BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kołat D, Kałuzińska Ż, Bednarek AK, Płuciennik E. The biological characteristics of transcription factors AP-2α and AP-2γ and their importance in various types of cancers. Biosci Rep 2019;39:BSR20181928. [PMID: 30824562 DOI: 10.1042/BSR20181928] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 7.3] [Reference Citation Analysis]
Number Citing Articles
1 He J, Dong C, Zhang H, Jiang Y, Liu T, Man X. The oncogenic role of TFAP2A in bladder urothelial carcinoma via a novel long noncoding RNA TPRG1-AS1/DNMT3A/CRTAC1 axis. Cell Signal 2023;102:110527. [PMID: 36410635 DOI: 10.1016/j.cellsig.2022.110527] [Reference Citation Analysis]
2 Wang J, Chen Q, Peng F, Zhao S, Zhang C, Song X, Yu D, Wu Z, Du J, Ni H, Deng H, Deng W. Transcription factor AP-2α activates RNA polymerase III-directed transcription and tumour cell proliferation by controlling expression of c-MYC and p53. Journal of Biological Chemistry 2023. [DOI: 10.1016/j.jbc.2023.102945] [Reference Citation Analysis]
3 Shi CJ, Lv MY, Deng LQ, Zeng WQ, Fu WM, Zhang JF. Linc-ROR drive adriamycin resistance by targeting AP-2α/Wnt/β-catenin axis in hepatocellular carcinoma. Cell Biol Toxicol 2022. [PMID: 36576707 DOI: 10.1007/s10565-022-09777-3] [Reference Citation Analysis]
4 Kołat D, Zhao LY, Kciuk M, Płuciennik E, Kałuzińska-Kołat Ż. AP-2δ Is the Most Relevant Target of AP-2 Family-Focused Cancer Therapy and Affects Genome Organization. Cells 2022;11. [PMID: 36552887 DOI: 10.3390/cells11244124] [Reference Citation Analysis]
5 Dutta R, Guruvaiah P, Reddi KK, Bugide S, Reddy Bandi DS, Edwards YJK, Singh K, Gupta R. UBE2T promotes breast cancer tumor growth by suppressing DNA replication stress. NAR Cancer 2022;4:zcac035. [PMID: 36338541 DOI: 10.1093/narcan/zcac035] [Reference Citation Analysis]
6 Xing J, Chen W, Chen K, Zhu S, Lin F, Qi Y, Zhang Y, Han S, Rao T, Ruan Y, Zhao S, Yu W, Cheng F. TFAP2C Knockdown Sensitizes Bladder Cancer Cells to Cisplatin Treatment via Regulation of EGFR and NF-κB. Cancers (Basel) 2022;14:4809. [PMID: 36230734 DOI: 10.3390/cancers14194809] [Reference Citation Analysis]
7 Al-sabri MH, Nikpour M, Clemensson LE, Attwood MM, Williams MJ, Rask-anderson M, Mwinyi J, Schiöth HB. The regulatory role of AP-2β in monoaminergic neurotransmitter systems: insights on its signalling pathway, linked disorders and theragnostic potential. Cell Biosci 2022;12:151. [DOI: 10.1186/s13578-022-00891-7] [Reference Citation Analysis]
8 Roura A, Szadkowska P, Poleszak K, Dabrowski MJ, Ellert-miklaszewska A, Wojnicki K, Ciechomska IA, Stepniak K, Kaminska B, Wojtas B. Regulatory networks driving expression of genes critical for glioblastoma are controlled by the transcription factor c-Jun and the pre-existing epigenetic modifications.. [DOI: 10.1101/2022.07.18.500476] [Reference Citation Analysis]
9 Yuryev A, Nesterova A, Sozhin S, Shkrob M. A disease model for Diffuse Intrinsic Pontine Glioma (DIPG) with mutations in TP53 and its application for drug repurposing.. [DOI: 10.1101/2022.06.22.22276788] [Reference Citation Analysis]
10 Kołat D, Kałuzińska Ż, Bednarek AK, Płuciennik E. Determination of WWOX Function in Modulating Cellular Pathways Activated by AP-2α and AP-2γ Transcription Factors in Bladder Cancer. Cells 2022;11:1382. [PMID: 35563688 DOI: 10.3390/cells11091382] [Reference Citation Analysis]
11 Kołat D, Kałuzińska Ż, Bednarek AK, Płuciennik E. Prognostic significance of AP-2α/γ targets as cancer therapeutics. Sci Rep 2022;12:5497. [PMID: 35361846 DOI: 10.1038/s41598-022-09494-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Jiang X, Guo S, Xu M, Ma B, Liu R, Xu Y, Zhang Y. TFAP2C-Mediated lncRNA PCAT1 Inhibits Ferroptosis in Docetaxel-Resistant Prostate Cancer Through c-Myc/miR-25-3p/SLC7A11 Signaling. Front Oncol 2022;12:862015. [DOI: 10.3389/fonc.2022.862015] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
13 Rockwell NC, Yang W, Warrington NM, Staller MV, Griffith M, Griffith OL, Gurnett CA, Cohen BA, Baldridge D, Rubin JB. Sex- and Mutation-Specific p53 Gain-of-Function Activity in Gliomagenesis. Cancer Research Communications 2021;1:148-163. [DOI: 10.1158/2767-9764.crc-21-0026] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
14 Bai G, Wei N, Li F, Zhao P, Meng Z, Zou B, Liu Y, Xu K, Li K, Yao C, Yang P. Function and transcriptional regulation of TCTN1 in oral squamous cell carcinoma. Oncol Rep 2022;47:26. [PMID: 34859261 DOI: 10.3892/or.2021.8237] [Reference Citation Analysis]
