BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hijnen N, Kneepkens E, de Smet M, Langereis S, Heijman E, Grüll H. Thermal combination therapies for local drug delivery by magnetic resonance-guided high-intensity focused ultrasound. Proc Natl Acad Sci U S A 2017;114:E4802-11. [PMID: 28566498 DOI: 10.1073/pnas.1700790114] [Cited by in Crossref: 60] [Cited by in F6Publishing: 63] [Article Influence: 10.0] [Reference Citation Analysis]
Number Citing Articles
1 Haemmerich D, Ramajayam KK, Newton DA. Review of the Delivery Kinetics of Thermosensitive Liposomes. Cancers (Basel) 2023;15. [PMID: 36672347 DOI: 10.3390/cancers15020398] [Reference Citation Analysis]
2 Wang X, Wang Y, Xue Z, Wan W, Li Y, Qin H, Zhu Y, Tian F, Yang J. Magnetic liposome as a dual-targeting delivery system for idiopathic pulmonary fibrosis treatment. J Colloid Interface Sci 2023;636:388-400. [PMID: 36640550 DOI: 10.1016/j.jcis.2023.01.007] [Reference Citation Analysis]
3 Wang J, Li Z, Pan M, Fiaz M, Hao Y, Yan Y, Sun L, Yan F. Ultrasound-mediated blood-brain barrier opening: An effective drug delivery system for theranostics of brain diseases. Adv Drug Deliv Rev 2022;190:114539. [PMID: 36116720 DOI: 10.1016/j.addr.2022.114539] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Wang Z, Li J, Lin G, He Z, Wang Y. Metal complex-based liposomes: Applications and prospects in cancer diagnostics and therapeutics. J Control Release 2022;348:1066-88. [PMID: 35718211 DOI: 10.1016/j.jconrel.2022.06.012] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
5 Vanni S, De Vita A, Gurrieri L, Fausti V, Miserocchi G, Spadazzi C, Liverani C, Cocchi C, Calabrese C, Bongiovanni A, Riva N, Mercatali L, Pieri F, Casadei R, Lucarelli E, Ibrahim T. Myxofibrosarcoma landscape: diagnostic pitfalls, clinical management and future perspectives. Ther Adv Med Oncol 2022;14:17588359221093973. [PMID: 35782752 DOI: 10.1177/17588359221093973] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
6 Perra E, Hayward N, Pritzker KPH, Nieminen HJ. An ultrasonically actuated needle promotes the transport of nanoparticles and fluids. The Journal of the Acoustical Society of America 2022;152:251-65. [DOI: 10.1121/10.0012190] [Reference Citation Analysis]
7 Padilla F, Ter Haar G. Recommendations for Reporting Therapeutic Ultrasound Treatment Parameters. Ultrasound Med Biol 2022;48:1299-308. [PMID: 35461726 DOI: 10.1016/j.ultrasmedbio.2022.03.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Zhang L, Lin Z, Zeng L, Zhang F, Sun L, Sun S, Wang P, Xu M, Zhang J, Liang X, Ge H. Ultrasound-induced biophysical effects in controlled drug delivery. Sci China Life Sci 2022;65:896-908. [PMID: 34453275 DOI: 10.1007/s11427-021-1971-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
9 Wang X, Qi Y, Hu Z, Jiang L, Pan F, Xiang Z, Xiong Z, Jia W, Hu J, Lu W. Fe3O4@PVP@DOX magnetic vortex hybrid nanostructures with magnetic-responsive heating and controlled drug delivery functions for precise medicine of cancers. Adv Compos Hybrid Mater. [DOI: 10.1007/s42114-022-00433-2] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Wang Y, Gao F, Li X, Niu G, Yang Y, Li H, Jiang Y. Tumor microenvironment-responsive fenton nanocatalysts for intensified anticancer treatment. J Nanobiotechnol 2022;20. [DOI: 10.1186/s12951-022-01278-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
