1 |
Lam KK, Wong SH, Cheah PY. Targeting the 'Undruggable' Driver Protein, KRAS, in Epithelial Cancers: Current Perspective. Cells 2023;12. [PMID: 36831298 DOI: 10.3390/cells12040631] [Reference Citation Analysis]
|
2 |
Koch KC, Tew GN. Functional antibody delivery: Advances in cellular manipulation. Adv Drug Deliv Rev 2023;192:114586. [PMID: 36280179 DOI: 10.1016/j.addr.2022.114586] [Reference Citation Analysis]
|
3 |
Tian Y, Tirrell MV, LaBelle JL. Harnessing the Therapeutic Potential of Biomacromolecules through Intracellular Delivery of Nucleic Acids, Peptides, and Proteins. Adv Healthc Mater 2022;:e2102600. [PMID: 35285167 DOI: 10.1002/adhm.202102600] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
4 |
Chan A, Wang HH, Haley RM, Song C, Gonzalez-martinez D, Bugaj L, Mitchell MJ, Tsourkas A. Cytosolic Delivery of Small Protein Scaffolds Enables Efficient Inhibition of Ras and Myc. Mol Pharmaceutics. [DOI: 10.1021/acs.molpharmaceut.1c00798] [Reference Citation Analysis]
|
5 |
Horn JM, Obermeyer AC. Genetic and Covalent Protein Modification Strategies to Facilitate Intracellular Delivery. Biomacromolecules 2021;22:4883-904. [PMID: 34855385 DOI: 10.1021/acs.biomac.1c00745] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
6 |
Dhankher A, Lv W, Studstill WT, Champion JA. Coiled coil exposure and histidine tags drive function of an intracellular protein drug carrier. J Control Release 2021;339:248-58. [PMID: 34563592 DOI: 10.1016/j.jconrel.2021.09.026] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
7 |
Marschall ALJ. Targeting the Inside of Cells with Biologicals: Chemicals as a Delivery Strategy. BioDrugs 2021;35:643-71. [PMID: 34705260 DOI: 10.1007/s40259-021-00500-y] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
8 |
Benn JA, Mukadam AS, McEwan WA. Targeted protein degradation using intracellular antibodies and its application to neurodegenerative disease. Semin Cell Dev Biol 2021:S1084-9521(21)00247-0. [PMID: 34654628 DOI: 10.1016/j.semcdb.2021.09.012] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
|
9 |
Hershman RL, Li Y, Ma F, Xu Q, Van Deventer JA. Intracellular Delivery of Antibodies for Selective Cell Signaling Interference.. [DOI: 10.1101/2021.10.05.463275] [Reference Citation Analysis]
|
10 |
Hirai Y, Hirose H, Imanishi M, Asai T, Futaki S. Cytosolic protein delivery using pH-responsive, charge-reversible lipid nanoparticles. Sci Rep 2021;11:19896. [PMID: 34615928 DOI: 10.1038/s41598-021-99180-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
11 |
Jiang G, Huang Z, Yuan Y, Tao K, Feng W. Intracellular delivery of anti-BCR/ABL antibody by PLGA nanoparticles suppresses the oncogenesis of chronic myeloid leukemia cells. J Hematol Oncol 2021;14:139. [PMID: 34488814 DOI: 10.1186/s13045-021-01150-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
|
12 |
Iwata T, Hirose H, Sakamoto K, Hirai Y, Arafiles JVV, Akishiba M, Imanishi M, Futaki S. Liquid Droplet Formation and Facile Cytosolic Translocation of IgG in the Presence of Attenuated Cationic Amphiphilic Lytic Peptides. Angew Chem 2021;133:19957-19965. [DOI: 10.1002/ange.202105527] [Reference Citation Analysis]
|
13 |
Iwata T, Hirose H, Sakamoto K, Hirai Y, Arafiles JVV, Akishiba M, Imanishi M, Futaki S. Liquid Droplet Formation and Facile Cytosolic Translocation of IgG in the Presence of Attenuated Cationic Amphiphilic Lytic Peptides. Angew Chem Int Ed Engl 2021;60:19804-12. [PMID: 34114295 DOI: 10.1002/anie.202105527] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
|
14 |
Wang Q, Yang Y, Liu D, Ji Y, Gao X, Yin J, Yao W. Cytosolic Protein Delivery for Intracellular Antigen Targeting Using Supercharged Polypeptide Delivery Platform. Nano Lett 2021;21:6022-30. [PMID: 34227381 DOI: 10.1021/acs.nanolett.1c01190] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
|
15 |
Xu E, Saltzman WM, Piotrowski-Daspit AS. Escaping the endosome: assessing cellular trafficking mechanisms of non-viral vehicles. J Control Release 2021;335:465-80. [PMID: 34077782 DOI: 10.1016/j.jconrel.2021.05.038] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 9.5] [Reference Citation Analysis]
