BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gan BH, Gaynord J, Rowe SM, Deingruber T, Spring DR. The multifaceted nature of antimicrobial peptides: current synthetic chemistry approaches and future directions. Chem Soc Rev 2021;50:7820-80. [PMID: 34042120 DOI: 10.1039/d0cs00729c] [Cited by in Crossref: 56] [Cited by in F6Publishing: 58] [Article Influence: 28.0] [Reference Citation Analysis]
Number Citing Articles
1 Gong H, Hu X, Zhang L, Fa K, Liao M, Liu H, Fragneto G, Campana M, Lu JR. How do antimicrobial peptides disrupt the lipopolysaccharide membrane leaflet of Gram-negative bacteria? J Colloid Interface Sci 2023;637:182-92. [PMID: 36701864 DOI: 10.1016/j.jcis.2023.01.051] [Reference Citation Analysis]
2 Tan P, Sun Z, Tang Q, Xu S, Wang T, Ding Y, Fu H, Zhou C, Zhang Y, Yue Z, Ma X. Manipulation of hydrophobic motifs and optimization of sequence patterns to design high stability peptides against piglet bacterial infections. Nano Today 2023;49:101793. [DOI: 10.1016/j.nantod.2023.101793] [Reference Citation Analysis]
3 Ciulla MG, Gelain F. Structure-activity relationships of antibacterial peptides. Microb Biotechnol 2023;16:757-77. [PMID: 36705032 DOI: 10.1111/1751-7915.14213] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Fu Q, Cao D, Sun J, Liu X, Li H, Shu C, Liu R. Prediction and bioactivity of small-molecule antimicrobial peptides from Protaetia brevitarsis Lewis larvae. Front Microbiol 2023;14. [DOI: 10.3389/fmicb.2023.1124672] [Reference Citation Analysis]
5 Shen C, Guo Z, Liang H, Zhang M. Preliminary investigation of the immune activity of PmH2A-derived antimicrobial peptides from the pearl oyster Pinctada fucata martensii. Fish Shellfish Immunol 2023;135:108691. [PMID: 36924911 DOI: 10.1016/j.fsi.2023.108691] [Reference Citation Analysis]
6 Chen C, Shi J, Wang D, Kong P, Wang Z, Liu Y. Antimicrobial peptides as promising antibiotic adjuvants to combat drug-resistant pathogens. Crit Rev Microbiol 2023;:1-18. [PMID: 36890767 DOI: 10.1080/1040841X.2023.2186215] [Reference Citation Analysis]
7 Ben Trad F, Delacotte J, Guille-collignon M, Lemaître F, Arbault S, Sojic N, Burlina F, Labbé E, Buriez O. Electrochemiluminescence Imaging of Liposome Permeabilization by an Antimicrobial Peptide: Melittin. Chemical & Biomedical Imaging 2023. [DOI: 10.1021/cbmi.3c00003] [Reference Citation Analysis]
8 Galanakou C, Dhumal D, Peng L. Amphiphilic dendrimers against antibiotic resistance: light at the end of the tunnel? Biomater Sci 2023. [PMID: 36866708 DOI: 10.1039/d2bm01878k] [Reference Citation Analysis]
9 Yuen HL, Chan SY, Ding YE, Lim S, Tan GC, Kho CL. Development of a Novel Antibacterial Peptide, PAM-5, via Combination of Phage Display Selection and Computer-Assisted Modification. Biomolecules 2023;13:466. [DOI: 10.3390/biom13030466] [Reference Citation Analysis]
10 Xuan J, Feng W, Wang J, Wang R, Zhang B, Bo L, Chen ZS, Yang H, Sun L. Antimicrobial peptides for combating drug-resistant bacterial infections. Drug Resist Updat 2023;68:100954. [PMID: 36905712 DOI: 10.1016/j.drup.2023.100954] [Reference Citation Analysis]
