevent Transmission: Theory and Data Undermine the Variolation Hypothesis.. [DOI: 10.1101/2022.06.28.22277028] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
24 Watson JA, Kissler SM, Day NPJ, Grad YH, White NJ. Characterizing SARS-CoV-2 Viral Clearance Kinetics to Improve the Design of Antiviral Pharmacometric Studies. Antimicrob Agents Chemother 2022;:e0019222. [PMID: 35736134 DOI: 10.1128/aac.00192-22] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
25 Prentiss M, Chu A, Berggren KK. Finding the infectious dose for COVID-19 by applying an airborne-transmission model to superspreader events. PLoS One 2022;17:e0265816. [PMID: 35679278 DOI: 10.1371/journal.pone.0265816] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
26 Desikan R, Linderman SL, Davis C, Zarnitsyna V, Ahmed H, Antia R. Modeling suggests that multiple immunizations or infections will reveal the benefits of updating SARS-CoV-2 vaccines.. [DOI: 10.1101/2022.05.21.492928] [Reference Citation Analysis]
27 Elaiw A, Alsaedi A, Hobiny A. Global stability of a delayed SARS-CoV-2 reactivation model with logistic growth, antibody immunity and general incidence rate. Alexandria Engineering Journal 2022. [DOI: 10.1016/j.aej.2022.05.034] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Ke R, Martinez PP, Smith RL, Gibson LL, Mirza A, Conte M, Gallagher N, Luo CH, Jarrett J, Zhou R, Conte A, Liu T, Farjo M, Walden KKO, Rendon G, Fields CJ, Wang L, Fredrickson R, Edmonson DC, Baughman ME, Chiu KK, Choi H, Scardina KR, Bradley S, Gloss SL, Reinhart C, Yedetore J, Quicksall J, Owens AN, Broach J, Barton B, Lazar P, Heetderks WJ, Robinson ML, Mostafa HH, Manabe YC, Pekosz A, McManus DD, Brooke CB. Daily longitudinal sampling of SARS-CoV-2 infection reveals substantial heterogeneity in infectiousness. Nat Microbiol 2022;7:640-52. [PMID: 35484231 DOI: 10.1038/s41564-022-01105-z] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 28.0] [Reference Citation Analysis]
29 Ciupe SM, Tuncer N. Identifiability of parameters in mathematical models of SARS-CoV-2 infections in humans.. [DOI: 10.1101/2022.04.26.22274345] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Carruthers J, Xu J, Finnie T, Hall I. A within-host model of SARS-CoV-2 infection.. [DOI: 10.1101/2022.04.22.22274137] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
31 Leekha A, Saeedi A, Kumar M, Sefat SR, Martinez-paniagua M, Fathi M, Kulkarni R, Biswas S, Tsitoura D, Liu X, Cooper LJ, Sebastian M, Hurst BL, Varadarajan N. An intranasal nanoparticle STING agonist has broad protective immunity against respiratory viruses and variants.. [DOI: 10.1101/2022.04.18.488695] [Reference Citation Analysis]
32 Killingley B, Mann AJ, Kalinova M, Boyers A, Goonawardane N, Zhou J, Lindsell K, Hare SS, Brown J, Frise R, Smith E, Hopkins C, Noulin N, Löndt B, Wilkinson T, Harden S, McShane H, Baillet M, Gilbert A, Jacobs M, Charman C, Mande P, Nguyen-Van-Tam JS, Semple MG, Read RC, Ferguson NM, Openshaw PJ, Rapeport G, Barclay WS, Catchpole AP, Chiu C. Safety, tolerability and viral kinetics during SARS-CoV-2 human challenge in young adults. Nat Med 2022. [PMID: 35361992 DOI: 10.1038/s41591-022-01780-9] [Cited by in Crossref: 47] [Cited by in F6Publishing: 63] [Article Influence: 47.0] [Reference Citation Analysis]
33 Lobinska G, Pilpel Y, Nowak MA. Evolutionary safety of death by mutagenesis.. [DOI: 10.1101/2022.03.10.483790] [Reference Citation Analysis]
34 Heitzman-breen N, Ciupe SM. Modeling within-host and aerosol dynamics of SARS-CoV-2: the relationship with infectiousness.. [DOI: 10.1101/2022.03.08.483569] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
35 Padmanabhan P, Dixit NM. Modelling how the altered usage of cell entry pathways by the SARS-CoV-2 Omicron variant may affect the efficacy and synergy of TMPRSS2 and Cathepsin B/L inhibitors.. [DOI: 10.1101/2022.01.13.476267] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
36 Hay JA, Kissler SM, Fauver JR, Mack C, Tai CG, Samant RM, Connolly S, Anderson DJ, Khullar G, Mackay M, Patel M, Kelly S, Manhertz A, Eiter I, Salgado D, Baker T, Howard B, Dudley JT, Mason CE, Nair M, Huang Y, Difiori J, Ho DD, Grubaugh ND, Grad YH. Quantifying the impact of immune history and variant on SARS-CoV-2 viral kinetics and infection rebound: a retrospective cohort study.. [DOI: 10.1101/2022.01.13.22269257] [Cited by in Crossref: 48] [Cited by in F6Publishing: 56] [Article Influence: 48.0] [Reference Citation Analysis]
37 Li H, Kuga K, Ito K. Infection Dynamics of SARS-CoV-2 in Mucus Layer of the Human Nasal Cavity - Nasopharynx. E3S Web Conf 2022;356:05021. [DOI: 10.1051/e3sconf/202235605021] [Reference Citation Analysis]
38 Elaiw AM, Alsulami RS, Hobiny AD. Global dynamics of IAV/SARS-CoV-2 coinfection model with eclipse phase and antibody immunity. MBE 2022;20:3873-3917. [DOI: 10.3934/mbe.2023182] [Reference Citation Analysis]
39 Elaiw AM, Shflot AS, Hobiny AD. Stability analysis of SARS-CoV-2/HTLV-I coinfection dynamics model. MATH 2022;8:6136-6166. [DOI: 10.3934/math.2023310] [Reference Citation Analysis]
40 Watson JA, Kissler S, Day NP, Grad Y, White NJ. Characterising SARS-CoV-2 viral clearance kinetics to improve the design of antiviral pharmacometric studies.. [DOI: 10.1101/2021.01.06.21249368] [Reference Citation Analysis]