BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Murphy SK, Yang H, Moylan CA, Pang H, Dellinger A, Abdelmalek MF, Garrett ME, Ashley-Koch A, Suzuki A, Tillmann HL, Hauser MA, Diehl AM. Relationship between methylome and transcriptome in patients with nonalcoholic fatty liver disease. Gastroenterology. 2013;145:1076-1087. [PMID: 23916847 DOI: 10.1053/j.gastro.2013.07.047] [Cited by in Crossref: 215] [Cited by in F6Publishing: 192] [Article Influence: 23.9] [Reference Citation Analysis]
Number Citing Articles
1 Lee J, Kim Y, Friso S, Choi SW. Epigenetics in non-alcoholic fatty liver disease. Mol Aspects Med. 2016; Nov 23. [Epub ahead of print]. [PMID: 27889327 DOI: 10.1016/j.mam.2016.11.008] [Cited by in Crossref: 58] [Cited by in F6Publishing: 52] [Article Influence: 9.7] [Reference Citation Analysis]
2 Iguchi E, Takai A, Takeda H, Kumagai K, Arasawa S, Eso Y, Shimizu T, Ueda Y, Marusawa H, Seno H. DNA methyltransferase 3B plays a protective role against hepatocarcinogenesis caused by chronic inflammation via maintaining mitochondrial homeostasis. Sci Rep 2020;10:21268. [PMID: 33277576 DOI: 10.1038/s41598-020-78151-2] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
3 Huang S, Sun C, Hou Y, Tang Y, Zhu Z, Zhang Z, Zhang Y, Wang L, Zhao Q, Chen MG, Guo Z, Wang D, Ju W, Zhou Q, Wu L, He X. A comprehensive bioinformatics analysis on multiple Gene Expression Omnibus datasets of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Sci Rep 2018;8:7630. [PMID: 29769552 DOI: 10.1038/s41598-018-25658-4] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
4 Xiong L, Wu F, Wu Q, Xu L, Cheung OK, Kang W, Mok MT, Szeto LLM, Lun CY, Lung RW, Zhang J, Yu KH, Lee SD, Huang G, Wang CM, Liu J, Yu Z, Yu DY, Chou JL, Huang WH, Feng B, Cheung YS, Lai PB, Tan P, Wong N, Chan MW, Huang TH, Yip KY, Cheng AS, To KF. Aberrant enhancer hypomethylation contributes to hepatic carcinogenesis through global transcriptional reprogramming. Nat Commun 2019;10:335. [PMID: 30659195 DOI: 10.1038/s41467-018-08245-z] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 11.3] [Reference Citation Analysis]
5 Chen Y, Yousaf MN, Mehal WZ. Role of sterile inflammation in fatty liver diseases. Liver Research 2018;2:21-9. [DOI: 10.1016/j.livres.2018.02.003] [Reference Citation Analysis]
6 Mwinyi J, Boström AE, Pisanu C, Murphy SK, Erhart W, Schafmayer C, Hampe J, Moylan C, Schiöth HB. NAFLD is associated with methylation shifts with relevance for the expression of genes involved in lipoprotein particle composition. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2017;1862:314-23. [DOI: 10.1016/j.bbalip.2016.12.005] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
7 Zeybel M, Vatansever S, Hardy T, Sarı AA, Cakalağaoğlu F, Avcı A, Zeybel GL, Karahüseyinoğlu S, Bashton M, Mathers JC, Ünsal B, Mann J. DNA methylation profiling identifies novel markers of progression in hepatitis B-related chronic liver disease. Clin Epigenetics 2016;8:48. [PMID: 27152124 DOI: 10.1186/s13148-016-0218-1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
8 Miller BF, Petrykowska HM, Elnitski L. Assessing ZNF154 methylation in patient plasma as a multicancer marker in liquid biopsies from colon, liver, ovarian and pancreatic cancer patients. Sci Rep 2021;11:221. [PMID: 33420235 DOI: 10.1038/s41598-020-80345-7] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Ma J, Nano J, Ding J, Zheng Y, Hennein R, Liu C, Speliotes EK, Huan T, Song C, Mendelson MM, Joehanes R, Long MT, Liang L, Smith JA, Reynolds LM, Ghanbari M, Muka T, van Meurs JBJ, Alferink LJM, Franco OH, Dehghan A, Ratliff S, Zhao W, Bielak L, Kardia SLR, Peyser PA, Ning H, VanWagner LB, Lloyd-Jones DM, Carr JJ, Greenland P, Lichtenstein AH, Hu FB, Liu Y, Hou L, Darwish Murad S, Levy D. A Peripheral Blood DNA Methylation Signature of Hepatic Fat Reveals a Potential Causal Pathway for Nonalcoholic Fatty Liver Disease. Diabetes 2019;68:1073-83. [PMID: 30936141 DOI: 10.2337/DB18-1193] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 5.7] [Reference Citation Analysis]
10 Moore A, Wu L, Chuang JC, Sun X, Luo X, Gopal P, Li L, Celen C, Zimmer M, Zhu H. Arid1a Loss Drives Nonalcoholic Steatohepatitis in Mice Through Epigenetic Dysregulation of Hepatic Lipogenesis and Fatty Acid Oxidation. Hepatology 2019;69:1931-45. [PMID: 30584660 DOI: 10.1002/hep.30487] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
11 Silva JP, van Booven D. Analysis of diet-induced differential methylation, expression, and interactions of lncRNA and protein-coding genes in mouse liver. Sci Rep 2018;8:11537. [PMID: 30069000 DOI: 10.1038/s41598-018-29993-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
12 Zhou D, Hlady RA, Schafer MJ, White TA, Liu C, Choi JH, Miller JD, Roberts LR, LeBrasseur NK, Robertson KD. High fat diet and exercise lead to a disrupted and pathogenic DNA methylome in mouse liver. Epigenetics 2017;12:55-69. [PMID: 27858497 DOI: 10.1080/15592294.2016.1261239] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 4.3] [Reference Citation Analysis]
13 Lin XH, Wu DD, Gao L, Zhang JY, Pan HT, Wang H, Li C, Zhang P, Guo MX, Wu YT, Tan YJ, Jin L, Xiang YQ, Li JX, Sheng JZ, Huang HF. Altered DNA methylation in neonates born large-for-gestational-age is associated with cardiometabolic risk in children. Oncotarget 2016;7:86511-21. [PMID: 27888796 DOI: 10.18632/oncotarget.13442] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
14 Haworth KE, Farrell WE, Emes RD, Ismail KM, Carroll WD, Hubball E, Rooney A, Yates AM, Mein C, Fryer AA. Methylation of the FGFR2 gene is associated with high birth weight centile in humans. Epigenomics 2014;6:477-91. [PMID: 25431941 DOI: 10.2217/epi.14.40] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 2.7] [Reference Citation Analysis]
15 Xu F, Guo W. The progress of epigenetics in the development and progression of non-alcoholic fatty liver disease. Liver Research 2020;4:118-23. [DOI: 10.1016/j.livres.2020.08.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
16 Alonso C, Fernández-Ramos D, Varela-Rey M, Martínez-Arranz I, Navasa N, Van Liempd SM, Lavín Trueba JL, Mayo R, Ilisso CP, de Juan VG, Iruarrizaga-Lejarreta M, delaCruz-Villar L, Mincholé I, Robinson A, Crespo J, Martín-Duce A, Romero-Gómez M, Sann H, Platon J, Van Eyk J, Aspichueta P, Noureddin M, Falcón-Pérez JM, Anguita J, Aransay AM, Martínez-Chantar ML, Lu SC, Mato JM. Metabolomic Identification of Subtypes of Nonalcoholic Steatohepatitis. Gastroenterology 2017;152:1449-1461.e7. [PMID: 28132890 DOI: 10.1053/j.gastro.2017.01.015] [Cited by in Crossref: 120] [Cited by in F6Publishing: 107] [Article Influence: 24.0] [Reference Citation Analysis]
17 Fan X, Li Y, Yi X, Chen G, Jin S, Dai Y, Cui B, Dai B, Lin H, Zhou D. Epigenome-wide DNA methylation profiling of portal vein tumor thrombosis (PVTT) tissues in hepatocellular carcinoma patients. Neoplasia 2020;22:630-43. [PMID: 33059309 DOI: 10.1016/j.neo.2020.09.007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Juanola O, Martínez-López S, Francés R, Gómez-Hurtado I. Non-Alcoholic Fatty Liver Disease: Metabolic, Genetic, Epigenetic and Environmental Risk Factors. Int J Environ Res Public Health 2021;18:5227. [PMID: 34069012 DOI: 10.3390/ijerph18105227] [Reference Citation Analysis]
19 Zhao F. Dysregulated Epigenetic Modifications in the Pathogenesis of NAFLD-HCC. In: Yu J, editor. Obesity, Fatty Liver and Liver Cancer. Singapore: Springer; 2018. pp. 79-93. [DOI: 10.1007/978-981-10-8684-7_7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
20 Chen HC, Chen YZ, Wang CH, Lin FJ. The nonalcoholic fatty liver disease-like phenotype and lowered serum VLDL are associated with decreased expression and DNA hypermethylation of hepatic ApoB in male offspring of ApoE deficient mothers fed a with Western diet. J Nutr Biochem 2020;77:108319. [PMID: 31926452 DOI: 10.1016/j.jnutbio.2019.108319] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
21 Wu P, Zhang M, Webster NJG. Alternative RNA Splicing in Fatty Liver Disease. Front Endocrinol (Lausanne) 2021;12:613213. [PMID: 33716968 DOI: 10.3389/fendo.2021.613213] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
22 Czaja AJ. Under-Evaluated or Unassessed Pathogenic Pathways in Autoimmune Hepatitis and Implications for Future Management. Dig Dis Sci 2018;63:1706-25. [DOI: 10.1007/s10620-018-5072-x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
23 Rodríguez-Sanabria JS, Escutia-Gutiérrez R, Rosas-Campos R, Armendáriz-Borunda JS, Sandoval-Rodríguez A. An Update in Epigenetics in Metabolic-Associated Fatty Liver Disease. Front Med (Lausanne) 2021;8:770504. [PMID: 35087844 DOI: 10.3389/fmed.2021.770504] [Reference Citation Analysis]
24 Drummer CIV, Saaoud F, Sun Y, Atar D, Xu K, Lu Y, Shao Y, Johnson C, Liu L, Shen H, Jhala NC, Jiang X, Wang H, Yang X. Hyperlipidemia May Synergize with Hypomethylation in Establishing Trained Immunity and Promoting Inflammation in NASH and NAFLD. J Immunol Res 2021;2021:3928323. [PMID: 34859106 DOI: 10.1155/2021/3928323] [Reference Citation Analysis]
