BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Costantini TW, Chan TW, Cohen O, Langness S, Treadwell S, Williams E, Eliceiri BP, Baird A. Uniquely human CHRFAM7A gene increases the hematopoietic stem cell reservoir in mice and amplifies their inflammatory response. Proc Natl Acad Sci U S A 2019;116:7932-40. [PMID: 30944217 DOI: 10.1073/pnas.1821853116] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]
Number Citing Articles
1 Peng W, Mao L, Dang X. The emergence of the uniquely human α7 nicotinic acetylcholine receptor gene and its roles in inflammation. Gene 2022;842:146777. [PMID: 35952843 DOI: 10.1016/j.gene.2022.146777] [Reference Citation Analysis]
2 Pattanaik B, Hammarlund M, Mjörnstedt F, Ulleryd MA, Zhong W, Uhlén M, Gummesson A, Bergström G, Johansson ME. Polymorphisms in alpha 7 nicotinic acetylcholine receptor gene, CHRNA7, and its partially duplicated gene, CHRFAM7A, associate with increased inflammatory response in human peripheral mononuclear cells. FASEB J 2022;36:e22271. [PMID: 35344211 DOI: 10.1096/fj.202101898R] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Patel SB, Pietras EM. B cells regulate hematopoietic stem cells via cholinergic signaling. Nat Immunol 2022. [PMID: 35347284 DOI: 10.1038/s41590-022-01172-8] [Reference Citation Analysis]
4 Schloss MJ, Hulsmans M, Rohde D, Lee I, Severe N, Foy BH, Pulous FE, Zhang S, Kokkaliaris KD, Frodermann V, Courties G, Yang C, Iwamoto Y, Knudsen AS, Mcalpine CS, Yamazoe M, Schmidt SP, Wojtkiewicz GR, Masson GS, Gustafsson K, Capen D, Brown D, Higgins JM, Scadden DT, Libby P, Swirski FK, Naxerova K, Nahrendorf M. B lymphocyte-derived acetylcholine limits steady-state and emergency hematopoiesis. Nat Immunol. [DOI: 10.1038/s41590-022-01165-7] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
5 Di Lascio S, Fornasari D, Benfante R. The Human-Restricted Isoform of the α7 nAChR, CHRFAM7A: A Double-Edged Sword in Neurological and Inflammatory Disorders. Int J Mol Sci 2022;23:3463. [PMID: 35408823 DOI: 10.3390/ijms23073463] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Ferrari D, D'anzi A, Casamassa A, Bernardini L, Tata AM, Vescovi AL, Rosati J. Functional outcomes of copy number variations of Chrna7 gene. Novel Concepts in iPSC Disease Modeling 2022. [DOI: 10.1016/b978-0-12-823882-0.00012-6] [Reference Citation Analysis]
7 Costantini TW, Coimbra R, Weaver JL, Eliceiri BP. CHRFAM7A expression in mice increases resiliency after injury. Inflamm Res 2021. [PMID: 34792616 DOI: 10.1007/s00011-021-01519-1] [Reference Citation Analysis]
8 Hu S, Wang Y, Li H. The Regulation Effect of α7nAChRs and M1AChRs on Inflammation and Immunity in Sepsis. Mediators Inflamm 2021;2021:9059601. [PMID: 34776789 DOI: 10.1155/2021/9059601] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
9 Ma Y, Chen Z, Yu J. Pseudogenes and their potential functions in hematopoiesis. Exp Hematol 2021:S0301-472X(21)00292-7. [PMID: 34517065 DOI: 10.1016/j.exphem.2021.09.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Liu D, de Souza JV, Ahmad A, Bronowska AK. Structure, Dynamics, and Ligand Recognition of Human-Specific CHRFAM7A (Dupα7) Nicotinic Receptor Linked to Neuropsychiatric Disorders. Int J Mol Sci 2021;22:5466. [PMID: 34067314 DOI: 10.3390/ijms22115466] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Benfante R, Di Lascio S, Cardani S, Fornasari D. Acetylcholinesterase inhibitors targeting the cholinergic anti-inflammatory pathway: a new therapeutic perspective in aging-related disorders. Aging Clin Exp Res 2021;33:823-34. [DOI: 10.1007/s40520-019-01359-4] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 21.0] [Reference Citation Analysis]