|
16 |
Pazo M, Salluce G, Lostalé-Seijo I, Juanes M, Gonzalez F, Garcia-Fandiño R, Montenegro J. Short oligoalanine helical peptides for supramolecular nanopore assembly and protein cytosolic delivery. RSC Chem Biol 2021;2:503-12. [PMID: 34458796 DOI: 10.1039/d0cb00103a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
17 |
C. Ngwuluka N, Y. Abu-thabit N, J. Uwaezuoke O, O. Erebor J, O. Ilomuanya M, R. Mohamed R, M.a. Soliman S, H. Abu Elella M, A.a. Ebrahim N. Natural Polymers in Micro- and Nanoencapsulation for Therapeutic and Diagnostic Applications: Part I: Lipids and Fabrication Techniques. Nano- and Microencapsulation - Techniques and Applications 2021. [DOI: 10.5772/intechopen.94856] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
18 |
Du S, Liew SS, Zhang CW, Du W, Lang W, Yao CCY, Li L, Ge J, Yao SQ. Cell-Permeant Bioadaptors for Cytosolic Delivery of Native Antibodies: A "Mix-and-Go" Approach. ACS Cent Sci 2020;6:2362-76. [PMID: 33376798 DOI: 10.1021/acscentsci.0c01379] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
|
19 |
Dutta K, Kanjilal P, Das R, Thayumanavan S. Synergistic Interplay of Covalent and Non‐Covalent Interactions in Reactive Polymer Nanoassembly Facilitates Intracellular Delivery of Antibodies. Angew Chem 2021;133:1849-58. [DOI: 10.1002/ange.202010412] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
|
20 |
Dutta K, Kanjilal P, Das R, Thayumanavan S. Synergistic Interplay of Covalent and Non-Covalent Interactions in Reactive Polymer Nanoassembly Facilitates Intracellular Delivery of Antibodies. Angew Chem Int Ed Engl 2021;60:1821-30. [PMID: 33034131 DOI: 10.1002/anie.202010412] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
|
21 |
Paulisch TO, Bornemann S, Herzog M, Kudruk S, Roling L, Linard Matos AL, Galla HJ, Gerke V, Winter R, Glorius F. An Imidazolium-Based Lipid Analogue as a Gene Transfer Agent. Chemistry 2020;26:17176-82. [PMID: 32720444 DOI: 10.1002/chem.202003466] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
|
22 |
Jedlitzke B, Mootz HD. Photocaged Nanobodies Delivered into Cells for Light Activation of Biological Processes. ChemPhotoChem 2021;5:22-5. [DOI: 10.1002/cptc.202000163] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
|
23 |
Lv W, Champion JA. Demonstration of intracellular trafficking, cytosolic bioavailability, and target manipulation of an antibody delivery platform. Nanomedicine 2021;32:102315. [PMID: 33065253 DOI: 10.1016/j.nano.2020.102315] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
|
24 |
Yang S, Tang Q, Chen L, Chang J, Jiang T, Zhao J, Wang M, Chen PR. Cationic Lipid-based Intracellular Delivery of Bacterial Effectors for Rewiring Malignant Cell Signaling. Angew Chem Int Ed Engl 2020;59:18087-94. [PMID: 32671943 DOI: 10.1002/anie.202009572] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
|
25 |
Yang S, Tang Q, Chen L, Chang J, Jiang T, Zhao J, Wang M, Chen PR. Cationic Lipid‐based Intracellular Delivery of Bacterial Effectors for Rewiring Malignant Cell Signaling. Angew Chem 2020;132:18243-50. [DOI: 10.1002/ange.202009572] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
|
26 |
Gordon RE, Nemeth JF, Singh S, Lingham RB, Grewal IS. Harnessing SLE Autoantibodies for Intracellular Delivery of Biologic Therapeutics. Trends Biotechnol 2021;39:298-310. [PMID: 32807530 DOI: 10.1016/j.tibtech.2020.07.003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
|
27 |
Niamsuphap S, Fercher C, Kumble S, Huda P, Mahler SM, Howard CB. Targeting the undruggable: emerging technologies in antibody delivery against intracellular targets. Expert Opinion on Drug Delivery 2020;17:1189-211. [DOI: 10.1080/17425247.2020.1781088] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
|
28 |
Chavali S, Singh AK, Santhanam B, Babu MM. Amino acid homorepeats in proteins. Nat Rev Chem 2020;4:420-34. [DOI: 10.1038/s41570-020-0204-1] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
|