25 Baker PR 2nd, Friedman JE. Mitochondrial role in the neonatal predisposition to developing nonalcoholic fatty liver disease. J Clin Invest 2018;128:3692-703. [PMID: 30168806 DOI: 10.1172/JCI120846] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 4.8] [Reference Citation Analysis]
26 Bradley MS, Burke EE, Grenier C, Amundsen CL, Murphy SK, Siddiqui NY. A genome-scale DNA methylation study in women with interstitial cystitis/bladder pain syndrome. Neurourol Urodyn 2018;37:1485-93. [PMID: 29363787 DOI: 10.1002/nau.23489] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
27 Hotta K, Kitamoto T, Kitamoto A, Ogawa Y, Honda Y, Kessoku T, Yoneda M, Imajo K, Tomeno W, Saito S, Nakajima A. Identification of the genomic region under epigenetic regulation during non-alcoholic fatty liver disease progression. Hepatol Res 2018;48:E320-34. [PMID: 29059699 DOI: 10.1111/hepr.12992] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.6] [Reference Citation Analysis]
28 Fuchs CD, Krivanec S, Steinacher D, Mlitz V, Wahlström A, Stahlman M, Claudel T, Scharnagl H, Stojakovic T, Marschall HU, Trauner M. Absence of Bsep/Abcb11 attenuates MCD diet-induced hepatic steatosis but aggravates inflammation in mice. Liver Int 2020;40:1366-77. [PMID: 32141703 DOI: 10.1111/liv.14423] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
29 Boursier J, Mueller O, Barret M, Machado M, Fizanne L, Araujo-Perez F, Guy CD, Seed PC, Rawls JF, David LA. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology. 2016;63:764-775. [PMID: 26600078 DOI: 10.1002/hep.28356 doi: 10.1002/hep.28356] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
30 Page A, Paoli P, Moran Salvador E, White S, French J, Mann J. Hepatic stellate cell transdifferentiation involves genome-wide remodeling of the DNA methylation landscape. J Hepatol 2016;64:661-73. [PMID: 26632634 DOI: 10.1016/j.jhep.2015.11.024] [Cited by in Crossref: 69] [Cited by in F6Publishing: 65] [Article Influence: 9.9] [Reference Citation Analysis]
31 Guo T, Dai Z, You K, Battaglia-Hsu SF, Feng J, Wang F, Li B, Yang J, Li Z. S-adenosylmethionine upregulates the angiotensin receptor-binding protein ATRAP via the methylation of HuR in NAFLD. Cell Death Dis 2021;12:306. [PMID: 33753727 DOI: 10.1038/s41419-021-03591-1] [Reference Citation Analysis]
32 Hyun J, Jung Y. DNA Methylation in Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2020;21:E8138. [PMID: 33143364 DOI: 10.3390/ijms21218138] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
33 Barcena-Varela M, Lujambio A. The Endless Sources of Hepatocellular Carcinoma Heterogeneity. Cancers (Basel) 2021;13:2621. [PMID: 34073538 DOI: 10.3390/cancers13112621] [Reference Citation Analysis]
34 de Mello VD, Matte A, Perfilyev A, Männistö V, Rönn T, Nilsson E, Käkelä P, Ling C, Pihlajamäki J. Human liver epigenetic alterations in non-alcoholic steatohepatitis are related to insulin action. Epigenetics 2017;12:287-95. [PMID: 28277977 DOI: 10.1080/15592294.2017.1294305] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 6.8] [Reference Citation Analysis]
35 El Taghdouini A, Sørensen AL, Reiner AH, Coll M, Verhulst S, Mannaerts I, Øie CI, Smedsrød B, Najimi M, Sokal E. Genome-wide analysis of DNA methylation and gene expression patterns in purified, uncultured human liver cells and activated hepatic stellate cells. Oncotarget. 2015;6:26729-26745. [PMID: 26353929 DOI: 10.18632/oncotarget.4925] [Cited by in Crossref: 39] [Cited by in F6Publishing: 41] [Article Influence: 6.5] [Reference Citation Analysis]
36 Dallio M, Romeo M, Gravina AG, Masarone M, Larussa T, Abenavoli L, Persico M, Loguercio C, Federico A. Nutrigenomics and Nutrigenetics in Metabolic- (Dysfunction) Associated Fatty Liver Disease: Novel Insights and Future Perspectives. Nutrients 2021;13:1679. [PMID: 34063372 DOI: 10.3390/nu13051679] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
37 Arechederra M, Recalde M, Gárate-Rascón M, Fernández-Barrena MG, Ávila MA, Berasain C. Epigenetic Biomarkers for the Diagnosis and Treatment of Liver Disease. Cancers (Basel) 2021;13:1265. [PMID: 33809263 DOI: 10.3390/cancers13061265] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
38 Pedroza-diaz J, Arroyave-ospina JC, Serna Salas S, Moshage H. Modulation of Oxidative Stress-Induced Senescence during Non-Alcoholic Fatty Liver Disease. Antioxidants 2022;11:975. [DOI: 10.3390/antiox11050975] [Reference Citation Analysis]
39 Noureddin M, Mato JM, Lu SC. Nonalcoholic fatty liver disease: update on pathogenesis, diagnosis, treatment and the role of S-adenosylmethionine. Exp Biol Med (Maywood). 2015;240:809-820. [PMID: 25873078 DOI: 10.1177/1535370215579161] [Cited by in Crossref: 57] [Cited by in F6Publishing: 43] [Article Influence: 8.1] [Reference Citation Analysis]
40 Cebola I. Liver gene regulatory networks: Contributing factors to nonalcoholic fatty liver disease. Wiley Interdiscip Rev Syst Biol Med 2020;12:e1480. [PMID: 32020788 DOI: 10.1002/wsbm.1480] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
41 Duwaerts CC, Maiers JL. ER Disposal Pathways in Chronic Liver Disease: Protective, Pathogenic, and Potential Therapeutic Targets. Front Mol Biosci 2022;8:804097. [DOI: 10.3389/fmolb.2021.804097] [Reference Citation Analysis]
42 Zekri AN, Raafat AM, Elmasry S, Bahnassy AA, Saad Y, Dabaon HA, El-kassas M, Shousha HI, Nassar AA, El-dosouky MA, Hussein N. Promotor methylation: Does it affect response to therapy in chronic hepatitis C (G4) or fibrosis? Annals of Hepatology 2014;13:518-24. [DOI: 10.1016/s1665-2681(19)31251-7] [Cited by in Crossref: 5] [Article Influence: 0.6] [Reference Citation Analysis]
43 Chen Y, Yousaf MN, Mehal WZ. Role of sterile inflammation in fatty liver diseases. Liver Research 2018;2:21-9. [DOI: 10.1016/j.livres.2018.02.003] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
44 Lauschke VM, Ingelman-Sundberg M. The Importance of Patient-Specific Factors for Hepatic Drug Response and Toxicity. Int J Mol Sci 2016;17:E1714. [PMID: 27754327 DOI: 10.3390/ijms17101714] [Cited by in Crossref: 46] [Cited by in F6Publishing: 34] [Article Influence: 7.7] [Reference Citation Analysis]
45 Novo E, Bocca C, Foglia B, Protopapa F, Maggiora M, Parola M, Cannito S. Liver fibrogenesis: un update on established and emerging basic concepts. Arch Biochem Biophys 2020;689:108445. [PMID: 32524998 DOI: 10.1016/j.abb.2020.108445] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
46 Czaja AJ. Epigenetic changes and their implications in autoimmune hepatitis. Eur J Clin Invest. 2018;48. [PMID: 29383703 DOI: 10.1111/eci.12899] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
47 Lee S, Woo DC, Kang J, Ra M, Kim KH, Lee SR, Choi DK, Lee H, Hong KB, Min SH, Lee Y, Yu JH. The Role of the Histone Methyltransferase EZH2 in Liver Inflammation and Fibrosis in STAM NASH Mice. Biology (Basel) 2020;9:E93. [PMID: 32370249 DOI: 10.3390/biology9050093] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
48 Zeybel M, Hardy T, Robinson SM, Fox C, Anstee QM, Ness T, Masson S, Mathers JC, French J, White S, Mann J. Differential DNA methylation of genes involved in fibrosis progression in non-alcoholic fatty liver disease and alcoholic liver disease. Clin Epigenetics 2015;7:25. [PMID: 25859289 DOI: 10.1186/s13148-015-0056-6] [Cited by in Crossref: 86] [Cited by in F6Publishing: 82] [Article Influence: 12.3] [Reference Citation Analysis]
49 Campisano S, La Colla A, Echarte SM, Chisari AN. Interplay between early-life malnutrition, epigenetic modulation of the immune function and liver diseases. Nutr Res Rev 2019;32:128-45. [PMID: 30707092 DOI: 10.1017/S0954422418000239] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
50 Perakakis N, Stefanakis K, Mantzoros CS. The role of omics in the pathophysiology, diagnosis and treatment of non-alcoholic fatty liver disease. Metabolism 2020;111S:154320. [PMID: 32712221 DOI: 10.1016/j.metabol.2020.154320] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
51 Sun T, Huang Z, Liang WC, Yin J, Lin WY, Wu J, Vernes JM, Lutman J, Caplazi P, Jeet S, Wong T, Wong M, DePianto DJ, Morshead KB, Sun KH, Modrusan Z, Vander Heiden JA, Abbas AR, Zhang H, Xu M, N'Diaye EN, Roose-Girma M, Wolters PJ, Yadav R, Sukumaran S, Ghilardi N, Corpuz R, Emson C, Meng YG, Ramalingam TR, Lupardus P, Brightbill HD, Seshasayee D, Wu Y, Arron JR. TGFβ2 and TGFβ3 isoforms drive fibrotic disease pathogenesis. Sci Transl Med 2021;13:eabe0407. [PMID: 34349032 DOI: 10.1126/scitranslmed.abe0407] [Reference Citation Analysis]
52 Kim H, Worsley O, Yang E, Purbojati RW, Liang AL, Tan W, Moses DID, Hartono S, Fan V, Lim TKH, Schuster SC, Foo RS, Chow PKH, Pettersson S. Persistent changes in liver methylation and microbiome composition following reversal of diet-induced non-alcoholic-fatty liver disease. Cell Mol Life Sci 2019;76:4341-54. [PMID: 31119300 DOI: 10.1007/s00018-019-03114-4] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