11 Regenold M, Bannigan P, Evans JC, Waspe A, Temple MJ, Allen C. Turning down the heat: The case for mild hyperthermia and thermosensitive liposomes. Nanomedicine 2022;40:102484. [PMID: 34748961 DOI: 10.1016/j.nano.2021.102484] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
12 Sebeke L, Gómez JDC, Heijman E, Rademann P, Maul AC, Ekdawi S, Vlachakis S, Toker D, Mink BL, Schubert-quecke C, Yeo SY, Schmidt P, Lucas C, Brodesser S, Hossann M, Lindner LH, Grüll H. Hyperthermia-induced doxorubicin delivery from thermosensitive liposomes via MR-HIFU in a pig model. Journal of Controlled Release 2022. [DOI: 10.1016/j.jconrel.2022.02.003] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
13 Sebek J, Cappiello G, Rahmani G, Zeinali N, Keating M, Fayemiwo M, Harkin J, McDaid L, Gardiner B, Sheppard D, Senanayake R, Gurnell M, O'Halloran M, Dennedy MC, Prakash P. Image-based computer modeling assessment of microwave ablation for treatment of adrenal tumors. Int J Hyperthermia 2022;39:1264-75. [PMID: 36137605 DOI: 10.1080/02656736.2022.2125590] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Tehrani MHH, Soltani M, Moradi Kashkooli F, Mahmoudi M, Raahemifar K. Computational Modeling of Combination of Magnetic Hyperthermia and Temperature-Sensitive Liposome for Controlled Drug Release in Solid Tumor. Pharmaceutics 2021;14:35. [PMID: 35056931 DOI: 10.3390/pharmaceutics14010035] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
15 Sabuncu S, Yildirim A. Gas-stabilizing nanoparticles for ultrasound imaging and therapy of cancer. Nano Converg 2021;8:39. [PMID: 34851458 DOI: 10.1186/s40580-021-00287-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
16 Souri M, Soltani M, Moradi Kashkooli F, Kiani Shahvandi M. Engineered strategies to enhance tumor penetration of drug-loaded nanoparticles. J Control Release 2021;341:227-46. [PMID: 34822909 DOI: 10.1016/j.jconrel.2021.11.024] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
17 Maia ALC, e Silva AT, César AL, Giuberti CS, Evangelista FC, Lemos JDA, Sabino AP, Malachias Â, Fernandes C, de Barros AL, Soares DC, Ramaldes GA. Preparation and characterization of gadolinium-based thermosensitive liposomes: A potential nanosystem for selective drug delivery to cancer cells. Journal of Drug Delivery Science and Technology 2021;65:102686. [DOI: 10.1016/j.jddst.2021.102686] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Souri M, Soltani M, Moradi Kashkooli F. Computational modeling of thermal combination therapies by magneto-ultrasonic heating to enhance drug delivery to solid tumors. Sci Rep 2021;11:19539. [PMID: 34599207 DOI: 10.1038/s41598-021-98554-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
19 Priester MI, Curto S, van Rhoon GC, Ten Hagen TLM. External Basic Hyperthermia Devices for Preclinical Studies in Small Animals. Cancers (Basel) 2021;13:4628. [PMID: 34572855 DOI: 10.3390/cancers13184628] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
20 Sebeke LC, Rademann P, Maul AC, Yeo SY, Castillo Gómez JD, Deenen DA, Schmidt P, de Jager B, Heemels WPMH, Grüll H, Heijman E. Visualization of thermal washout due to spatiotemporally heterogenous perfusion in the application of a model-based control algorithm for MR-HIFU mediated hyperthermia. Int J Hyperthermia 2021;38:1174-87. [PMID: 34374624 DOI: 10.1080/02656736.2021.1933616] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
21 Karmacharya MB, Sultan LR, Hunt SJ, Sehgal CM. Hydralazine augmented ultrasound hyperthermia for the treatment of hepatocellular carcinoma. Sci Rep 2021;11:15553. [PMID: 34330960 DOI: 10.1038/s41598-021-94323-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
