BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Pellico J, Gawne PJ, T M de Rosales R. Radiolabelling of nanomaterials for medical imaging and therapy. Chem Soc Rev 2021;50:3355-423. [PMID: 33491714 DOI: 10.1039/d0cs00384k] [Cited by in Crossref: 50] [Cited by in F6Publishing: 60] [Article Influence: 50.0] [Reference Citation Analysis]
Number Citing Articles
1 Yang S, Dai W, Zheng W, Wang J. Non-UV-activated persistent luminescence phosphors for sustained bioimaging and phototherapy. Coordination Chemistry Reviews 2023;475:214913. [DOI: 10.1016/j.ccr.2022.214913] [Reference Citation Analysis]
2 Smith L, Kuncic Z, Byrne HL, Waddington D. Nanoparticles for MRI-guided radiation therapy: a review. Cancer Nano 2022;13:38. [DOI: 10.1186/s12645-022-00145-8] [Reference Citation Analysis]
3 Ouyang Y, O'hagan MP, Willner I. Functional catalytic nanoparticles (nanozymes) for sensing. Biosensors and Bioelectronics 2022;218:114768. [DOI: 10.1016/j.bios.2022.114768] [Reference Citation Analysis]
4 Santos-coquillat A, Herreros-pérez D, Samaniego R, González MI, Cussó L, Desco M, Salinas B. Dual-labeled nanoparticles based on small extracellular vesicles for tumor detection. Biol Direct 2022;17:31. [DOI: 10.1186/s13062-022-00345-7] [Reference Citation Analysis]
5 Siafaka PI, Okur ME, Erim PD, Çağlar EŞ, Özgenç E, Gündoğdu E, Köprülü REP, Karantas ID, Üstündağ Okur N. Protein and Gene Delivery Systems for Neurodegenerative Disorders: Where Do We Stand Today? Pharmaceutics 2022;14:2425. [DOI: 10.3390/pharmaceutics14112425] [Reference Citation Analysis]
6 Bentivoglio V, Varani M, Lauri C, Ranieri D, Signore A. Methods for Radiolabelling Nanoparticles: PET Use (Part 2). Biomolecules 2022;12:1517. [DOI: 10.3390/biom12101517] [Reference Citation Analysis]
7 Varani M, Bentivoglio V, Lauri C, Ranieri D, Signore A. Methods for Radiolabelling Nanoparticles: SPECT Use (Part 1). Biomolecules 2022;12:1522. [DOI: 10.3390/biom12101522] [Reference Citation Analysis]
8 Marshall SK, Saelim B, Taweesap M, Pachana V, Panrak Y, Makchuchit N, Jaroenpakdee P. Anti-EGFR Targeted Multifunctional I-131 Radio-Nanotherapeutic for Treating Osteosarcoma: In Vitro 3D Tumor Spheroid Model. Nanomaterials (Basel) 2022;12:3517. [PMID: 36234645 DOI: 10.3390/nano12193517] [Reference Citation Analysis]
9 Liao W, Li Y, Wang J, Zhao M, Chen N, Zheng Q, Wan L, Mou Y, Tang J, Wang Z. Natural Products-Based Nanoformulations: A New Approach Targeting CSCs to Cancer Therapy. Int J Nanomedicine 2022;17:4163-93. [PMID: 36134202 DOI: 10.2147/IJN.S380697] [Reference Citation Analysis]
10 Gawne PJ, Pinto SM, Nielsen KM, Keeling GP, Pereira MM, de Rosales RT. Microwave-assisted synthesis of [52Mn]Mn-porphyrins: Applications in cell and liposome radiolabelling. Nuclear Medicine and Biology 2022. [DOI: 10.1016/j.nucmedbio.2022.08.006] [Reference Citation Analysis]
11 Zhang S, Zhang J, Fan X, Liu H, Zhu M, Yang M, Zhang X, Zhang H, Yu F. Ionizing Radiation-Induced Ferroptosis Based on Nanomaterials. IJN 2022;Volume 17:3497-507. [DOI: 10.2147/ijn.s372947] [Reference Citation Analysis]
12 Wang Z, Chen Z, Zhang Z, Li J, Chen K, Liang H, Lv L, Chang Y, Liu S, Yang W, Yang Z, Yuan H, Meng X, Liu T, Wang F, Li J, Xing G. Multifunctional high boron content MOFs nano-co-crystals for precise boron neutron capture therapy for brain glioma in situ. Nano Today 2022;45:101558. [DOI: 10.1016/j.nantod.2022.101558] [Reference Citation Analysis]