53 Ferrari A, Longo R, Silva R, Mitro N, Caruso D, De Fabiani E, Crestani M. Epigenome modifiers and metabolic rewiring: New frontiers in therapeutics. Pharmacology & Therapeutics 2019;193:178-93. [DOI: 10.1016/j.pharmthera.2018.08.008] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
54 Brunt EM, Wong VW, Nobili V, Day CP, Sookoian S, Maher JJ, Bugianesi E, Sirlin CB, Neuschwander-tetri BA, Rinella ME. Nonalcoholic fatty liver disease. Nat Rev Dis Primers 2015;1. [DOI: 10.1038/nrdp.2015.80] [Cited by in Crossref: 302] [Cited by in F6Publishing: 288] [Article Influence: 43.1] [Reference Citation Analysis]
55 Lu P, Yang G, Jiang L, He W, Wu W, Qi L, Shen S, Rao J, Zhang P, Xue Z, Jiang C, Fan G, Zhu X. Characterizing disease progression of nonalcoholic steatohepatitis in Leptin-deficient rats by integrated transcriptome analysis. Exp Biol Med (Maywood) 2021;246:678-87. [PMID: 33302736 DOI: 10.1177/1535370220976530] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
56 Li F, Ou Q, Lai Z, Pu L, Chen X, Wang L, Sun L, Liang X, Wang Y, Xu H, Wei J, Wu F, Zhu H, Wang L. The Co-occurrence of Chronic Hepatitis B and Fibrosis Is Associated With a Decrease in Hepatic Global DNA Methylation Levels in Patients With Non-alcoholic Fatty Liver Disease. Front Genet 2021;12:671552. [PMID: 34335686 DOI: 10.3389/fgene.2021.671552] [Reference Citation Analysis]
57 Martínez-Uña M, Varela-Rey M, Mestre D, Fernández-Ares L, Fresnedo O, Fernandez-Ramos D, Gutiérrez-de Juan V, Martin-Guerrero I, García-Orad A, Luka Z, Wagner C, Lu SC, García-Monzón C, Finnell RH, Aurrekoetxea I, Buqué X, Martínez-Chantar ML, Mato JM, Aspichueta P. S-Adenosylmethionine increases circulating very-low density lipoprotein clearance in non-alcoholic fatty liver disease. J Hepatol 2015;62:673-81. [PMID: 25457203 DOI: 10.1016/j.jhep.2014.10.019] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 3.6] [Reference Citation Analysis]
58 Hotta K, Kitamoto A, Kitamoto T, Ogawa Y, Honda Y, Kessoku T, Yoneda M, Imajo K, Tomeno W, Saito S, Nakajima A. Identification of differentially methylated region (DMR) networks associated with progression of nonalcoholic fatty liver disease. Sci Rep 2018;8:13567. [PMID: 30206277 DOI: 10.1038/s41598-018-31886-5] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
59 Komatsu M, Kanda T, Urai H, Kurokochi A, Kitahama R, Shigaki S, Ono T, Yukioka H, Hasegawa K, Tokuyama H, Kawabe H, Wakino S, Itoh H. NNMT activation can contribute to the development of fatty liver disease by modulating the NAD + metabolism. Sci Rep 2018;8:8637. [PMID: 29872122 DOI: 10.1038/s41598-018-26882-8] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 6.3] [Reference Citation Analysis]
60 Lyall MJ, Thomson JP, Cartier J, Ottaviano R, Kendall TJ, Meehan RR, Drake AJ. Non-alcoholic fatty liver disease (NAFLD) is associated with dynamic changes in DNA hydroxymethylation. Epigenetics 2020;15:61-71. [PMID: 31389294 DOI: 10.1080/15592294.2019.1649527] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
61 Moylan CA, Mavis AM, Jima D, Maguire R, Bashir M, Hyun J, Cabezas MN, Parish A, Niedzwiecki D, Diehl AM, Murphy SK, Abdelmalek MF, Hoyo C. Alterations in DNA methylation associate with fatty liver and metabolic abnormalities in a multi-ethnic cohort of pre-teenage children. Epigenetics 2022;:1-16. [PMID: 35188871 DOI: 10.1080/15592294.2022.2039850] [Reference Citation Analysis]
62 Moran-Salvador E, Mann J. Epigenetics and Liver Fibrosis. Cell Mol Gastroenterol Hepatol 2017;4:125-34. [PMID: 28593184 DOI: 10.1016/j.jcmgh.2017.04.007] [Cited by in Crossref: 57] [Cited by in F6Publishing: 58] [Article Influence: 11.4] [Reference Citation Analysis]
63 Boursier J, Mueller O, Barret M, Machado M, Fizanne L, Araujo-Perez F, Guy CD, Seed PC, Rawls JF, David LA, Hunault G, Oberti F, Calès P, Diehl AM. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology 2016;63:764-75. [PMID: 26600078 DOI: 10.1002/hep.28356] [Cited by in Crossref: 644] [Cited by in F6Publishing: 566] [Article Influence: 107.3] [Reference Citation Analysis]
64 Mato JM, Martínez-Chantar ML, Lu SC. Systems biology for hepatologists. Hepatology 2014;60:736-43. [PMID: 24449428 DOI: 10.1002/hep.27023] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
65 Bedossa P, Patel K. Biopsy and Noninvasive Methods to Assess Progression of Nonalcoholic Fatty Liver Disease. Gastroenterology. 2016;150:1811-1822.e4. [PMID: 27003601 DOI: 10.1053/j.gastro.2016.03.008] [Cited by in Crossref: 64] [Cited by in F6Publishing: 57] [Article Influence: 10.7] [Reference Citation Analysis]
66 Barbara M, Scott A, Alkhouri N. New insights into genetic predisposition and novel therapeutic targets for nonalcoholic fatty liver disease. Hepatobiliary Surg Nutr 2018;7:372-81. [PMID: 30498712 DOI: 10.21037/hbsn.2018.08.05] [Cited by in Crossref: 9] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
67 Meijnikman AS, Herrema H, Scheithauer TPM, Kroon J, Nieuwdorp M, Groen AK. Evaluating causality of cellular senescence in non-alcoholic fatty liver disease. JHEP Rep 2021;3:100301. [PMID: 34113839 DOI: 10.1016/j.jhepr.2021.100301] [Reference Citation Analysis]
68 Lim HJ, Kim M. EZH2 as a Potential Target for NAFLD Therapy. Int J Mol Sci 2020;21:E8617. [PMID: 33207561 DOI: 10.3390/ijms21228617] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
69 Ramani K, Lu SC. Methionine adenosyltransferases in liver health and diseases. Liver Res 2017;1:103-11. [PMID: 29170720 DOI: 10.1016/j.livres.2017.07.002] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
70 Sun L, Fan Z, Chen J, Tian W, Li M, Xu H, Wu X, Shao J, Bian Y, Fang M, Xu Y. Transcriptional repression of SIRT1 by protein inhibitor of activated STAT 4 (PIAS4) in hepatic stellate cells contributes to liver fibrosis. Sci Rep 2016;6:28432. [PMID: 27323886 DOI: 10.1038/srep28432] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 3.3] [Reference Citation Analysis]
71 Maude H, Sanchez-Cabanillas C, Cebola I. Epigenetics of Hepatic Insulin Resistance. Front Endocrinol (Lausanne) 2021;12:681356. [PMID: 34046015 DOI: 10.3389/fendo.2021.681356] [Reference Citation Analysis]
72 Šeda O, Cahová M, Míková I, Šedová L, Daňková H, Heczková M, Brátová M, Ďásková N, Erhartová D, Čapek V, Chylíková B, Trunečka P. Hepatic Gene Expression Profiles Differentiate Steatotic and Non-steatotic Grafts in Liver Transplant Recipients. Front Endocrinol (Lausanne) 2019;10:270. [PMID: 31114547 DOI: 10.3389/fendo.2019.00270] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
73 Papatheodoridi AM, Chrysavgis L, Koutsilieris M, Chatzigeorgiou A. The Role of Senescence in the Development of Nonalcoholic Fatty Liver Disease and Progression to Nonalcoholic Steatohepatitis. Hepatology 2020;71:363-74. [PMID: 31230380 DOI: 10.1002/hep.30834] [Cited by in Crossref: 81] [Cited by in F6Publishing: 74] [Article Influence: 40.5] [Reference Citation Analysis]
74 Tryndyak VP, Han T, Fuscoe JC, Ross SA, Beland FA, Pogribny IP. Status of hepatic DNA methylome predetermines and modulates the severity of non-alcoholic fatty liver injury in mice. BMC Genomics 2016;17:298. [PMID: 27103143 DOI: 10.1186/s12864-016-2617-2] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
75 Gerhard GS, Malenica I, Llaci L, Chu X, Petrick AT, Still CD, DiStefano JK. Differentially methylated loci in NAFLD cirrhosis are associated with key signaling pathways. Clin Epigenetics. 2018;10:93. [PMID: 30005700 DOI: 10.1186/s13148-018-0525-9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
76 Nishida N, Yada N, Hagiwara S, Sakurai T, Kitano M, Kudo M. Unique features associated with hepatic oxidative DNA damage and DNA methylation in non-alcoholic fatty liver disease: DNA oxidation and methylation in NAFLD. Journal of Gastroenterology and Hepatology 2016;31:1646-53. [DOI: 10.1111/jgh.13318] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 4.0] [Reference Citation Analysis]
77 Zhang X, Asllanaj E, Amiri M, Portilla-Fernandez E, Bramer WM, Nano J, Voortman T, Pan Q, Ghanbari M. Deciphering the role of epigenetic modifications in fatty liver disease: A systematic review. Eur J Clin Invest 2021;51:e13479. [PMID: 33350463 DOI: 10.1111/eci.13479] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
78 Arendt BM, Teterina A, Pettinelli P, Comelli EM, Ma DWL, Fung SK, McGilvray ID, Fischer SE, Allard JP. Cancer-related gene expression is associated with disease severity and modifiable lifestyle factors in non-alcoholic fatty liver disease. Nutrition. 2019;62:100-107. [PMID: 30870804 DOI: 10.1016/j.nut.2018.12.001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
