BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: St Denis JD, Hall RJ, Murray CW, Heightman TD, Rees DC. Fragment-based drug discovery: opportunities for organic synthesis. RSC Med Chem 2020;12:321-9. [PMID: 34041484 DOI: 10.1039/d0md00375a] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
Number Citing Articles
1 St. Denis JD, Chessari G, Cleasby A, Cons BD, Cowan S, Dalton SE, East C, Murray CW, O’reilly M, Peakman T, Rapti M, Stow JL. X-ray Screening of an Electrophilic Fragment Library and Application toward the Development of a Novel ERK 1/2 Covalent Inhibitor. J Med Chem . [DOI: 10.1021/acs.jmedchem.2c01044] [Reference Citation Analysis]
2 Kitel R, Rodríguez I, Del Corte X, Atmaj J, Żarnik M, Surmiak E, Muszak D, Magiera-Mularz K, Popowicz GM, Holak TA, Musielak B. Exploring the Surface of the Ectodomain of the PD-L1 Immune Checkpoint with Small-Molecule Fragments. ACS Chem Biol 2022. [PMID: 36073782 DOI: 10.1021/acschembio.2c00583] [Reference Citation Analysis]
3 Carbery A, Skyner R, von Delft F, Deane CM. Fragment Libraries Designed to Be Functionally Diverse Recover Protein Binding Information More Efficiently Than Standard Structurally Diverse Libraries. J Med Chem 2022. [PMID: 35960886 DOI: 10.1021/acs.jmedchem.2c01004] [Reference Citation Analysis]
4 Sakthikumar K, Krause RWM, Isamura BK, Raja JD, Athimoolam S. Spectro-electrochemical, fluorometric and biothermodynamic evaluation of pharmacologically active morpholine scaffold single crystal ligand and its metal(II) complexes: A comparative study on in-vitro and in-silico screening towards DNA/BSA/SARS-CoV-19. J Inorg Biochem 2022;236:111953. [PMID: 35969975 DOI: 10.1016/j.jinorgbio.2022.111953] [Reference Citation Analysis]
5 Andola P, Pagag J, Laxman D, Guruprasad L. Fragment-based inhibitor design for SARS-CoV2 main protease. Struct Chem. [DOI: 10.1007/s11224-022-01995-z] [Reference Citation Analysis]
6 Klein HF, Hamilton DJ, J. P. de Esch I, Wijtmans M, O'brien P. Escape from planarity in fragment-based drug discovery: a synthetic strategy analysis of synthetic 3D fragment libraries. Drug Discovery Today 2022. [DOI: 10.1016/j.drudis.2022.05.021] [Reference Citation Analysis]
7 Staszak M, Staszak K, Wieszczycka K, Bajek A, Roszkowski K, Tylkowski B. Machine learning in drug design: Use of artificial intelligence to explore the chemical structure–biological activity relationship. WIREs Comput Mol Sci 2022;12. [DOI: 10.1002/wcms.1568] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Cross S, Cruciani G. FragExplorer: GRID-Based Fragment Growing and Replacement. J Chem Inf Model 2022. [PMID: 35119269 DOI: 10.1021/acs.jcim.1c00821] [Reference Citation Analysis]
9 El Salamouni NS, Buckley BJ, Ranson M, Kelso MJ, Yu H. Urokinase plasminogen activator as an anti-metastasis target: inhibitor design principles, recent amiloride derivatives, and issues with human/mouse species selectivity. Biophys Rev. [DOI: 10.1007/s12551-021-00921-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Sachdeo RA, Anthwal T, Nain S. Fragment based drug design. Physical Sciences Reviews 2022;0. [DOI: 10.1515/psr-2018-0162] [Reference Citation Analysis]
11 Akgül Ö, Lucarini E, Mannelli LDC, Ghelardini C, D'Ambrosio K, Buonanno M, Monti SM, De Simone G, Angeli A, Supuran CT, Carta F. Sultam based Carbonic Anhydrase VII inhibitors for the management of neuropathic pain. Eur J Med Chem 2022;227:113956. [PMID: 34731762 DOI: 10.1016/j.ejmech.2021.113956] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 de Esch IJP, Erlanson DA, Jahnke W, Johnson CN, Walsh L. Fragment-to-Lead Medicinal Chemistry Publications in 2020. J Med Chem 2021. [PMID: 34928151 DOI: 10.1021/acs.jmedchem.1c01803] [Reference Citation Analysis]
13 Hamilton DJ, Dekker T, Klein HF, Janssen GV, Wijtmans M, O'Brien P, de Esch IJP. Escape from planarity in fragment-based drug discovery: A physicochemical and 3D property analysis of synthetic 3D fragment libraries. Drug Discov Today Technol 2020;38:77-90. [PMID: 34895643 DOI: 10.1016/j.ddtec.2021.05.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Kawai K, Asanuma Y, Kato T, Karuo Y, Tarui A, Sato K, Omote M. LCP: Simple Representation of Docking Poses for Machine Learning: A Case Study on Xanthine Oxidase Inhibitors. Mol Inform 2021;:e2100245. [PMID: 34843171 DOI: 10.1002/minf.202100245] [Reference Citation Analysis]
15 Askey HE, Grayson JD, Tibbetts JD, Turner-Dore JC, Holmes JM, Kociok-Kohn G, Wrigley GL, Cresswell AJ. Photocatalytic Hydroaminoalkylation of Styrenes with Unprotected Primary Alkylamines. J Am Chem Soc 2021;143:15936-45. [PMID: 34543004 DOI: 10.1021/jacs.1c07401] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Chessari G, Grainger R, Holvey RS, Ludlow RF, Mortenson PN, Rees DC. C-H functionalisation tolerant to polar groups could transform fragment-based drug discovery (FBDD). Chem Sci 2021;12:11976-85. [PMID: 34667563 DOI: 10.1039/d1sc03563k] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Caplin MJ, Foley DJ. Emergent synthetic methods for the modular advancement of sp3-rich fragments. Chem Sci 2021;12:4646-60. [PMID: 34168751 DOI: 10.1039/d1sc00161b] [Cited by in Crossref: 5] [Article Influence: 5.0] [Reference Citation Analysis]