11 Wang X, Yang X, Wang Q, Meng D. Unnatural amino acids: promising implications for the development of new antimicrobial peptides. Crit Rev Microbiol 2023;49:231-55. [PMID: 35254957 DOI: 10.1080/1040841X.2022.2047008] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
12 Teixeira ID, Carvalho E, Leal EC. Green Antimicrobials as Therapeutic Agents for Diabetic Foot Ulcers. Antibiotics 2023;12:467. [DOI: 10.3390/antibiotics12030467] [Reference Citation Analysis]
13 Teng P, Shao H, Huang B, Xie J, Cui S, Wang K, Cai J. Small Molecular Mimetics of Antimicrobial Peptides as a Promising Therapy To Combat Bacterial Resistance. J Med Chem 2023;66:2211-34. [PMID: 36739538 DOI: 10.1021/acs.jmedchem.2c00757] [Reference Citation Analysis]
14 Yang HX, Xie ZS, Yi H, Jin J, Geng J, Cui AL, Li ZR. Design, Synthesis, and Bioactivity Investigation of Cyclic Lipopeptide Antibiotics Containing Eight to Nine Amino Acids. J Med Chem 2023;66:2524-41. [PMID: 36739537 DOI: 10.1021/acs.jmedchem.2c01344] [Reference Citation Analysis]
15 Buzoglu Kurnaz L, Luo Y, Yang X, Alabresm A, Leighton R, Kumar R, Hwang J, Decho AW, Nagarkatti P, Nagarkatti M, Tang C. Facial amphiphilicity index correlating chemical structures with antimicrobial efficacy. Bioactive Materials 2023;20:519-527. [DOI: 10.1016/j.bioactmat.2022.06.009] [Reference Citation Analysis]
16 Bitencourt NV, Righetto GM, Camargo ILBC, de Godoy MO, Guido RVC, Oliva G, Santos-Filho NA, Cilli EM. Effects of Dimerization, Dendrimerization, and Chirality in p-BthTX-I Peptide Analogs on the Antibacterial Activity and Enzymatic Inhibition of the SARS-CoV-2 PL(pro) Protein. Pharmaceutics 2023;15. [PMID: 36839758 DOI: 10.3390/pharmaceutics15020436] [Reference Citation Analysis]
17 Zhao Y, Chen Z, Shao W, Yang S, Cui W, Cai Z, Cheng L, Lin R. Black phosphorus-enhanced injectable hydrogel for infected soft tissue healing. APL Bioeng 2023;7:016103. [PMID: 36644416 DOI: 10.1063/5.0121241] [Reference Citation Analysis]
18 Wang C, Ma YH, Han X, Lu X. Re-Examining Interaction between Antimicrobial Peptide Aurein 1.2 and Model Cell Membranes via SFG. Langmuir 2023;39:690-9. [PMID: 36576332 DOI: 10.1021/acs.langmuir.2c03068] [Reference Citation Analysis]
19 Ajesh K, Sreejith K. Biosynthesis of peptide antibiotics and innate immunity. Antimicrobial Peptides 2023. [DOI: 10.1016/b978-0-323-85682-9.00011-8] [Reference Citation Analysis]
20 Shen C, Liang H, Guo Z, Zhang M. Members of the histone-derived antimicrobial peptide family from the pearl oyster Pinctada fucata martensii: Inhibition of bacterial growth. Fish Shellfish Immunol 2023;132:108439. [PMID: 36423807 DOI: 10.1016/j.fsi.2022.11.027] [Reference Citation Analysis]
21 Mazaheri Tehrani M, Erfani M, Goudarzi M. Inflammation scintigraphy imaging through a novel antimicrobial peptide labeled with technetium-99m in an animal model. Int J Radiat Biol 2023;99:673-80. [PMID: 35939321 DOI: 10.1080/09553002.2022.2110298] [Reference Citation Analysis]
22 He Q, Yang Z, Zou Z, Qian M, Wang X, Zhang X, Yin Z, Wang J, Ye X, Liu D, Guo M. Combating Escherichia coli O157:H7 with Functionalized Chickpea-Derived Antimicrobial Peptides. Adv Sci (Weinh) 2023;10:e2205301. [PMID: 36563134 DOI: 10.1002/advs.202205301] [Reference Citation Analysis]