79 Del Río-Moreno M, Alors-Pérez E, González-Rubio S, Ferrín G, Reyes O, Rodríguez-Perálvarez M, Sánchez-Frías ME, Sánchez-Sánchez R, Ventura S, López-Miranda J, Kineman RD, de la Mata M, Castaño JP, Gahete MD, Luque RM. Dysregulation of the Splicing Machinery Is Associated to the Development of Nonalcoholic Fatty Liver Disease. J Clin Endocrinol Metab 2019;104:3389-402. [PMID: 30901032 DOI: 10.1210/jc.2019-00021] [Cited by in Crossref: 29] [Cited by in F6Publishing: 33] [Article Influence: 9.7] [Reference Citation Analysis]
80 Stevanović J, Beleza J, Coxito P, Ascensão A, Magalhães J. Physical exercise and liver "fitness": Role of mitochondrial function and epigenetics-related mechanisms in non-alcoholic fatty liver disease. Mol Metab 2020;32:1-14. [PMID: 32029220 DOI: 10.1016/j.molmet.2019.11.015] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 6.7] [Reference Citation Analysis]
81 Tian Y, Mok MT, Yang P, Cheng AS. Epigenetic Activation of Wnt/β-Catenin Signaling in NAFLD-Associated Hepatocarcinogenesis. Cancers (Basel) 2016;8:E76. [PMID: 27556491 DOI: 10.3390/cancers8080076] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 4.3] [Reference Citation Analysis]
82 Ramani K, Robinson AE, Berlind J, Fan W, Abeynayake A, Binek A, Barbier-Torres L, Noureddin M, Nissen NN, Yildirim Z, Erbay E, Mato JM, Van Eyk JE, Lu SC. S-adenosylmethionine inhibits la ribonucleoprotein domain family member 1 in murine liver and human liver cancer cells. Hepatology 2022;75:280-96. [PMID: 34449924 DOI: 10.1002/hep.32130] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
83 Tryndyak VP, Willett RA, Avigan MI, Sanyal AJ, Beland FA, Rusyn I, Pogribny IP. Non-Alcoholic fatty liver disease-associated DNA methylation and gene expression alterations in the livers of Collaborative Cross mice fed an obesogenic high-fat and high-sucrose diet. Epigenetics 2022;:1-15. [PMID: 35324388 DOI: 10.1080/15592294.2022.2043590] [Reference Citation Analysis]
84 Jonscher KR, Abrams J, Friedman JE. Maternal Diet Alters Trained Immunity in the Pathogenesis of Pediatric NAFLD. J Cell Immunol 2020;2:315-25. [PMID: 33426540 DOI: 10.33696/immunology.2.061] [Reference Citation Analysis]
85 Jueliger S, Lyons J, Cannito S, Pata I, Pata P, Shkolnaya M, Lo Re O, Peyrou M, Villarroya F, Pazienza V, Rappa F, Cappello F, Azab M, Taverna P, Vinciguerra M. Efficacy and epigenetic interactions of novel DNA hypomethylating agent guadecitabine (SGI-110) in preclinical models of hepatocellular carcinoma. Epigenetics 2016;11:709-20. [PMID: 27646854 DOI: 10.1080/15592294.2016.1214781] [Cited by in Crossref: 37] [Cited by in F6Publishing: 40] [Article Influence: 6.2] [Reference Citation Analysis]
86 Pastore A, Alisi A, di Giovamberardino G, Crudele A, Ceccarelli S, Panera N, Dionisi-Vici C, Nobili V. Plasma levels of homocysteine and cysteine increased in pediatric NAFLD and strongly correlated with severity of liver damage. Int J Mol Sci 2014;15:21202-14. [PMID: 25407526 DOI: 10.3390/ijms151121202] [Cited by in Crossref: 53] [Cited by in F6Publishing: 49] [Article Influence: 6.6] [Reference Citation Analysis]
87 Jurado-ruiz E, Varela LM, Luque A, Berná G, Cahuana G, Martinez-force E, Gallego-durán R, Soria B, de Roos B, Romero Gómez M, Martín F. An extra virgin olive oil rich diet intervention ameliorates the nonalcoholic steatohepatitis induced by a high-fat “Western-type” diet in mice. Mol Nutr Food Res 2017;61:1600549. [DOI: 10.1002/mnfr.201600549] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 3.7] [Reference Citation Analysis]
88 Webster NJG. Alternative RNA Splicing in the Pathogenesis of Liver Disease. Front Endocrinol (Lausanne) 2017;8:133. [PMID: 28680417 DOI: 10.3389/fendo.2017.00133] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
89 Okazaki I, Noro T, Tsutsui N, Yamanouchi E, Kuroda H, Nakano M, Yokomori H, Inagaki Y. Fibrogenesis and Carcinogenesis in Nonalcoholic Steatohepatitis (NASH): Involvement of Matrix Metalloproteinases (MMPs) and Tissue Inhibitors of Metalloproteinase (TIMPs). Cancers (Basel). 2014;6:1220-1255. [PMID: 24978432 DOI: 10.3390/cancers6031220] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 4.3] [Reference Citation Analysis]
90 Nikolaou N, Gathercole LL, Marchand L, Althari S, Dempster NJ, Green CJ, van de Bunt M, McNeil C, Arvaniti A, Hughes BA, Sgromo B, Gillies RS, Marschall HU, Penning TM, Ryan J, Arlt W, Hodson L, Tomlinson JW. AKR1D1 is a novel regulator of metabolic phenotype in human hepatocytes and is dysregulated in non-alcoholic fatty liver disease. Metabolism 2019;99:67-80. [PMID: 31330134 DOI: 10.1016/j.metabol.2019.153947] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 7.3] [Reference Citation Analysis]
91 Chrysavgis L, Papatheodoridi A, Cholongitas E, Koutsilieris M, Papatheodoridis G, Chatzigeorgiou A. Significance of Circulating Cell-Free DNA Species in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2021;22:8849. [PMID: 34445552 DOI: 10.3390/ijms22168849] [Reference Citation Analysis]
92 Zubiete-Franco I, García-Rodríguez JL, Martínez-Uña M, Martínez-Lopez N, Woodhoo A, Juan VG, Beraza N, Lage-Medina S, Andrade F, Fernandez ML, Aldámiz-Echevarría L, Fernández-Ramos D, Falcon-Perez JM, Lopitz-Otsoa F, Fernandez-Tussy P, Barbier-Torres L, Luka Z, Wagner C, García-Monzón C, Lu SC, Aspichueta P, Mato JM, Martínez-Chantar ML, Varela-Rey M. Methionine and S-adenosylmethionine levels are critical regulators of PP2A activity modulating lipophagy during steatosis. J Hepatol 2016;64:409-18. [PMID: 26394163 DOI: 10.1016/j.jhep.2015.08.037] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 5.3] [Reference Citation Analysis]
93 Sun Q, Tang L, Wang M, Zhu P, Li Y, Ma H, Huang O, Hong L, Li G, Byrne CD, Targher G, Liu W, Lu Y, Ding J, Zheng M. Potential Blood DNA Methylation Biomarker Genes for Diagnosis of Liver Fibrosis in Patients With Biopsy-Proven Non-alcoholic Fatty Liver Disease. Front Med 2022;9:864570. [DOI: 10.3389/fmed.2022.864570] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
94 Dreval K, Tryndyak V, de Conti A, Beland FA, Pogribny IP. Gene Expression and DNA Methylation Alterations During Non-alcoholic Steatohepatitis-Associated Liver Carcinogenesis. Front Genet 2019;10:486. [PMID: 31191608 DOI: 10.3389/fgene.2019.00486] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
95 Zgheib NK, Branch RA. Drug metabolism and liver disease: a drug-gene-environment interaction. Drug Metab Rev 2017;49:35-55. [PMID: 27957864 DOI: 10.1080/03602532.2016.1271807] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
96 Pirola CJ, Scian R, Gianotti TF, Dopazo H, Rohr C, Martino JS, Castaño GO, Sookoian S. Epigenetic Modifications in the Biology of Nonalcoholic Fatty Liver Disease: The Role of DNA Hydroxymethylation and TET Proteins. Medicine (Baltimore) 2015;94:e1480. [PMID: 26356709 DOI: 10.1097/MD.0000000000001480] [Cited by in Crossref: 44] [Cited by in F6Publishing: 27] [Article Influence: 6.3] [Reference Citation Analysis]
97 Tian W, Xu Y. Decoding liver injury: A regulatory role for histone modifications. The International Journal of Biochemistry & Cell Biology 2015;67:188-93. [DOI: 10.1016/j.biocel.2015.03.009] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
98 Sun C, Fan JG, Qiao L. Potential epigenetic mechanism in non-alcoholic Fatty liver disease. Int J Mol Sci. 2015;16:5161-5179. [PMID: 25751727 DOI: 10.3390/ijms16035161] [Cited by in Crossref: 53] [Cited by in F6Publishing: 46] [Article Influence: 7.6] [Reference Citation Analysis]
99 Wu J, Zhang R, Shen F, Yang R, Zhou D, Cao H, Chen G, Pan Q, Fan J. Altered DNA Methylation Sites in Peripheral Blood Leukocytes from Patients with Simple Steatosis and Nonalcoholic Steatohepatitis (NASH). Med Sci Monit 2018;24:6946-67. [PMID: 30270343 DOI: 10.12659/MSM.909747] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
100 Nobili V, Alisi A, Valenti L, Miele L, Feldstein AE, Alkhouri N. NAFLD in children: new genes, new diagnostic modalities and new drugs. Nat Rev Gastroenterol Hepatol 2019;16:517-30. [DOI: 10.1038/s41575-019-0169-z] [Cited by in Crossref: 65] [Cited by in F6Publishing: 66] [Article Influence: 21.7] [Reference Citation Analysis]
101 Tian Y, Wong VW, Chan HL, Cheng AS. Epigenetic regulation of hepatocellular carcinoma in non-alcoholic fatty liver disease. Semin Cancer Biol. 2013;23:471-482. [PMID: 24018165 DOI: 10.1016/j.semcancer.2013.08.010] [Cited by in Crossref: 51] [Cited by in F6Publishing: 48] [Article Influence: 5.7] [Reference Citation Analysis]
102 Jung S. Implications of publicly available genomic data resources in searching for therapeutic targets of obesity and type 2 diabetes. Exp Mol Med 2018;50:1-13. [PMID: 29674722 DOI: 10.1038/s12276-018-0066-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
103 De Chiara F, Heebøll S, Marrone G, Montoliu C, Hamilton-Dutoit S, Ferrandez A, Andreola F, Rombouts K, Grønbæk H, Felipo V, Gracia-Sancho J, Mookerjee RP, Vilstrup H, Jalan R, Thomsen KL. Urea cycle dysregulation in non-alcoholic fatty liver disease. J Hepatol 2018;69:905-15. [PMID: 29981428 DOI: 10.1016/j.jhep.2018.06.023] [Cited by in Crossref: 44] [Cited by in F6Publishing: 47] [Article Influence: 11.0] [Reference Citation Analysis]