22 Ten Hagen TLM, Dreher MR, Zalba S, Seynhaeve ALB, Amin M, Li L, Haemmerich D. Drug transport kinetics of intravascular triggered drug delivery systems. Commun Biol 2021;4:920. [PMID: 34321602 DOI: 10.1038/s42003-021-02428-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
23 Cheng B, Bing C, Staruch RM, Shaikh S, Wodzak Staruch M, Szczepanski D, Williams NS, Laetsch TW, Chopra R. The effect of injected dose on localized tumor accumulation and cardiac uptake of doxorubicin in a Vx2 rabbit tumor model using MR-HIFU mild hyperthermia and thermosensitive liposomes. Int J Hyperthermia 2020;37:1052-9. [PMID: 32892667 DOI: 10.1080/02656736.2020.1812737] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
24 Kok HP, Cressman ENK, Ceelen W, Brace CL, Ivkov R, Grüll H, Ter Haar G, Wust P, Crezee J. Heating technology for malignant tumors: a review. Int J Hyperthermia 2020;37:711-41. [PMID: 32579419 DOI: 10.1080/02656736.2020.1779357] [Cited by in Crossref: 98] [Cited by in F6Publishing: 73] [Article Influence: 49.0] [Reference Citation Analysis]
25 Jia W, Qi Y, Hu Z, Xiong Z, Luo Z, Xiang Z, Hu J, Lu W. Facile fabrication of monodisperse CoFe2O4 nanocrystals@dopamine@DOX hybrids for magnetic-responsive on-demand cancer theranostic applications. Adv Compos Hybrid Mater 2021;4:989-1001. [DOI: 10.1007/s42114-021-00276-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
26 Lokerse WJ, Lazarian A, Kleinhempel A, Petrini M, Schwarz P, Hossann M, Holdt LM, Mailänder V, Lindner LH. Mechanistic investigation of thermosensitive liposome immunogenicity and understanding the drivers for circulation half-life: A polyethylene glycol versus 1,2-dipalmitoyl-sn-glycero-3-phosphodiglycerol study. Journal of Controlled Release 2021;333:1-15. [DOI: 10.1016/j.jconrel.2021.03.014] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
27 Zhang X, Bobeica M, Unger M, Bednarz A, Gerold B, Patties I, Melzer A, Landgraf L. Focused ultrasound radiosensitizes human cancer cells by enhancement of DNA damage. Strahlenther Onkol 2021;197:730-43. [PMID: 33885910 DOI: 10.1007/s00066-021-01774-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
28 Choi W, Kim C. Synergistic agents for tumor-specific therapy mediated by focused ultrasound treatment. Biomater Sci 2021;9:422-36. [PMID: 33211030 DOI: 10.1039/d0bm01364a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
29 Amrahli M, Centelles M, Cressey P, Prusevicius M, Gedroyc W, Xu XY, So PW, Wright M, Thanou M. MR-labelled liposomes and focused ultrasound for spatiotemporally controlled drug release in triple negative breast cancers in mice. Nanotheranostics 2021;5:125-42. [PMID: 33457192 DOI: 10.7150/ntno.52168] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
30 Zhang L. Application of Labeled Liposomes in Imaging and Biodistribution Observation. Biomaterial Engineering 2021. [DOI: 10.1007/978-3-662-49320-5_29] [Reference Citation Analysis]
31 Wu L, Zhou J, Zhou W, Huang XF, Chen Q, Wang W, Zhai L, Li S, Tang Z. Sorafenib blocks the activation of the HIF-2α/VEGFA/EphA2 pathway, and inhibits the rapid growth of residual liver cancer following high-intensity focused ultrasound therapy in vivo. Pathol Res Pract 2021;220:153270. [PMID: 33640712 DOI: 10.1016/j.prp.2020.153270] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
32 Choi S. Activation Strategies in Image-Guided Nanotherapeutic Delivery. JNT 2020;1:78-104. [DOI: 10.3390/jnt1010007] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