23 Cai X, Orsi M, Capecchi A, Köhler T, van Delden C, Javor S, Reymond JL. An intrinsically disordered antimicrobial peptide dendrimer from stereorandomized virtual screening. Cell Rep Phys Sci 2022;3:101161. [PMID: 36632208 DOI: 10.1016/j.xcrp.2022.101161] [Reference Citation Analysis]
24 Montoya C, Roldan L, Yu M, Valliani S, Ta C, Yang M, Orrego S. Smart dental materials for antimicrobial applications. Bioact Mater 2023;24:1-19. [PMID: 36582351 DOI: 10.1016/j.bioactmat.2022.12.002] [Reference Citation Analysis]
25 Thum MD, Lu Q, Stockmaster KT, Haridas D, Fears KP, Balow RB, Lundin JG. 3D‐printable cyclic peptide loaded microporous polymers for antimicrobial wound dressing materials. Polymers for Advanced Techs 2022. [DOI: 10.1002/pat.5948] [Reference Citation Analysis]
26 Hossain CM, Gera M, Ali KA. CURRENT STATUS AND CHALLENGES OF HERBAL DRUG DEVELOPMENT AND REGULATORY ASPECT: A GLOBAL PERSPECTIVE. Asian J Pharm Clin Res 2022. [DOI: 10.22159/ajpcr.2022.v15i12.46134] [Reference Citation Analysis]
27 Songnaka N, Lertcanawanichakul M, Hutapea AM, Krobthong S, Yingchutrakul Y, Atipairin A. Purification and Characterization of Novel Anti-MRSA Peptides Produced by Brevibacillus sp. SPR-20. Molecules 2022;27. [PMID: 36500545 DOI: 10.3390/molecules27238452] [Reference Citation Analysis]
28 Liu J, Huang M, Zhang X, Hua Z, Feng Z, Dong Y, Sun T, Sun X, Chen C. Polyoxometalate nanomaterials for enhanced reactive oxygen species theranostics. Coordination Chemistry Reviews 2022;472:214785. [DOI: 10.1016/j.ccr.2022.214785] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Wang J, Pan Y, Wei G, Mao H, Liu R, He Y. Damage-associated molecular patterns in vitiligo: igniter fuse from oxidative stress to melanocyte loss. Redox Rep 2022;27:193-9. [PMID: 36154894 DOI: 10.1080/13510002.2022.2123864] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Zhu M, Chen J, Lin Y. Exploring chemical space and structural diversity of supramolecular peptide materials. Supramolecular Materials 2022. [DOI: 10.1016/j.supmat.2022.100030] [Reference Citation Analysis]
31 Tan H, Wang J, Song Y, Liu S, Lu Z, Luo H, Tang X. Antibacterial Potential Analysis of Novel α-Helix Peptides in the Chinese Wolf Spider Lycosa sinensis. Pharmaceutics 2022;14. [PMID: 36432731 DOI: 10.3390/pharmaceutics14112540] [Reference Citation Analysis]
32 Bombelli C, Pagano L, Aiello S, Gkartziou F, Simonis B, Ceccacci F, Sennato S, Ciogli A, Bugli F, Martini C, Sanguinetti M, Torelli R, Mourtas S, Spiliopoulou I, Antimisiaris SG, Mancini G. Resveratrol-Loaded Glycosylated Liposomes for Targeting Bacteria. ECMC 2022 2022. [DOI: 10.3390/ecmc2022-13158] [Reference Citation Analysis]
33 Gonçalves S, Martins IC, Santos NC. Nanoparticle‐peptide conjugates for bacterial detection and neutralization: Potential applications in diagnostics and therapy. WIREs Nanomed Nanobiotechnol 2022;14. [DOI: 10.1002/wnan.1819] [Reference Citation Analysis]
34 Ngambenjawong C, Chan LW, Fleming HE, Bhatia SN. Conditional Antimicrobial Peptide Therapeutics. ACS Nano 2022;16:15779-91. [PMID: 35980829 DOI: 10.1021/acsnano.2c04162] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