104 Eslam M, Sanyal AJ, George J, Sanyal A, Neuschwander-tetri B, Tiribelli C, Kleiner DE, Brunt E, Bugianesi E, Yki-järvinen H, Grønbæk H, Cortez-pinto H, George J, Fan J, Valenti L, Abdelmalek M, Romero-gomez M, Rinella M, Arrese M, Eslam M, Bedossa P, Newsome PN, Anstee QM, Jalan R, Bataller R, Loomba R, Sookoian S, Sarin SK, Harrison S, Kawaguchi T, Wong VW, Ratziu V, Yilmaz Y, Younossi Z. MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology 2020;158:1999-2014.e1. [DOI: 10.1053/j.gastro.2019.11.312] [Cited by in Crossref: 428] [Cited by in F6Publishing: 423] [Article Influence: 214.0] [Reference Citation Analysis]
105 Fuchs CD, Claudel T, Scharnagl H, Stojakovic T, Trauner M. FXR controls CHOP expression in steatohepatitis. FEBS Lett 2017;591:3360-8. [PMID: 28895119 DOI: 10.1002/1873-3468.12845] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
106 Foulds CE, Treviño LS, York B, Walker CL. Endocrine-disrupting chemicals and fatty liver disease. Nat Rev Endocrinol 2017;13:445-57. [PMID: 28524171 DOI: 10.1038/nrendo.2017.42] [Cited by in Crossref: 95] [Cited by in F6Publishing: 89] [Article Influence: 19.0] [Reference Citation Analysis]
107 Gallego-Durán R, Romero-Gómez M. Epigenetic mechanisms in non-alcoholic fatty liver disease: An emerging field. World J Hepatol 2015; 7(24): 2497-2502 [PMID: 26523202 DOI: 10.4254/wjh.v7.i24.2497] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 3.7] [Reference Citation Analysis]
108 Fernández-Tussy P, Fernández-Ramos D, Lopitz-Otsoa F, Simón J, Barbier-Torres L, Gomez-Santos B, Nuñez-Garcia M, Azkargorta M, Gutiérrez-de Juan V, Serrano-Macia M, Rodríguez-Agudo R, Iruzubieta P, Anguita J, Castro RE, Champagne D, Rincón M, Elortza F, Arslanow A, Krawczyk M, Lammert F, Kirchmeyer M, Behrmann I, Crespo J, Lu SC, Mato JM, Varela-Rey M, Aspichueta P, Delgado TC, Martínez-Chantar ML. miR-873-5p targets mitochondrial GNMT-Complex II interface contributing to non-alcoholic fatty liver disease. Mol Metab 2019;29:40-54. [PMID: 31668391 DOI: 10.1016/j.molmet.2019.08.008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
109 Machado MV, Michelotti GA, Xie G, Almeida Pereira T, Boursier J, Bohnic B, Guy CD, Diehl AM. Mouse models of diet-induced nonalcoholic steatohepatitis reproduce the heterogeneity of the human disease. PLoS One 2015;10:e0127991. [PMID: 26017539 DOI: 10.1371/journal.pone.0127991] [Cited by in Crossref: 159] [Cited by in F6Publishing: 172] [Article Influence: 22.7] [Reference Citation Analysis]
110 Suresh D, Srinivas AN, Kumar DP. Etiology of Hepatocellular Carcinoma: Special Focus on Fatty Liver Disease. Front Oncol 2020;10:601710. [PMID: 33330100 DOI: 10.3389/fonc.2020.601710] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
111 Abdelmalek MF, Day C. Sugar sweetened beverages and fatty liver disease: Rising concern and call to action. J Hepatol 2015;63:306-8. [PMID: 26036988 DOI: 10.1016/j.jhep.2015.05.021] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
112 Green CJ, Pramfalk C, Morten KJ, Hodson L. From whole body to cellular models of hepatic triglyceride metabolism: man has got to know his limitations. Am J Physiol Endocrinol Metab 2015;308:E1-20. [PMID: 25352434 DOI: 10.1152/ajpendo.00192.2014] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 3.1] [Reference Citation Analysis]
113 Chen F, Zhou Y, Wu Z, Li Y, Zhou W, Wang Y. Integrated Analysis of Key Genes and Pathways Involved in Nonalcoholic Steatohepatitis Improvement After Roux-en-Y Gastric Bypass Surgery. Front Endocrinol (Lausanne) 2020;11:611213. [PMID: 33603714 DOI: 10.3389/fendo.2020.611213] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
114 Krstic J, Galhuber M, Schulz TJ, Schupp M, Prokesch A. p53 as a Dichotomous Regulator of Liver Disease: The Dose Makes the Medicine. Int J Mol Sci 2018;19:E921. [PMID: 29558460 DOI: 10.3390/ijms19030921] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
115 Mann DA. Epigenetics in liver disease. Hepatology 2014;60:1418-25. [PMID: 24633972 DOI: 10.1002/hep.27131] [Cited by in Crossref: 98] [Cited by in F6Publishing: 89] [Article Influence: 12.3] [Reference Citation Analysis]
116 Torre P, Motta BM, Sciorio R, Masarone M, Persico M. Inflammation and Fibrogenesis in MAFLD: Role of the Hepatic Immune System. Front Med (Lausanne) 2021;8:781567. [PMID: 34957156 DOI: 10.3389/fmed.2021.781567] [Reference Citation Analysis]
117 Xin FZ, Zhao ZH, Zhang RN, Pan Q, Gong ZZ, Sun C, Fan JG. Folic acid attenuates high-fat diet-induced steatohepatitis via deacetylase SIRT1-dependent restoration of PPARα. World J Gastroenterol 2020; 26(18): 2203-2220 [PMID: 32476787 DOI: 10.3748/wjg.v26.i18.2203] [Cited by in CrossRef: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
118 Wegermann K, Henao R, Diehl AM, Murphy SK, Abdelmalek MF, Moylan CA. Branched chain amino acid transaminase 1 (BCAT1) is overexpressed and hypomethylated in patients with non-alcoholic fatty liver disease who experience adverse clinical events: A pilot study. PLoS One 2018;13:e0204308. [PMID: 30265706 DOI: 10.1371/journal.pone.0204308] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
119 Banini BA, Sanyal AJ. Nonalcoholic Fatty Liver Disease: Epidemiology, Pathogenesis, Natural History, Diagnosis, and Current Treatment Options. Clin Med Insights Ther 2016;8:75-84. [PMID: 28670148 DOI: 10.4137/cmt.s18885] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
120 Tommasi S, Besaratinia A. DNA Hydroxymethylation at the Interface of the Environment and Nonalcoholic Fatty Liver Disease. Int J Environ Res Public Health 2019;16:E2791. [PMID: 31387232 DOI: 10.3390/ijerph16152791] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
121 Noureddin M, Sanyal AJ. Pathogenesis of NASH: The Impact of Multiple Pathways. Curr Hepatol Rep 2018;17:350-60. [PMID: 31380156 DOI: 10.1007/s11901-018-0425-7] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 7.0] [Reference Citation Analysis]
122 D'Adamo E, Castorani V, Nobili V. The Liver in Children With Metabolic Syndrome. Front Endocrinol (Lausanne) 2019;10:514. [PMID: 31428049 DOI: 10.3389/fendo.2019.00514] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
123 Loomba R, Gindin Y, Jiang Z, Lawitz E, Caldwell S, Djedjos CS, Xu R, Chung C, Myers RP, Subramanian GM, Goodman Z, Charlton M, Afdhal NH, Diehl AM. DNA methylation signatures reflect aging in patients with nonalcoholic steatohepatitis. JCI Insight 2018;3:96685. [PMID: 29367468 DOI: 10.1172/jci.insight.96685] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 5.8] [Reference Citation Analysis]
124 Hotta K, Kikuchi M, Kitamoto T, Kitamoto A, Ogawa Y, Honda Y, Kessoku T, Kobayashi K, Yoneda M, Imajo K, Tomeno W, Nakaya A, Suzuki Y, Saito S, Nakajima A. Identification of core gene networks and hub genes associated with progression of non-alcoholic fatty liver disease by RNA sequencing. Hepatol Res 2017;47:1445-58. [PMID: 28219123 DOI: 10.1111/hepr.12877] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
125 Eslam M, George J. Genetic and epigenetic mechanisms of NASH. Hepatol Int 2016;10:394-406. [PMID: 26683320 DOI: 10.1007/s12072-015-9689-y] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 3.6] [Reference Citation Analysis]
126 Sodum N, Kumar G, Bojja SL, Kumar N, Rao CM. Epigenetics in NAFLD/NASH: Targets and therapy. Pharmacol Res 2021;167:105484. [PMID: 33771699 DOI: 10.1016/j.phrs.2021.105484] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
127 de Mello VD, Sehgal R, Männistö V, Klåvus A, Nilsson E, Perfilyev A, Kaminska D, Miao Z, Pajukanta P, Ling C, Hanhineva K, Pihlajamäki J. Serum aromatic and branched-chain amino acids associated with NASH demonstrate divergent associations with serum lipids. Liver Int 2021;41:754-63. [PMID: 33219609 DOI: 10.1111/liv.14743] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
128 Jia X, Zhai T. Integrated Analysis of Multiple Microarray Studies to Identify Novel Gene Signatures in Non-alcoholic Fatty Liver Disease. Front Endocrinol (Lausanne) 2019;10:599. [PMID: 31551930 DOI: 10.3389/fendo.2019.00599] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
129 Pedersen HD, Galsgaard ED, Christoffersen BØ, Cirera S, Holst D, Fredholm M, Latta M. NASH-inducing Diets in Göttingen Minipigs. J Clin Exp Hepatol 2020;10:211-21. [PMID: 32405177 DOI: 10.1016/j.jceh.2019.09.004] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
130 Barbier-Torres L, Fortner KA, Iruzubieta P, Delgado TC, Giddings E, Chen Y, Champagne D, Fernández-Ramos D, Mestre D, Gomez-Santos B, Varela-Rey M, de Juan VG, Fernández-Tussy P, Zubiete-Franco I, García-Monzón C, González-Rodríguez Á, Oza D, Valença-Pereira F, Fang Q, Crespo J, Aspichueta P, Tremblay F, Christensen BC, Anguita J, Martínez-Chantar ML, Rincón M. Silencing hepatic MCJ attenuates non-alcoholic fatty liver disease (NAFLD) by increasing mitochondrial fatty acid oxidation. Nat Commun 2020;11:3360. [PMID: 32620763 DOI: 10.1038/s41467-020-16991-2] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