15 Weidle UH, AuslÄnder S, Brinkmann U. Micro RNAs Promoting Growth and Metastasis in Preclinical In Vivo Models of Subcutaneous Melanoma. Cancer Genomics Proteomics 2020;17:651-67. [PMID: 33099468 DOI: 10.21873/cgp.20221] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
16 Kołat D, Kałuzińska Ż, Bednarek AK, Płuciennik E. WWOX Loses the Ability to Regulate Oncogenic AP-2γ and Synergizes with Tumor Suppressor AP-2α in High-Grade Bladder Cancer. Cancers (Basel) 2021;13:2957. [PMID: 34204827 DOI: 10.3390/cancers13122957] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
17 Rockwell N, Yang W, Warrington N, Griffith M, Griffith O, Gurnett C, Cohen B, Baldridge D, Rubin J. p53 mutations exhibit sex specific gain-of-function activity in gliomagenesis.. [DOI: 10.1101/2021.06.11.448124] [Reference Citation Analysis]
18 Taouis K, Driouch K, Lidereau R, Lallemand F. Molecular Functions of WWOX Potentially Involved in Cancer Development. Cells 2021;10:1051. [PMID: 33946771 DOI: 10.3390/cells10051051] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
19 Rodger EJ, Almomani SN, Ludgate JL, Stockwell PA, Baguley BC, Eccles MR, Chatterjee A. Comparison of Global DNA Methylation Patterns in Human Melanoma Tissues and Their Derivative Cell Lines. Cancers (Basel) 2021;13:2123. [PMID: 33924927 DOI: 10.3390/cancers13092123] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
20 Xiong Y, Feng Y, Zhao J, Lei J, Qiao T, Zhou Y, Lu Q, Jiang T, Jia L, Han Y. TFAP2A potentiates lung adenocarcinoma metastasis by a novel miR-16 family/TFAP2A/PSG9/TGF-β signaling pathway. Cell Death Dis 2021;12:352. [PMID: 33824285 DOI: 10.1038/s41419-021-03606-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
21 Kałuzińska Ż, Kołat D, Kośla K, Orzechowska M, Bednarek AK, Płuciennik E. In vitro and in silico assessment of the effect of WWOX expression on invasiveness pathways associated with AP-2 transcription factors in bladder cancer. BMC Urol 2021;21:36. [PMID: 33691672 DOI: 10.1186/s12894-021-00806-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
22 Kołat D, Kałuzińska Ż, Płuciennik E. Fragile Gene WWOX Guides TFAP2A/TFAP2C-Dependent Actions Against Tumor Progression in Grade II Bladder Cancer. Front Oncol 2021;11:621060. [PMID: 33718178 DOI: 10.3389/fonc.2021.621060] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
23 Liu J, Liu Z, Li M, Tang W, Pratap UP, Luo Y, Altwegg KA, Li X, Zou Y, Zhu H, Sareddy GR, Viswanadhapalli S, Vadlamudi RK. Interaction of transcription factor AP-2 gamma with proto-oncogene PELP1 promotes tumorigenesis by enhancing RET signaling. Mol Oncol 2021;15:1146-61. [PMID: 33269540 DOI: 10.1002/1878-0261.12871] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
24 Zhang Y, Wang X, Chen X. Identification of core genes for early diagnosis and the EMT modulation of ovarian serous cancer by bioinformatics perspective. Aging (Albany NY) 2021;13:3112-45. [PMID: 33493131 DOI: 10.18632/aging.202524] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
25 Kołat D, Kałuzińska Ż, Orzechowska M, Bednarek AK, Płuciennik E. Functional genomics of AP-2α and AP-2γ in cancers: in silico study. BMC Med Genomics 2020;13:174. [PMID: 33213447 DOI: 10.1186/s12920-020-00823-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
26 Mao L, Liu L, Zhang T, Qin H, Wu X, Xu Y. Histone Deacetylase 11 Contributes to Renal Fibrosis by Repressing KLF15 Transcription. Front Cell Dev Biol 2020;8:235. [PMID: 32363192 DOI: 10.3389/fcell.2020.00235] [Cited by in Crossref: 23] [Cited by in F6Publishing: 27] [Article Influence: 7.7] [Reference Citation Analysis]
27 Lombardo D, Saitta C, Giosa D, Di Tocco FC, Musolino C, Caminiti G, Chines V, Franzè MS, Alibrandi A, Navarra G, Raimondo G, Pollicino T. Frequency of somatic mutations in TERT promoter, TP53 and CTNNB1 genes in patients with hepatocellular carcinoma from Southern Italy. Oncol Lett 2020;19:2368-74. [PMID: 32194736 DOI: 10.3892/ol.2020.11332] [Cited by in F6Publishing: 11] [Reference Citation Analysis]
28 Zhang F, Gu X, Yi S, Xu H. Dysregulated Transcription Factor TFAP2A After Peripheral Nerve Injury Modulated Schwann Cell Phenotype. Neurochem Res 2019;44:2776-85. [PMID: 31650361 DOI: 10.1007/s11064-019-02898-y] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]