35 Talapko J, Meštrović T, Juzbašić M, Tomas M, Erić S, Horvat Aleksijević L, Bekić S, Schwarz D, Matić S, Neuberg M, Škrlec I. Antimicrobial Peptides-Mechanisms of Action, Antimicrobial Effects and Clinical Applications. Antibiotics (Basel) 2022;11. [PMID: 36290075 DOI: 10.3390/antibiotics11101417] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
36 Kurpet K, Chwatko G. S100 Proteins as Novel Therapeutic Targets in Psoriasis and Other Autoimmune Diseases. Molecules 2022;27:6640. [PMID: 36235175 DOI: 10.3390/molecules27196640] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
37 He S, Yang Z, Li X, Wu H, Zhang L, Wang J, Shan A. Optimized proteolytic resistance motif (DabW)-based U1-2WD: A membrane-induced self-aggregating peptide to trigger bacterial agglutination and death. Acta Biomater 2022:S1742-7061(22)00601-8. [PMID: 36162762 DOI: 10.1016/j.actbio.2022.09.038] [Reference Citation Analysis]
38 Zhu Y, Akhtar MU, Li B, Chou S, Shao C, Li J, Shan A. The design of cell-selective tryptophan and arginine-rich antimicrobial peptides by introducing hydrophilic uncharged residues. Acta Biomater 2022:S1742-7061(22)00590-6. [PMID: 36115654 DOI: 10.1016/j.actbio.2022.09.028] [Reference Citation Analysis]
39 Lin S, Chen X, Chen H, Cai X, Chen X, Wang S. The Bioprospecting of Microbial-Derived Antimicrobial Peptides for Sustainable Agriculture. Engineering 2022. [DOI: 10.1016/j.eng.2022.08.011] [Reference Citation Analysis]
40 He T, Xu L, Hu Y, Tang X, Qu R, Zhao X, Bai H, Li L, Chen W, Luo G, Fu G, Wang W, Xia X, Zhang J. Lysine-Tethered Stable Bicyclic Cationic Antimicrobial Peptide Combats Bacterial Infection in Vivo. J Med Chem 2022;65:10523-33. [PMID: 35920072 DOI: 10.1021/acs.jmedchem.2c00661] [Reference Citation Analysis]
41 Zupin L, Santos-Silva CAD, Al Mughrbi ARH, Vilela LMB, Benko-Iseppon AM, Crovella S. Bioactive Antimicrobial Peptides: A New Weapon to Counteract Zoonosis. Microorganisms 2022;10:1591. [PMID: 36014009 DOI: 10.3390/microorganisms10081591] [Reference Citation Analysis]
42 Getahun YA, Ali DA, Taye BW, Alemayehu YA. Multidrug-Resistant Microbial Therapy Using Antimicrobial Peptides and the CRISPR/Cas9 System. VMRR 2022;Volume 13:173-190. [DOI: 10.2147/vmrr.s366533] [Reference Citation Analysis]
43 Ruczyński J, Parfianowicz B, Mucha P, Wiśniewska K, Piechowicz L, Rekowski P. Structure-Activity Relationship of New Chimeric Analogs of Mastoparan from the Wasp Venom Paravespula lewisii. Int J Mol Sci 2022;23:8269. [PMID: 35897844 DOI: 10.3390/ijms23158269] [Reference Citation Analysis]
44 Lv S, Wang J, You R, Liu S, Ding Y, Hadianamrei R, Tomeh MA, Pan F, Cai Z, Zhao X. Highly selective performance of rationally designed antimicrobial peptides based on ponericin-W1. Biomater Sci 2022. [PMID: 35861280 DOI: 10.1039/d2bm00744d] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
45 Thakur A, Sharma A, Alajangi HK, Jaiswal PK, Lim YB, Singh G, Barnwal RP. In pursuit of next-generation therapeutics: Antimicrobial peptides against superbugs, their sources, mechanism of action, nanotechnology-based delivery, and clinical applications. Int J Biol Macromol 2022;218:135-56. [PMID: 35868409 DOI: 10.1016/j.ijbiomac.2022.07.103] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
46 Bellotti D, Remelli M. Lights and Shadows on the Therapeutic Use of Antimicrobial Peptides. Molecules 2022;27:4584. [DOI: 10.3390/molecules27144584] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