131 Del Campo JA, Gallego-Durán R, Gallego P, Grande L. Genetic and Epigenetic Regulation in Nonalcoholic Fatty Liver Disease (NAFLD). Int J Mol Sci 2018;19:E911. [PMID: 29562725 DOI: 10.3390/ijms19030911] [Cited by in Crossref: 50] [Cited by in F6Publishing: 46] [Article Influence: 12.5] [Reference Citation Analysis]
132 Zaina S, Lund G. Connecting the Dots Between Fatty Acids, Mitochondrial Function, and DNA Methylation in Atherosclerosis. Curr Atheroscler Rep 2017;19:36. [PMID: 28735349 DOI: 10.1007/s11883-017-0673-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
133 Patel K, Shackel NA. Current status of fibrosis markers. Curr Opin Gastroenterol. 2014;30:253-259. [PMID: 24671009 DOI: 10.1097/mog.0000000000000059] [Cited by in Crossref: 32] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
134 Murray B, Barbier-Torres L, Fan W, Mato JM, Lu SC. Methionine adenosyltransferases in liver cancer. World J Gastroenterol 2019; 25(31): 4300-4319 [PMID: 31496615 DOI: 10.3748/wjg.v25.i31.4300] [Cited by in CrossRef: 16] [Cited by in F6Publishing: 12] [Article Influence: 5.3] [Reference Citation Analysis]
135 Lefebvre P, Lalloyer F, Baugé E, Pawlak M, Gheeraert C, Dehondt H, Vanhoutte J, Woitrain E, Hennuyer N, Mazuy C, Bobowski-Gérard M, Zummo FP, Derudas B, Driessen A, Hubens G, Vonghia L, Kwanten WJ, Michielsen P, Vanwolleghem T, Eeckhoute J, Verrijken A, Van Gaal L, Francque S, Staels B. Interspecies NASH disease activity whole-genome profiling identifies a fibrogenic role of PPARα-regulated dermatopontin. JCI Insight 2017;2:92264. [PMID: 28679947 DOI: 10.1172/jci.insight.92264] [Cited by in Crossref: 49] [Cited by in F6Publishing: 44] [Article Influence: 9.8] [Reference Citation Analysis]
136 Lyall MJ, Cartier J, Thomson JP, Cameron K, Meseguer-Ripolles J, O'Duibhir E, Szkolnicka D, Villarin BL, Wang Y, Blanco GR, Dunn WB, Meehan RR, Hay DC, Drake AJ. Modelling non-alcoholic fatty liver disease in human hepatocyte-like cells. Philos Trans R Soc Lond B Biol Sci 2018;373:20170362. [PMID: 29786565 DOI: 10.1098/rstb.2017.0362] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 5.3] [Reference Citation Analysis]
137 Yaskolka Meir A, Keller M, Müller L, Bernhart SH, Tsaban G, Zelicha H, Rinott E, Kaplan A, Gepner Y, Shelef I, Schwarzfuchs D, Ceglarek U, Stadler P, Blüher M, Stumvoll M, Kovacs P, Shai I. Effects of lifestyle interventions on epigenetic signatures of liver fat: Central randomized controlled trial. Liver Int 2021;41:2101-11. [PMID: 33938135 DOI: 10.1111/liv.14916] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
138 Fernández-Ramos D, Fernández-Tussy P, Lopitz-Otsoa F, Gutiérrez-de-Juan V, Navasa N, Barbier-Torres L, Zubiete-Franco I, Simón J, Fernández AF, Arbelaiz A, Aransay AM, Lavín JL, Beraza N, Perugorria MJ, Banales JM, Villa E, Fraga MF, Anguita J, Avila MA, Berasain C, Iruzibieta P, Crespo J, Lu SC, Varela-Rey M, Mato JM, Delgado TC, Martínez-Chantar ML. MiR-873-5p acts as an epigenetic regulator in early stages of liver fibrosis and cirrhosis. Cell Death Dis 2018;9:958. [PMID: 30237481 DOI: 10.1038/s41419-018-1014-y] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 6.5] [Reference Citation Analysis]
139 Hong M, Hwang JT, Shin EJ, Hur HJ, Kang K, Choi HK, Chung MY, Chung S, Sung MJ, Park JH. Genome-wide analysis of DNA methylation identifies novel differentially methylated regions associated with lipid accumulation improved by ethanol extracts of Allium tubersosum and Capsella bursa-pastoris in a cell model. PLoS One 2019;14:e0217877. [PMID: 31170227 DOI: 10.1371/journal.pone.0217877] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
140 Murray B, Peng H, Barbier-Torres L, Robinson AE, Li TWH, Fan W, Tomasi ML, Gottlieb RA, Van Eyk J, Lu Z, Martínez-Chantar ML, Liangpunsakul S, Skill NJ, Mato JM, Lu SC. Methionine Adenosyltransferase α1 Is Targeted to the Mitochondrial Matrix and Interacts with Cytochrome P450 2E1 to Lower Its Expression. Hepatology 2019;70:2018-34. [PMID: 31077594 DOI: 10.1002/hep.30762] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
141 Kitamoto T, Kitamoto A, Ogawa Y, Honda Y, Imajo K, Saito S, Yoneda M, Nakamura T, Nakajima A, Hotta K. Targeted-bisulfite sequence analysis of the methylation of CpG islands in genes encoding PNPLA3, SAMM50, and PARVB of patients with non-alcoholic fatty liver disease. J Hepatol. 2015;63:494-502. [PMID: 25776890 DOI: 10.1016/j.jhep.2015.02.049] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 5.6] [Reference Citation Analysis]
142 Verhulst S, van Os EA, De Smet V, Eysackers N, Mannaerts I, van Grunsven LA. Gene Signatures Detect Damaged Liver Sinusoidal Endothelial Cells in Chronic Liver Diseases. Front Med (Lausanne) 2021;8:750044. [PMID: 34746184 DOI: 10.3389/fmed.2021.750044] [Reference Citation Analysis]
143 Jonas W, Schürmann A. Genetic and epigenetic factors determining NAFLD risk. Mol Metab 2021;50:101111. [PMID: 33160101 DOI: 10.1016/j.molmet.2020.101111] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
144 Nikolova-Karakashian M. Sphingolipids at the Crossroads of NAFLD and Senescence. Adv Cancer Res 2018;140:155-90. [PMID: 30060808 DOI: 10.1016/bs.acr.2018.05.002] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
145 Ray K. NAFLD: Profiling NAFLD--liver gene expression and DNA methylation patterns to characterize disease severity. Nat Rev Gastroenterol Hepatol. 2013;10:565. [PMID: 23958603 DOI: 10.1038/nrgastro.2013.161] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.2] [Reference Citation Analysis]
146 Hardy T, Mann DA. Epigenetics in liver disease: from biology to therapeutics. Gut 2016;65:1895-905. [PMID: 27624887 DOI: 10.1136/gutjnl-2015-311292] [Cited by in Crossref: 87] [Cited by in F6Publishing: 88] [Article Influence: 14.5] [Reference Citation Analysis]
147 Tan X, Liu R, Zhang Y, Wang X, Wang J, Wang H, Zhao G, Zheng M, Wen J. Integrated analysis of the methylome and transcriptome of chickens with fatty liver hemorrhagic syndrome. BMC Genomics 2021;22:8. [PMID: 33407101 DOI: 10.1186/s12864-020-07305-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
148 Xia M, Bian H, Zhu X, Yan H, Chang X, Zhang L, Lin H, Hu X, Gao X. Serum folic acid levels are associated with the presence and severity of liver steatosis in Chinese adults. Clinical Nutrition 2018;37:1752-8. [DOI: 10.1016/j.clnu.2017.06.021] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
149 Liang N, Damdimopoulos A, Goñi S, Huang Z, Vedin LL, Jakobsson T, Giudici M, Ahmed O, Pedrelli M, Barilla S, Alzaid F, Mendoza A, Schröder T, Kuiper R, Parini P, Hollenberg A, Lefebvre P, Francque S, Van Gaal L, Staels B, Venteclef N, Treuter E, Fan R. Hepatocyte-specific loss of GPS2 in mice reduces non-alcoholic steatohepatitis via activation of PPARα. Nat Commun 2019;10:1684. [PMID: 30975991 DOI: 10.1038/s41467-019-09524-z] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
150 Lai Z, Chen J, Ding C, Wong K, Chen X, Pu L, Huang Q, Chen X, Cheng Z, Liu Y, Tan X, Zhu H, Wang L. Association of Hepatic Global DNA Methylation and Serum One-Carbon Metabolites with Histological Severity in Patients with NAFLD. Obesity (Silver Spring) 2020;28:197-205. [PMID: 31785086 DOI: 10.1002/oby.22667] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
151 Nishida N, Kudo M. Alteration of Epigenetic Profile in Human Hepatocellular Carcinoma and Its Clinical Implications. Liver Cancer 2014;3:417-27. [PMID: 26280003 DOI: 10.1159/000343860] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 2.6] [Reference Citation Analysis]
152 Sookoian S, Puri P, Castaño GO, Scian R, Mirshahi F, Sanyal AJ, Pirola CJ. Nonalcoholic steatohepatitis is associated with a state of betaine-insufficiency. Liver Int 2017;37:611-9. [PMID: 27614103 DOI: 10.1111/liv.13249] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 4.8] [Reference Citation Analysis]
153 Meroni M, Longo M, Rustichelli A, Dongiovanni P. Nutrition and Genetics in NAFLD: The Perfect Binomium. Int J Mol Sci 2020;21:E2986. [PMID: 32340286 DOI: 10.3390/ijms21082986] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 8.5] [Reference Citation Analysis]
154 Riordan JD, Nadeau JH. Modeling progressive non-alcoholic fatty liver disease in the laboratory mouse. Mamm Genome 2014;25:473-86. [PMID: 24802098 DOI: 10.1007/s00335-014-9521-3] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 2.8] [Reference Citation Analysis]
155 Schuster S, Cabrera D, Arrese M, Feldstein AE. Triggering and resolution of inflammation in NASH. Nat Rev Gastroenterol Hepatol. 2018;15:349-364. [PMID: 29740166 DOI: 10.1038/s41575-018-0009-6] [Cited by in Crossref: 197] [Cited by in F6Publishing: 196] [Article Influence: 65.7] [Reference Citation Analysis]
156 Werge MP, McCann A, Galsgaard ED, Holst D, Bugge A, Albrechtsen NJW, Gluud LL. The Role of the Transsulfuration Pathway in Non-Alcoholic Fatty Liver Disease. J Clin Med 2021;10:1081. [PMID: 33807699 DOI: 10.3390/jcm10051081] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