33 Ahmadi A, Hosseini-Nami S, Abed Z, Beik J, Aranda-Lara L, Samadian H, Morales-Avila E, Jaymand M, Shakeri-Zadeh A. Recent advances in ultrasound-triggered drug delivery through lipid-based nanomaterials. Drug Discov Today 2020;25:2182-200. [PMID: 33010479 DOI: 10.1016/j.drudis.2020.09.026] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 5.3] [Reference Citation Analysis]
34 Santos MA, Wu SK, Regenold M, Allen C, Goertz DE, Hynynen K. Novel fractionated ultrashort thermal exposures with MRI-guided focused ultrasound for treating tumors with thermosensitive drugs. Sci Adv 2020;6:eaba5684. [PMID: 32917589 DOI: 10.1126/sciadv.aba5684] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
35 Patrucco D, Terreno E. MR-Guided Drug Release From Liposomes Triggered by Thermal and Mechanical Ultrasound-Induced Effects. Front Phys 2020;8:325. [DOI: 10.3389/fphy.2020.00325] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
36 Sun T, Dasgupta A, Zhao Z, Nurunnabi M, Mitragotri S. Physical triggering strategies for drug delivery. Adv Drug Deliv Rev 2020;158:36-62. [PMID: 32589905 DOI: 10.1016/j.addr.2020.06.010] [Cited by in Crossref: 26] [Cited by in F6Publishing: 30] [Article Influence: 8.7] [Reference Citation Analysis]
37 Beyer T, Bidaut L, Dickson J, Kachelriess M, Kiessling F, Leitgeb R, Ma J, Shiyam Sundar LK, Theek B, Mawlawi O. What scans we will read: imaging instrumentation trends in clinical oncology. Cancer Imaging 2020;20:38. [PMID: 32517801 DOI: 10.1186/s40644-020-00312-3] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 3.7] [Reference Citation Analysis]
38 Ji Y, Winter L, Navarro L, Ku MC, Periquito JS, Pham M, Hoffmann W, Theune LE, Calderón M, Niendorf T. Controlled Release of Therapeutics from Thermoresponsive Nanogels: A Thermal Magnetic Resonance Feasibility Study. Cancers (Basel) 2020;12:E1380. [PMID: 32471299 DOI: 10.3390/cancers12061380] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
39 Seynhaeve ALB, Amin M, Haemmerich D, van Rhoon GC, Ten Hagen TLM. Hyperthermia and smart drug delivery systems for solid tumor therapy. Adv Drug Deliv Rev 2020;163-164:125-44. [PMID: 32092379 DOI: 10.1016/j.addr.2020.02.004] [Cited by in Crossref: 70] [Cited by in F6Publishing: 78] [Article Influence: 23.3] [Reference Citation Analysis]
40 Yu T, Hu Y, Feng G, Hu K. A Graphene‐Based Flexible Device as a Specific Far‐Infrared Emitter for Noninvasive Tumor Therapy. Adv Therap 2020;3:1900195. [DOI: 10.1002/adtp.201900195] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
41 Motamarry A, Negussie AH, Rossmann C, Small J, Wolfe AM, Wood BJ, Haemmerich D. Real-time fluorescence imaging for visualization and drug uptake prediction during drug delivery by thermosensitive liposomes. Int J Hyperthermia 2019;36:817-26. [PMID: 31451077 DOI: 10.1080/02656736.2019.1642521] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
42 Oei AL, Kok HP, Oei SB, Horsman MR, Stalpers LJA, Franken NAP, Crezee J. Molecular and biological rationale of hyperthermia as radio- and chemosensitizer. Adv Drug Deliv Rev 2020;163-164:84-97. [PMID: 31982475 DOI: 10.1016/j.addr.2020.01.003] [Cited by in Crossref: 45] [Cited by in F6Publishing: 44] [Article Influence: 15.0] [Reference Citation Analysis]
43 Pereira Gomes I, Aparecida Duarte J, Chaves Maia AL, Rubello D, Townsend DM, Branco de Barros AL, Leite EA. Thermosensitive Nanosystems Associated with Hyperthermia for Cancer Treatment. Pharmaceuticals (Basel) 2019;12:E171. [PMID: 31775273 DOI: 10.3390/ph12040171] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