47 dos Santos C, Franco OL. Advances in the use of plants as potential biofactories in the production of antimicrobial peptides. Peptide Science. [DOI: 10.1002/pep2.24290] [Reference Citation Analysis]
48 Guo S, He Y, Zhu Y, Tang Y, Yu B. Combatting Antibiotic Resistance Using Supramolecular Assemblies. Pharmaceuticals (Basel) 2022;15:804. [PMID: 35890105 DOI: 10.3390/ph15070804] [Reference Citation Analysis]
49 Svenson J, Molchanova N, Schroeder CI. Antimicrobial Peptide Mimics for Clinical Use: Does Size Matter? Front Immunol 2022;13:915368. [PMID: 35720375 DOI: 10.3389/fimmu.2022.915368] [Reference Citation Analysis]
50 Zheng X, Yang N, Mao R, Hao Y, Teng D, Wang J. Pharmacokinetics and Pharmacodynamics of Fungal Defensin NZX Against Staphylococcus aureus-Induced Mouse Peritonitis Model. Front Microbiol 2022;13:865774. [PMID: 35722282 DOI: 10.3389/fmicb.2022.865774] [Reference Citation Analysis]
51 Lima AM, Azevedo MIG, Sousa LM, Oliveira NS, Andrade CR, Freitas CDT, Souza PFN. Plant antimicrobial peptides: An overview about classification, toxicity and clinical applications. Int J Biol Macromol 2022;214:10-21. [PMID: 35700843 DOI: 10.1016/j.ijbiomac.2022.06.043] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Bakare OO, Gokul A, Fadaka AO, Wu R, Niekerk LA, Barker AM, Keyster M, Klein A. Plant Antimicrobial Peptides (PAMPs): Features, Applications, Production, Expression, and Challenges. Molecules 2022;27:3703. [PMID: 35744828 DOI: 10.3390/molecules27123703] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
53 Wang B, Zhou L, Guo Y, Guo H, Zhong Y, Huang X, Ge Y, Wang Q, Chu X, Jin Y, Lan K, Yang M, Qu J. Cyanobacteria-based self-oxygenated photodynamic therapy for anaerobic infection treatment and tissue repair. Bioactive Materials 2022;12:314-26. [DOI: 10.1016/j.bioactmat.2021.10.032] [Reference Citation Analysis]
54 Yan H, Chen F. Recent Progress in Solid‐Phase Total Synthesis of Naturally Occurring Small Peptides. Adv Synth Catal 2022;364:1934-61. [DOI: 10.1002/adsc.202200079] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
55 Ding X, Tang Q, Xu Z, Xu Y, Zhang H, Zheng D, Wang S, Tan Q, Maitz J, Maitz PK, Yin S, Wang Y, Chen J. Challenges and innovations in treating chronic and acute wound infections: from basic science to clinical practice. Burns Trauma 2022;10:tkac014. [PMID: 35611318 DOI: 10.1093/burnst/tkac014] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
56 von Reumont BM, Anderluh G, Antunes A, Ayvazyan N, Beis D, Caliskan F, Crnković A, Damm M, Dutertre S, Ellgaard L, Gajski G, German H, Halassy B, Hempel BF, Hucho T, Igci N, Ikonomopoulou MP, Karbat I, Klapa MI, Koludarov I, Kool J, Lüddecke T, Ben Mansour R, Vittoria Modica M, Moran Y, Nalbantsoy A, Ibáñez MEP, Panagiotopoulos A, Reuveny E, Céspedes JS, Sombke A, Surm JM, Undheim EAB, Verdes A, Zancolli G. Modern venomics-Current insights, novel methods, and future perspectives in biological and applied animal venom research. Gigascience 2022;11:giac048. [PMID: 35640874 DOI: 10.1093/gigascience/giac048] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