157 Geh D, Anstee QM, Reeves HL. NAFLD-Associated HCC: Progress and Opportunities. J Hepatocell Carcinoma 2021;8:223-39. [PMID: 33854987 DOI: 10.2147/JHC.S272213] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
158 Hagiwara S, Nishida N, Ueshima K, Minami Y, Komeda Y, Aoki T, Takita M, Morita M, Chishina H, Yoshida A, Ida H, Kudo M. Accumulation of Genetic and Epigenetic Alterations in the Background Liver and Emergence of Hepatocellular Carcinoma in Patients with Non-Alcoholic Fatty Liver Disease. Cells 2021;10:3257. [PMID: 34831479 DOI: 10.3390/cells10113257] [Reference Citation Analysis]
159 Aissa AF, Tryndyak VP, de Conti A, Rita Thomazela Machado A, Tuttis K, da Silva Machado C, Hernandes LC, Wellington da Silva Santos P, Mara Serpeloni J, P Pogribny I, Maria Greggi Antunes L. Epigenetic changes induced in mice liver by methionine-supplemented and methionine-deficient diets. Food Chem Toxicol 2022;163:112938. [PMID: 35314295 DOI: 10.1016/j.fct.2022.112938] [Reference Citation Analysis]
160 Eslam M, Valenti L, Romeo S. Genetics and epigenetics of NAFLD and NASH: Clinical impact. Journal of Hepatology 2018;68:268-79. [DOI: 10.1016/j.jhep.2017.09.003] [Cited by in Crossref: 284] [Cited by in F6Publishing: 282] [Article Influence: 71.0] [Reference Citation Analysis]
161 Kitada M, Ogura Y, Monno I, Xu J, Koya D. Methionine abrogates the renoprotective effect of a low-protein diet against diabetic kidney disease in obese rats with type 2 diabetes. Aging (Albany NY) 2020;12:4489-505. [PMID: 32145700 DOI: 10.18632/aging.102902] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
162 Johnson ND, Wu X, Still CD, Chu X, Petrick AT, Gerhard GS, Conneely KN, DiStefano JK. Differential DNA methylation and changing cell-type proportions as fibrotic stage progresses in NAFLD. Clin Epigenetics 2021;13:152. [PMID: 34353365 DOI: 10.1186/s13148-021-01129-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
163 Gallon J, Coto-Llerena M, Ercan C, Bianco G, Paradiso V, Nuciforo S, Taha-Melitz S, Meier MA, Boldanova T, Pérez-Del-Pulgar S, Rodríguez-Tajes S, von Flüe M, Soysal SD, Kollmar O, Llovet JM, Villanueva A, Terracciano LM, Heim MH, Ng CKY, Piscuoglio S. Epigenetic priming in chronic liver disease impacts the transcriptional and genetic landscapes of hepatocellular carcinoma. Mol Oncol 2021. [PMID: 34863035 DOI: 10.1002/1878-0261.13154] [Reference Citation Analysis]
164 Ferreira-Gonzalez S, Rodrigo-Torres D, Gadd VL, Forbes SJ. Cellular Senescence in Liver Disease and Regeneration. Semin Liver Dis 2021;41:50-66. [PMID: 33764485 DOI: 10.1055/s-0040-1722262] [Reference Citation Analysis]
165 Page A, Mann DA. Epigenetic regulation of liver fibrosis. Clin Res Hepatol Gastroenterol 2015;39 Suppl 1:S64-8. [PMID: 26189981 DOI: 10.1016/j.clinre.2015.05.013] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
166 Cai C, Song X, Yu C. Identification of genes in hepatocellular carcinoma induced by non-alcoholic fatty liver disease. Cancer Biomark 2020;29:69-78. [PMID: 32623384 DOI: 10.3233/CBM-190169] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
167 Machado MV, Cortez-Pinto H. Non-alcoholic fatty liver disease: What the clinician needs to know. World J Gastroenterol 2014; 20(36): 12956-12980 [PMID: 25278691 DOI: 10.3748/wjg.v20.i36.12956] [Cited by in CrossRef: 109] [Cited by in F6Publishing: 91] [Article Influence: 13.6] [Reference Citation Analysis]
168 Chen W, Wu X, Yan X, Xu A, Yang A, You H. Multitranscriptome analyses reveal prioritized genes specifically associated with liver fibrosis progression independent of etiology. Am J Physiol Gastrointest Liver Physiol 2019;316:G744-54. [PMID: 30920297 DOI: 10.1152/ajpgi.00339.2018] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
169 Sinton MC, Hay DC, Drake AJ. Metabolic control of gene transcription in non-alcoholic fatty liver disease: the role of the epigenome. Clin Epigenetics 2019;11:104. [PMID: 31319896 DOI: 10.1186/s13148-019-0702-5] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
170 Czaja AJ. Review article: next-generation transformative advances in the pathogenesis and management of autoimmune hepatitis. Aliment Pharmacol Ther 2017;46:920-37. [DOI: 10.1111/apt.14324] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
171 Yang Y, Chi Z, Gao R, Lei Z. The Roles of Natural Compounds in Epigenetics. Natural Product Communications 2018;13:1934578X1801300. [DOI: 10.1177/1934578x1801300835] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
172 Pogribny IP, Dreval K, Kindrat I, Melnyk S, Jimenez L, de Conti A, Tryndyak V, Pogribna M, Ortega JF, James SJ. Epigenetically mediated inhibition of S-adenosylhomocysteine hydrolase and the associated dysregulation of 1-carbon metabolism in nonalcoholic steatohepatitis and hepatocellular carcinoma. FASEB J. 2018;32:1591-1601. [PMID: 29127188 DOI: 10.1096/fj.201700866r] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 3.8] [Reference Citation Analysis]
173 Li YY, Tang D, Du YL, Cao CY, Nie YQ, Cao J, Zhou YJ. Fatty liver mediated by peroxisome proliferator-activated receptor-α DNA methylation can be reversed by a methylation inhibitor and curcumin. J Dig Dis 2018;19:421-30. [PMID: 29802754 DOI: 10.1111/1751-2980.12610] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
174 Dongiovanni P, Meroni M, Longo M, Fargion S, Fracanzani AL. Genetics, Immunity and Nutrition Boost the Switching from NASH to HCC. Biomedicines 2021;9:1524. [PMID: 34829753 DOI: 10.3390/biomedicines9111524] [Reference Citation Analysis]
175 Dong XC, Chowdhury K, Huang M, Kim HG. Signal Transduction and Molecular Regulation in Fatty Liver Disease. Antioxid Redox Signal 2021. [PMID: 33906425 DOI: 10.1089/ars.2021.0076] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
176 Whitmill A, Kim S, Rojas V, Gulraiz F, Afreen K, Jain M, Singh M, Park IW. Signature molecules expressed differentially in a liver disease stage-specific manner by HIV-1 and HCV co-infection. PLoS One 2018;13:e0202524. [PMID: 30138348 DOI: 10.1371/journal.pone.0202524] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
177 Lee YY, Kim SW, Youn SH, Hyun SH, Kyung JS, In G, Park CK, Jung HR, Moon SJ, Kang MJ, Yi EC, Han CK. Biological Effects of Korean Red Ginseng Polysaccharides in Aged Rat Using Global Proteomic Approach. Molecules 2020;25:E3019. [PMID: 32630349 DOI: 10.3390/molecules25133019] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
178 Maldonado LY, Arsene D, Mato JM, Lu SC. Methionine adenosyltransferases in cancers: Mechanisms of dysregulation and implications for therapy. Exp Biol Med (Maywood) 2018;243:107-17. [PMID: 29141455 DOI: 10.1177/1535370217740860] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 5.2] [Reference Citation Analysis]
179 Barcena-Varela M, Colyn L, Fernandez-Barrena MG. Epigenetic Mechanisms in Hepatic Stellate Cell Activation During Liver Fibrosis and Carcinogenesis. Int J Mol Sci 2019;20:E2507. [PMID: 31117267 DOI: 10.3390/ijms20102507] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
180 Tzouvelekis A, Kaminski N. Epigenetics in idiopathic pulmonary fibrosis. Biochem Cell Biol 2015;93:159-70. [PMID: 25659821 DOI: 10.1139/bcb-2014-0126] [Cited by in Crossref: 51] [Cited by in F6Publishing: 48] [Article Influence: 7.3] [Reference Citation Analysis]
181 Kovalic AJ, Banerjee P, Tran QT, Singal AK, Satapathy SK. Genetic and Epigenetic Culprits in the Pathogenesis of Nonalcoholic Fatty Liver Disease. J Clin Exp Hepatol 2018;8:390-402. [PMID: 30564000 DOI: 10.1016/j.jceh.2018.04.001] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
182 Sookoian S, Pirola CJ. Genetic predisposition in nonalcoholic fatty liver disease. Clin Mol Hepatol. 2017;23:1-12. [PMID: 28268262 DOI: 10.3350/cmh.2016.0109] [Cited by in Crossref: 95] [Cited by in F6Publishing: 87] [Article Influence: 19.0] [Reference Citation Analysis]
183 Soto M, Reviejo M, Al-Abdulla R, Romero MR, Macias RIR, Boix L, Bruix J, Serrano MA, Marin JJG. Relationship between changes in the exon-recognition machinery and SLC22A1 alternative splicing in hepatocellular carcinoma. Biochim Biophys Acta Mol Basis Dis 2020;1866:165687. [PMID: 31953214 DOI: 10.1016/j.bbadis.2020.165687] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
184 Robinson KE, Shah VH. Pathogenesis and pathways: nonalcoholic fatty liver disease & alcoholic liver disease. Transl Gastroenterol Hepatol 2020;5:49. [PMID: 33073044 DOI: 10.21037/tgh.2019.12.05] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
185 Ke ZH, Pan JX, Jin LY, Xu HY, Yu TT, Ullah K, Rahman TU, Ren J, Cheng Y, Dong XY, Sheng JZ, Huang HF. Bisphenol A Exposure May Induce Hepatic Lipid Accumulation via Reprogramming the DNA Methylation Patterns of Genes Involved in Lipid Metabolism. Sci Rep 2016;6:31331. [PMID: 27502578 DOI: 10.1038/srep31331] [Cited by in Crossref: 58] [Cited by in F6Publishing: 50] [Article Influence: 9.7] [Reference Citation Analysis]