44 Fisher DG, Price RJ. Recent Advances in the Use of Focused Ultrasound for Magnetic Resonance Image-Guided Therapeutic Nanoparticle Delivery to the Central Nervous System. Front Pharmacol 2019;10:1348. [PMID: 31798453 DOI: 10.3389/fphar.2019.01348] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 9.0] [Reference Citation Analysis]
45 Sebeke L, Deenen DA, Maljaars E, Heijman E, de Jager B, Heemels WPMH, Grüll H. Model predictive control for MR-HIFU-mediated, uniform hyperthermia. International Journal of Hyperthermia 2019;36:1039-49. [DOI: 10.1080/02656736.2019.1668065] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
46 Besse HC, Barten-van Rijbroek AD, van der Wurff-Jacobs KMG, Bos C, Moonen CTW, Deckers R. Tumor Drug Distribution after Local Drug Delivery by Hyperthermia, In Vivo. Cancers (Basel) 2019;11:E1512. [PMID: 31600958 DOI: 10.3390/cancers11101512] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
47 Haemmerich D, Motamarry A. Thermosensitive Liposomes for Image-Guided Drug Delivery. Adv Cancer Res 2018;139:121-46. [PMID: 29941102 DOI: 10.1016/bs.acr.2018.04.004] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
48 Qian R, Maiti D, Zhong J, Xiong S, Zhou H, Zhu R, Wan J, Yang K. Multifunctional nano-graphene based nanocomposites for multimodal imaging guided combined radioisotope therapy and chemotherapy. Carbon 2019;149:55-62. [DOI: 10.1016/j.carbon.2019.04.046] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 5.5] [Reference Citation Analysis]
49 Wu D, Jin X, Wang X, Ma B, Lou C, Qu H, Zheng J, Zhang B, Yan X, Wang Y, Jing L. Engineering temperature-sensitive plateletsomes as a tailored chemotherapy platform in combination with HIFU ablation for cancer treatment. Theranostics 2019;9:3966-79. [PMID: 31281525 DOI: 10.7150/thno.32172] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
50 Yildirim A, Blum NT, Goodwin AP. Colloids, nanoparticles, and materials for imaging, delivery, ablation, and theranostics by focused ultrasound (FUS). Theranostics 2019;9:2572-94. [PMID: 31131054 DOI: 10.7150/thno.32424] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 6.3] [Reference Citation Analysis]
51 Xu J, Cheng X, Tan L, Fu C, Ahmed M, Tian J, Dou J, Zhou Q, Ren X, Wu Q, Tang S, Zhou H, Meng X, Yu J, Liang P. Microwave Responsive Nanoplatform via P-Selectin Mediated Drug Delivery for Treatment of Hepatocellular Carcinoma with Distant Metastasis. Nano Lett 2019;19:2914-27. [DOI: 10.1021/acs.nanolett.8b05202] [Cited by in Crossref: 40] [Cited by in F6Publishing: 45] [Article Influence: 10.0] [Reference Citation Analysis]
52 Zhu L, Altman MB, Laszlo A, Straube W, Zoberi I, Hallahan DE, Chen H. Ultrasound Hyperthermia Technology for Radiosensitization. Ultrasound Med Biol 2019;45:1025-43. [PMID: 30773377 DOI: 10.1016/j.ultrasmedbio.2018.12.007] [Cited by in Crossref: 49] [Cited by in F6Publishing: 53] [Article Influence: 12.3] [Reference Citation Analysis]
53 Zhang L. Application of Labeled Liposomes in Imaging and Biodistribution Observation. Biomaterial Engineering 2019. [DOI: 10.1007/978-3-662-49231-4_29-1] [Reference Citation Analysis]
54 Deb PK, Kokaz SF, Abed SN, Paradkar A, Tekade RK. Pharmaceutical and Biomedical Applications of Polymers. Basic Fundamentals of Drug Delivery 2019. [DOI: 10.1016/b978-0-12-817909-3.00006-6] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