12 Liu D, Richardson G, Benli FM, Park C, de Souza JV, Bronowska AK, Spyridopoulos I. Inflammageing in the cardiovascular system: mechanisms, emerging targets, and novel therapeutic strategies. Clin Sci (Lond) 2020;134:2243-62. [PMID: 32880386 DOI: 10.1042/CS20191213] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 15.0] [Reference Citation Analysis]
13 Ma Y, Liu S, Gao J, Chen C, Zhang X, Yuan H, Chen Z, Yin X, Sun C, Mao Y, Zhou F, Shao Y, Liu Q, Xu J, Cheng L, Yu D, Li P, Yi P, He J, Geng G, Guo Q, Si Y, Zhao H, Li H, Banes GL, Liu H, Nakamura Y, Kurita R, Huang Y, Wang X, Wang F, Fang G, Engel JD, Shi L, Zhang YE, Yu J. Genome-wide analysis of pseudogenes reveals HBBP1's human-specific essentiality in erythropoiesis and implication in β-thalassemia. Dev Cell 2021;56:478-493.e11. [PMID: 33476555 DOI: 10.1016/j.devcel.2020.12.019] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 11.0] [Reference Citation Analysis]
14 Cao X, Wang Y, Gao L. CHRFAM7A Overexpression Attenuates Cerebral Ischemia-Reperfusion Injury via Inhibiting Microglia Pyroptosis Mediated by the NLRP3/Caspase-1 pathway. Inflammation 2021;44:1023-34. [PMID: 33405023 DOI: 10.1007/s10753-020-01398-4] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 12.0] [Reference Citation Analysis]
15 Ihnatovych I, Birkaya B, Notari E, Szigeti K. iPSC-Derived Microglia for Modeling Human-Specific DAMP and PAMP Responses in the Context of Alzheimer's Disease. Int J Mol Sci 2020;21:E9668. [PMID: 33352944 DOI: 10.3390/ijms21249668] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
16 Courties A, Do A, Leite S, Legris M, Sudre L, Pigenet A, Petit J, Nourissat G, Cambon-Binder A, Maskos U, Berenbaum F, Sellam J. The Role of the Non-neuronal Cholinergic System in Inflammation and Degradation Processes in Osteoarthritis. Arthritis Rheumatol 2020;72:2072-82. [PMID: 32638534 DOI: 10.1002/art.41429] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
17 Li T, Chen W, Zhang Q, Deng C. Human-specific gene CHRFAM7A mediates M2 macrophage polarization via the Notch pathway to ameliorate hypertrophic scar formation. Biomed Pharmacother 2020;131:110611. [PMID: 32890966 DOI: 10.1016/j.biopha.2020.110611] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
18 Toma W, Ulker E, Alqasem M, Alsharari SD, Mcintosh JM, Damaj MI. Behavioral and Molecular Basis of Cholinergic Modulation of Pain: Focus on Nicotinic Acetylcholine Receptors. In: Shoaib M, Wallace TL, editors. Behavioral Pharmacology of the Cholinergic System. Cham: Springer International Publishing; 2020. pp. 153-66. [DOI: 10.1007/7854_2020_135] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
19 Chan TW, Langness S, Cohen O, Eliceiri BP, Baird A, Costantini TW. CHRFAM7A reduces monocyte/macrophage migration and colony formation in vitro. Inflamm Res 2020;69:631-3. [PMID: 32303780 DOI: 10.1007/s00011-020-01349-7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
20 Jiang Y, Yuan H, Huang L, Hou X, Zhou R, Dang X. Global proteomic profiling of the uniquely human CHRFAM7A gene in transgenic mouse brain. Gene 2019;714:143996. [PMID: 31348980 DOI: 10.1016/j.gene.2019.143996] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]