186 Kurokawa S, Yoneda M, Ogawa Y, Honda Y, Kessoku T, Imajo K, Saito S, Nakajima A, Hotta K. Two differentially methylated region networks in nonalcoholic fatty liver disease, viral hepatitis, and hepatocellular carcinoma. BMC Gastroenterol 2022;22. [DOI: 10.1186/s12876-022-02360-4] [Reference Citation Analysis]
187 Geurtsen ML, Jaddoe VWV, Salas LA, Santos S, Felix JF. Newborn and childhood differential DNA methylation and liver fat in school-age children. Clin Epigenetics 2019;12:3. [PMID: 31892367 DOI: 10.1186/s13148-019-0799-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
188 Liu X, Brenner DA. Liver: DNA methylation controls liver fibrogenesis. Nat Rev Gastroenterol Hepatol 2016;13:126-8. [PMID: 26860269 DOI: 10.1038/nrgastro.2016.16] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
189 Yoon A, Tammen SA, Park S, Han SN, Choi SW. Genome-wide hepatic DNA methylation changes in high-fat diet-induced obese mice. Nutr Res Pract 2017;11:105-13. [PMID: 28386383 DOI: 10.4162/nrp.2017.11.2.105] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
190 Ashraf NU, Altaf M. Epigenetics: An emerging field in the pathogenesis of nonalcoholic fatty liver disease. Mutat Res Rev Mutat Res 2018;778:1-12. [PMID: 30454678 DOI: 10.1016/j.mrrev.2018.07.002] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
191 Ramos LF, Silva CM, Pansa CC, Moraes KCM. Non-alcoholic fatty liver disease: molecular and cellular interplays of the lipid metabolism in a steatotic liver. Expert Rev Gastroenterol Hepatol 2021;15:25-40. [PMID: 32892668 DOI: 10.1080/17474124.2020.1820321] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
192 Zaiou M, Amrani R, Rihn B, Hajri T. Dietary Patterns Influence Target Gene Expression through Emerging Epigenetic Mechanisms in Nonalcoholic Fatty Liver Disease. Biomedicines 2021;9:1256. [PMID: 34572442 DOI: 10.3390/biomedicines9091256] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
193 Pan X, Wu Y, Peng H, Cai X, Hu Z, Lin X, Peng XE. Genome-wide DNA methylation profiling in nonalcoholic fatty liver reveals predictive aberrant methylation in PRKCE and SEC14L3 promoters. Dig Liver Dis 2021:S1590-8658(21)00263-2. [PMID: 34108094 DOI: 10.1016/j.dld.2021.05.013] [Reference Citation Analysis]
194 Li JF, Li YS, Zhang YY, Sun SF, Han TS, Li YH, Feng FM. Regulation of P300 and HDAC1 on endoplasmic reticulum stress in isoniazid-induced HL-7702 hepatocyte injury. J Cell Physiol 2019. [PMID: 30786008 DOI: 10.1002/jcp.28175] [Reference Citation Analysis]
195 Sookoian S, Flichman D, Garaycoechea ME, San Martino J, Castaño GO, Pirola CJ. Metastasis-associated lung adenocarcinoma transcript 1 as a common molecular driver in the pathogenesis of nonalcoholic steatohepatitis and chronic immune-mediated liver damage. Hepatol Commun 2018;2:654-65. [PMID: 29881817 DOI: 10.1002/hep4.1184] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
196 Kirchner H, Sinha I, Gao H, Ruby MA, Schönke M, Lindvall JM, Barrès R, Krook A, Näslund E, Dahlman-Wright K, Zierath JR. Altered DNA methylation of glycolytic and lipogenic genes in liver from obese and type 2 diabetic patients. Mol Metab 2016;5:171-83. [PMID: 26977391 DOI: 10.1016/j.molmet.2015.12.004] [Cited by in Crossref: 67] [Cited by in F6Publishing: 57] [Article Influence: 11.2] [Reference Citation Analysis]
197 Zhang P, Chu T, Dedousis N, Mantell BS, Sipula I, Li L, Bunce KD, Shaw PA, Katz LS, Zhu J, Argmann C, O'Doherty RM, Peters DG, Scott DK. DNA methylation alters transcriptional rates of differentially expressed genes and contributes to pathophysiology in mice fed a high fat diet. Mol Metab 2017;6:327-39. [PMID: 28377872 DOI: 10.1016/j.molmet.2017.02.001] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
198 Schiöth HB, Boström A, Murphy SK, Erhart W, Hampe J, Moylan C, Mwinyi J. A targeted analysis reveals relevant shifts in the methylation and transcription of genes responsible for bile acid homeostasis and drug metabolism in non-alcoholic fatty liver disease. BMC Genomics 2016;17:462. [PMID: 27301979 DOI: 10.1186/s12864-016-2814-z] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
199 El Taghdouini A, van Grunsven LA. Epigenetic regulation of hepatic stellate cell activation and liver fibrosis. Expert Rev Gastroenterol Hepatol 2016;10:1397-408. [PMID: 27762150 DOI: 10.1080/17474124.2016.1251309] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
200 Kemas AM, Youhanna S, Lauschke VM. Non-alcoholic fatty liver disease - opportunities for personalized treatment and drug development. Expert Review of Precision Medicine and Drug Development 2022;7:39-49. [DOI: 10.1080/23808993.2022.2053285] [Reference Citation Analysis]
201 Lee JH, Friso S, Choi SW. Epigenetic mechanisms underlying the link between non-alcoholic fatty liver diseases and nutrition. Nutrients 2014;6:3303-25. [PMID: 25195642 DOI: 10.3390/nu6083303] [Cited by in Crossref: 68] [Cited by in F6Publishing: 61] [Article Influence: 8.5] [Reference Citation Analysis]
202 Grdović N, Rajić J, Arambašić Jovanović J, Dinić S, Tolić A, Đorđević M, Đorđević M, Trifunović S, Vidaković M, Uskoković A, Mihailović M. α-Lipoic Acid Increases Collagen Synthesis and Deposition in Nondiabetic and Diabetic Rat Kidneys. Oxid Med Cell Longev 2021;2021:6669352. [PMID: 33777319 DOI: 10.1155/2021/6669352] [Reference Citation Analysis]
203 Park JG, Mok JS, Han YI, Park TS, Kang KW, Choi CS, Park HD, Park J. Connectivity mapping of angiotensin-PPAR interactions involved in the amelioration of non-alcoholic steatohepatitis by Telmisartan. Sci Rep 2019;9:4003. [PMID: 30850637 DOI: 10.1038/s41598-019-40322-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
204 Sookoian S, Pirola CJ. Cell-free DNA methylation as liquid biopsy for the assessment of fibrosis in patients with nonalcoholic steatohepatitis: a gap between innovation and implementation. Hepatobiliary Surg Nutr. 2017;6:117-121. [PMID: 28503559 DOI: 10.21037/hbsn.2017.01.07] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
205 Walle P, Männistö V, de Mello VD, Vaittinen M, Perfilyev A, Hanhineva K, Ling C, Pihlajamäki J. Liver DNA methylation of FADS2 associates with FADS2 genotype. Clin Epigenetics 2019;11:10. [PMID: 30654845 DOI: 10.1186/s13148-019-0609-1] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
206 Lonardo A, Nascimbeni F, Maurantonio M, Marrazzo A, Rinaldi L, Adinolfi LE. Nonalcoholic fatty liver disease: Evolving paradigms. World J Gastroenterol 2017; 23(36): 6571-6592 [PMID: 29085206 DOI: 10.3748/wjg.v23.i36.6571] [Cited by in CrossRef: 80] [Cited by in F6Publishing: 71] [Article Influence: 16.0] [Reference Citation Analysis]
207 Sookoian S, Rohr C, Salatino A, Dopazo H, Fernandez Gianotti T, Castaño GO, Pirola CJ. Genetic variation in long noncoding RNAs and the risk of nonalcoholic fatty liver disease. Oncotarget 2017;8:22917-26. [PMID: 28206970 DOI: 10.18632/oncotarget.15286] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
208 Del Río-Moreno M, Alors-Pérez E, González-Rubio S, Ferrín G, Reyes O, Rodríguez-Perálvarez M, Sánchez-Frías ME, Sánchez-Sánchez R, Ventura S, López-Miranda J, Kineman RD, de la Mata M, Castaño JP, Gahete MD, Luque RM. Dysregulation of the Splicing Machinery Is Associated to the Development of Nonalcoholic Fatty Liver Disease. J Clin Endocrinol Metab 2019;104:3389-402. [PMID: 30901032 DOI: 10.1210/jc.2019-00021] [Reference Citation Analysis]
209 Barbaro B, Romito I, Alisi A. Commentary: The histone demethylase Phf2 acts as a molecular checkpoint to prevent NAFLD progression during obesity. Front Genet 2018;9:443. [PMID: 30386372 DOI: 10.3389/fgene.2018.00443] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
210 Kim YC, Seok S, Zhang Y, Ma J, Kong B, Guo G, Kemper B, Kemper JK. Intestinal FGF15/19 physiologically repress hepatic lipogenesis in the late fed-state by activating SHP and DNMT3A. Nat Commun 2020;11:5969. [PMID: 33235221 DOI: 10.1038/s41467-020-19803-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
211 Wang W, Ji G, Chen Y, Wang J, Sun J, Tang G, Xie Z, Zhao H, Liu G, Tan S, Chen G, Xue H. Changes in DNA Methylation of Glucocorticoid-Induced Tumor Necrosis Factor Receptor and Its Ligand in Liver Transplantation. Transplant Proc 2017;49:1824-33. [PMID: 28923633 DOI: 10.1016/j.transproceed.2017.06.023] [Reference Citation Analysis]
212 Rajesh Y, Sarkar D. Molecular Mechanisms Regulating Obesity-Associated Hepatocellular Carcinoma. Cancers (Basel) 2020;12:E1290. [PMID: 32443737 DOI: 10.3390/cancers12051290] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
213 Martinou E, Pericleous M, Stefanova I, Kaur V, Angelidi AM. Diagnostic Modalities of Non-Alcoholic Fatty Liver Disease: From Biochemical Biomarkers to Multi-Omics Non-Invasive Approaches. Diagnostics (Basel) 2022;12:407. [PMID: 35204498 DOI: 10.3390/diagnostics12020407] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]