55 Moncion A, Harmon JS, Li Y, Natla S, Farrell EC, Kripfgans OD, Stegemann JP, Martín-Saavedra FM, Vilaboa N, Franceschi RT, Fabiilli ML. Spatiotemporally-controlled transgene expression in hydroxyapatite-fibrin composite scaffolds using high intensity focused ultrasound. Biomaterials 2019;194:14-24. [PMID: 30572283 DOI: 10.1016/j.biomaterials.2018.12.011] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
56 Bing C, Patel P, Staruch RM, Shaikh S, Nofiele J, Wodzak Staruch M, Szczepanski D, Williams NS, Laetsch T, Chopra R. Longer heating duration increases localized doxorubicin deposition and therapeutic index in Vx2 tumors using MR-HIFU mild hyperthermia and thermosensitive liposomal doxorubicin. Int J Hyperthermia 2019;36:196-203. [PMID: 30541350 DOI: 10.1080/02656736.2018.1550815] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 5.6] [Reference Citation Analysis]
57 Reeβing F, Szymanski W. Following nanomedicine activation with magnetic resonance imaging: why, how, and what's next? Curr Opin Biotechnol 2019;58:9-18. [PMID: 30390536 DOI: 10.1016/j.copbio.2018.10.008] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
58 Yildirim A, Shi D, Roy S, Blum NT, Chattaraj R, Cha JN, Goodwin AP. Nanoparticle-Mediated Acoustic Cavitation Enables High Intensity Focused Ultrasound Ablation Without Tissue Heating. ACS Appl Mater Interfaces 2018;10:36786-95. [PMID: 30339360 DOI: 10.1021/acsami.8b15368] [Cited by in Crossref: 28] [Cited by in F6Publishing: 34] [Article Influence: 5.6] [Reference Citation Analysis]
59 Jain A, Tiwari A, Verma A, Jain SK. Ultrasound-based triggered drug delivery to tumors. Drug Deliv Transl Res 2018;8:150-64. [PMID: 29204925 DOI: 10.1007/s13346-017-0448-6] [Cited by in Crossref: 54] [Cited by in F6Publishing: 46] [Article Influence: 10.8] [Reference Citation Analysis]
60 Li B, Tang J, Chen W, Hao G, Kurniawan N, Gu Z, Xu ZP. Novel theranostic nanoplatform for complete mice tumor elimination via MR imaging-guided acid-enhanced photothermo-/chemo-therapy. Biomaterials 2018;177:40-51. [DOI: 10.1016/j.biomaterials.2018.05.055] [Cited by in Crossref: 66] [Cited by in F6Publishing: 60] [Article Influence: 13.2] [Reference Citation Analysis]
61 Ma Z, Han K, Dai X, Han H. Precisely Striking Tumors without Adjacent Normal Tissue Damage via Mitochondria-Templated Accumulation. ACS Nano 2018;12:6252-62. [PMID: 29791136 DOI: 10.1021/acsnano.8b03212] [Cited by in Crossref: 48] [Cited by in F6Publishing: 52] [Article Influence: 9.6] [Reference Citation Analysis]
62 Centelles MN, Wright M, So P, Amrahli M, Xu XY, Stebbing J, Miller AD, Gedroyc W, Thanou M. Image-guided thermosensitive liposomes for focused ultrasound drug delivery: Using NIRF-labelled lipids and topotecan to visualise the effects of hyperthermia in tumours. Journal of Controlled Release 2018;280:87-98. [DOI: 10.1016/j.jconrel.2018.04.047] [Cited by in Crossref: 50] [Cited by in F6Publishing: 52] [Article Influence: 10.0] [Reference Citation Analysis]
63 Garello F, Terreno E. Sonosensitive MRI Nanosystems as Cancer Theranostics: A Recent Update. Front Chem 2018;6:157. [PMID: 29868560 DOI: 10.3389/fchem.2018.00157] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
64 Lokerse WJM, Eggermont AMM, Grüll H, Koning GA. Development and evaluation of an isolated limb infusion model for investigation of drug delivery kinetics to solid tumors by thermosensitive liposomes and hyperthermia. J Control Release 2018;270:282-9. [PMID: 29269141 DOI: 10.1016/j.jconrel.2017.12.012] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]