BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Huang Y, Qiu F, Chen R, Yan D, Zhu X. Fluorescence resonance energy transfer-based drug delivery systems for enhanced photodynamic therapy. J Mater Chem B 2020;8:3772-88. [DOI: 10.1039/d0tb00262c] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 9.3] [Reference Citation Analysis]
Number Citing Articles
1 Soleimany A, Khoee S, Dastan D, Shi Z, Yu S, Sarmento B. Two-photon photodynamic therapy based on FRET using tumor-cell targeted riboflavin conjugated graphene quantum dot. J Photochem Photobiol B 2023;238:112602. [PMID: 36442423 DOI: 10.1016/j.jphotobiol.2022.112602] [Reference Citation Analysis]
2 Ichiba K, Okazaki K, Takebuchi Y, Kato T, Nakauchi D, Kawaguchi N, Yanagida T. X-ray-Induced Scintillation Properties of Nd-Doped Bi(4)Si(3)O(12) Crystals in Visible and Near-Infrared Regions. Materials (Basel) 2022;15. [PMID: 36556590 DOI: 10.3390/ma15248784] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Li Y, Hu D, Pan M, Qu Y, Chu B, Liao J, Zhou X, Liu Q, Cheng S, Chen Y, Wei Q, Qian Z. Near-infrared light and redox dual-activatable nanosystems for synergistically cascaded cancer phototherapy with reduced skin photosensitization. Biomaterials 2022. [DOI: 10.1016/j.biomaterials.2022.121700] [Reference Citation Analysis]
4 Zhang Y, Yan H, Su R, Li P, Wen F, Lv Y, Cai J, Su W. Photoactivated multifunctional nanoplatform based on lysozyme-Au nanoclusters-curcumin conjugates with FRET effect and multiamplified antimicrobial activity. Journal of Drug Delivery Science and Technology 2022;74:103548. [DOI: 10.1016/j.jddst.2022.103548] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Liu J, Wang L, Shen R, Zhao J, Qian Y. A novel heptamethine cyanine photosensitizer for FRET-amplified photodynamic therapy and two-photon imaging in A-549 cells. Spectrochim Acta A Mol Biomol Spectrosc 2022;274:121083. [PMID: 35248855 DOI: 10.1016/j.saa.2022.121083] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
6 Kang W, Tian Y, Zhao Y, Yin X, Teng Z. Applications of nanocomposites based on zeolitic imidazolate framework-8 in photodynamic and synergistic anti-tumor therapy. RSC Adv 2022;12:16927-41. [PMID: 35754870 DOI: 10.1039/d2ra01102f] [Reference Citation Analysis]
7 Rodrigues EM, Calvert ND, Crawford JC, Liu N, Shuhendler AJ, Hemmer E. Phytoglycogen Encapsulation of Lanthanide-Based Nanoparticles as an Optical Imaging Platform with Therapeutic Potential. Small 2022;:e2107130. [PMID: 35560500 DOI: 10.1002/smll.202107130] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Yu H, Deng Q, Zheng Q, Wang Y, Shen J, Zhou J. Hypericin nanoparticles for self-illuminated photodynamic cytotoxicity based on bioluminescence resonance energy transfer. International Journal of Pharmaceutics 2022;620:121738. [DOI: 10.1016/j.ijpharm.2022.121738] [Reference Citation Analysis]
9 Li B, Lin L. Internal light source for deep photodynamic therapy. Light Sci Appl 2022;11:85. [PMID: 35387976 DOI: 10.1038/s41377-022-00780-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
10 Fan X, Luo Z, Chen Y, Yeo JCC, Li Z, Wu YL, He C. Oxygen self-supplied enzyme nanogels for tumor targeting with amplified synergistic starvation and photodynamic therapy. Acta Biomater 2022;142:274-83. [PMID: 35114372 DOI: 10.1016/j.actbio.2022.01.056] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
11 Rafique R, Kailasa SK, Park TJ. Upconversion-luminescent nanomaterials for biomedical applications. Upconversion Nanophosphors 2022. [DOI: 10.1016/b978-0-12-822842-5.00005-4] [Reference Citation Analysis]
12 Parrino F, D'Arienzo M, Mostoni S, Dirè S, Ceccato R, Bellardita M, Palmisano L. Electron and Energy Transfer Mechanisms: The Double Nature of TiO2 Heterogeneous Photocatalysis. Top Curr Chem (Cham) 2021;380:2. [PMID: 34786587 DOI: 10.1007/s41061-021-00358-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Algorri JF, Ochoa M, Roldán-Varona P, Rodríguez-Cobo L, López-Higuera JM. Photodynamic Therapy: A Compendium of Latest Reviews. Cancers (Basel) 2021;13:4447. [PMID: 34503255 DOI: 10.3390/cancers13174447] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 19.0] [Reference Citation Analysis]
14 Li Z, Lu S, Liu W, Dai T, Ke J, Li X, Li R, Zhang Y, Chen Z, Chen X. Synergistic Lysozyme‐Photodynamic Therapy Against Resistant Bacteria based on an Intelligent Upconversion Nanoplatform. Angewandte Chemie 2021;133:19350-5. [DOI: 10.1002/ange.202103943] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
15 Algorri JF, Ochoa M, Roldán-Varona P, Rodríguez-Cobo L, López-Higuera JM. Light Technology for Efficient and Effective Photodynamic Therapy: A Critical Review. Cancers (Basel) 2021;13:3484. [PMID: 34298707 DOI: 10.3390/cancers13143484] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 12.5] [Reference Citation Analysis]
16 Degirmenci A, Sonkaya Ö, Soylukan C, Karaduman T, Algi F. BODIPY and 2,3-Dihydrophthalazine-1,4-Dione Conjugates As Heavy Atom-Free Chemiluminogenic Photosensitizers. ACS Appl Bio Mater 2021;4:5090-8. [PMID: 35007057 DOI: 10.1021/acsabm.1c00328] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 Stass DV, Vorotnikova NA, Shestopalov MA. Direct observation of x-ray excited optical luminescence from a Re 6 metal cluster in true aqueous solution: The missing link between material characterization and in vivo applications. Journal of Applied Physics 2021;129:183102. [DOI: 10.1063/5.0049769] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
18 Jiménez-mancilla NP, Aranda-lara L, Morales-ávila E, Camacho-lópez MA, Ocampo-garcía BE, Torres-garcía E, Estrada-guadarrama JA, Santos-cuevas CL, Isaac-olivé K. Electron transfer reactions in rhodamine: Potential use in photodynamic therapy. Journal of Photochemistry and Photobiology A: Chemistry 2021;409:113131. [DOI: 10.1016/j.jphotochem.2021.113131] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
19 Zhang D, Guo S, Li L, Shang K. H2O2/HOCl-based fluorescent probes for dynamically monitoring pathophysiological processes. Analyst 2020;145:7477-87. [PMID: 33063081 DOI: 10.1039/d0an01313g] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
20 Orsi D, Bernardi D, Giovanardi G, Rossi F, Szczepanowicz K, Cristofolini L. Rationale design of a layer-by-layer nanostructure for X-ray induced photodynamic therapy. Colloid and Interface Science Communications 2020;39:100327. [DOI: 10.1016/j.colcom.2020.100327] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]