57 Pandit G, Sarkar T, S R V, Debnath S, Satpati P, Chatterjee S. Delineating the Mechanism of Action of a Protease Resistant and Salt Tolerant Synthetic Antimicrobial Peptide against Pseudomonas aeruginosa. ACS Omega 2022;7:15951-68. [PMID: 35571791 DOI: 10.1021/acsomega.2c01089] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 Tan P, Tang Q, Xu S, Zhang Y, Fu H, Ma X. Designing Self-Assembling Chimeric Peptide Nanoparticles with High Stability for Combating Piglet Bacterial Infections. Adv Sci (Weinh) 2022;9:e2105955. [PMID: 35285170 DOI: 10.1002/advs.202105955] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
59 Wani NA, Stolovicki E, Hur DB, Shai Y. Site-Specific Isopeptide Bond Formation: A Powerful Tool for the Generation of Potent and Nontoxic Antimicrobial Peptides. J Med Chem 2022. [PMID: 35290038 DOI: 10.1021/acs.jmedchem.2c00061] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
60 Patrulea V, Gan BH, Perron K, Cai X, Abdel-Sayed P, Sublet E, Ducret V, Nerhot NP, Applegate LA, Borchard G, Reymond JL, Jordan O. Synergistic effects of antimicrobial peptide dendrimer-chitosan polymer conjugates against Pseudomonas aeruginosa. Carbohydr Polym 2022;280:119025. [PMID: 35027127 DOI: 10.1016/j.carbpol.2021.119025] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
61 Nielsen JE, Alford MA, Yung DBY, Molchanova N, Fortkort JA, Lin JS, Diamond G, Hancock REW, Jenssen H, Pletzer D, Lund R, Barron AE. Self-Assembly of Antimicrobial Peptoids Impacts Their Biological Effects on ESKAPE Bacterial Pathogens. ACS Infect Dis 2022;8:533-45. [PMID: 35175731 DOI: 10.1021/acsinfecdis.1c00536] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
62 Cashman-kadri S, Lagüe P, Fliss I, Beaulieu L. Determination of the Relationships between the Chemical Structure and Antimicrobial Activity of a GAPDH-Related Fish Antimicrobial Peptide and Analogs Thereof. Antibiotics 2022;11:297. [DOI: 10.3390/antibiotics11030297] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
63 Luong HX, Bui HTP, Tung TT. Application of the All-Hydrocarbon Stapling Technique in the Design of Membrane-Active Peptides. J Med Chem 2022. [PMID: 35112864 DOI: 10.1021/acs.jmedchem.1c01744] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
64 Vanzolini T, Bruschi M, Rinaldi AC, Magnani M, Fraternale A. Multitalented Synthetic Antimicrobial Peptides and Their Antibacterial, Antifungal and Antiviral Mechanisms. Int J Mol Sci 2022;23:545. [PMID: 35008974 DOI: 10.3390/ijms23010545] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 12.0] [Reference Citation Analysis]
65 Dutta SR, Mondal KC. The Implication of Antimicrobial Peptides Against Bacteria and Their Clinical Aspects. Alternatives to Antibiotics 2022. [DOI: 10.1007/978-981-19-1854-4_19] [Reference Citation Analysis]
66 Si Z, Zheng W, Prananty D, Li J, Koh CH, Kang E, Pethe K, Chan-park MB. Polymers as advanced antibacterial and antibiofilm agents for direct and combination therapies. Chem Sci 2022;13:345-64. [DOI: 10.1039/d1sc05835e] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 11.0] [Reference Citation Analysis]
67 Borah N, Gogoi A, Saikia J. Dendrimeric Entities as Chemical Alternatives Toward Antimicrobial Therapy. Alternatives to Antibiotics 2022. [DOI: 10.1007/978-981-19-1854-4_15] [Reference Citation Analysis]
68 Baci G, Cucu A, Giurgiu A, Muscă A, Bagameri L, Moise AR, Bobiș O, Rațiu AC, Dezmirean DS. Advances in Editing Silkworms (Bombyx mori) Genome by Using the CRISPR-Cas System. Insects 2022;13:28. [DOI: 10.3390/insects13010028] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
69 Jin L, Ding H, Degirmenci V, Xin H, Miao Q, Wang Q, Zhang D. Determination of the Peptide AWRK6 in Rat Plasma by Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) and Its Application to Pharmacokinetics. Molecules 2021;27:92. [DOI: 10.3390/molecules27010092] [Reference Citation Analysis]
70 He T, Qu R, Zhang J. Current synthetic chemistry towards cyclic antimicrobial peptides. J Pept Sci 2021;:e3387. [PMID: 34931393 DOI: 10.1002/psc.3387] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
71 Mardirossian M, Rubini M, Adamo MFA, Scocchi M, Saviano M, Tossi A, Gennaro R, Caporale A. Natural and Synthetic Halogenated Amino Acids-Structural and Bioactive Features in Antimicrobial Peptides and Peptidomimetics. Molecules 2021;26:7401. [PMID: 34885985 DOI: 10.3390/molecules26237401] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
72 Sacher E, Yelon A. A Pragmatic Perspective of the Antibacterial Properties of Metal-Based Nanoparticles. Nanomaterials (Basel) 2021;11:3214. [PMID: 34947563 DOI: 10.3390/nano11123214] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
73 Chen T, Lyu Y, Tan M, Yang C, Li Y, Shao C, Zhu Y, Shan A. Fabrication of Supramolecular Antibacterial Nanofibers with Membrane-Disruptive Mechanism. J Med Chem 2021;64:16480-96. [PMID: 34783241 DOI: 10.1021/acs.jmedchem.1c00829] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
74 Singh S, Numan A, Cinti S. Point-of-Care for Evaluating Antimicrobial Resistance through the Adoption of Functional Materials. Anal Chem 2021. [PMID: 34802244 DOI: 10.1021/acs.analchem.1c03856] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
75 Vimberg V, Buriánková K, Mazumdar A, Branny P, Novotná GB. Role of membrane proteins in bacterial resistance to antimicrobial peptides. Med Res Rev 2021. [PMID: 34796517 DOI: 10.1002/med.21869] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
76 Durães F, Cravo S, Freitas-Silva J, Szemerédi N, Martins-da-Costa P, Pinto E, Tiritan ME, Spengler G, Fernandes C, Sousa E, Pinto M. Enantioselectivity of Chiral Derivatives of Xanthones in Virulence Effects of Resistant Bacteria. Pharmaceuticals (Basel) 2021;14:1141. [PMID: 34832923 DOI: 10.3390/ph14111141] [Reference Citation Analysis]
77 Singh O, Hsu WL, Su EC. Co-AMPpred for in silico-aided predictions of antimicrobial peptides by integrating composition-based features. BMC Bioinformatics 2021;22:389. [PMID: 34330209 DOI: 10.1186/s12859-021-04305-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
78 Bellavita R, Casciaro B, Di Maro S, Brancaccio D, Carotenuto A, Falanga A, Cappiello F, Buommino E, Galdiero S, Novellino E, Grossmann TN, Mangoni ML, Merlino F, Grieco P. First-in-Class Cyclic Temporin L Analogue: Design, Synthesis, and Antimicrobial Assessment. J Med Chem 2021;64:11675-94. [PMID: 34296619 DOI: 10.1021/acs.jmedchem.1c01033] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]