13 Wen H, Närvänen A, Jokivarsi K, Poutiainen P, Xu W, Lehto VP. A robust approach to make inorganic nanovectors biotraceable. Int J Pharm 2022;624:122040. [PMID: 35902052 DOI: 10.1016/j.ijpharm.2022.122040] [Reference Citation Analysis]
14 Kong L, Zhu J, Su H, Zhao L, Lu Y, Zhu M, Sun W. Phenylboronic acid conjugated multifunctional nanogels with 131I-labeling for targeted SPECT imaging and radiotherapy of breast adenocarcinoma. Front Bioeng Biotechnol 2022;10:973141. [DOI: 10.3389/fbioe.2022.973141] [Reference Citation Analysis]
15 He H, Zhang X, Du L, Ye M, Lu Y, Xue J, Wu J, Shuai X. Molecular imaging nanoprobes for theranostic applications. Adv Drug Deliv Rev 2022;186:114320. [PMID: 35526664 DOI: 10.1016/j.addr.2022.114320] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Skotland T, Iversen TG, Llorente A, Sandvig K. Biodistribution, pharmacokinetics and excretion studies of intravenously injected nanoparticles and extracellular vesicles: Possibilities and challenges. Adv Drug Deliv Rev 2022;186:114326. [PMID: 35588953 DOI: 10.1016/j.addr.2022.114326] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
17 Mehany HM, El-Shafai NM, Attia AM, Ibrahim MM, El-Mehasseb IM. Potential of chitosan nanoparticle/fluoride nanocomposite for reducing the toxicity of fluoride an in-vivo study on the rat heart functions: Hematopoietic and immune systems. Int J Biol Macromol 2022:S0141-8130(22)01384-8. [PMID: 35780919 DOI: 10.1016/j.ijbiomac.2022.06.171] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
18 Marshall SK, Panrak Y, Makchuchit N, Jaroenpakdee P, Saelim B, Taweesap M, Pachana V. Anti-EpCAM Functionalized I-131 Radiolabeled Biomimetic Nanocarrier Sodium/Iodide-Symporter-Mediated Breast-Cancer Treatment. Bioengineering 2022;9:294. [DOI: 10.3390/bioengineering9070294] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
19 Ouyang J, Xie A, Zhou J, Liu R, Wang L, Liu H, Kong N, Tao W. Minimally invasive nanomedicine: nanotechnology in photo-/ultrasound-/radiation-/magnetism-mediated therapy and imaging. Chem Soc Rev 2022. [PMID: 35616098 DOI: 10.1039/d1cs01148k] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 18.0] [Reference Citation Analysis]
20 Luo Z, Li S, Wang L, Liu B. Asymmetrical ring-shaped colloidal particles for self-assembly and superhydrophobic coatings. Chem Commun (Camb) 2022;58:5757-60. [PMID: 35446326 DOI: 10.1039/d2cc01853e] [Reference Citation Analysis]
21 Reddy BC, Vidya Y, Manjunatha H, Sridhar K, Pasha UM, Seenappa L, Sadashivamurthy B, Dhananjaya N, Sankarshan B, Krishnaveni S, Sathish K, Gupta PD. Synthesis and characterization of Barium ferrite nano-particles for X-ray/gamma radiation shielding and display applications. Progress in Nuclear Energy 2022;147:104187. [DOI: 10.1016/j.pnucene.2022.104187] [Reference Citation Analysis]
22 Prihatiningsih MC, Ariyanto T, Putra EGR, Susilo VY, Mahendra I, Prasetyo I. Radioiodination of Modified Porous Silica Nanoparticles as a Potential Candidate of Iodine-131 Drugs Vehicle. ACS Omega 2022;7:13494-506. [PMID: 35559138 DOI: 10.1021/acsomega.1c06492] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Zhou Y, Liu R, Shevtsov M, Gao H. When imaging meets size-transformable nanosystems. Adv Drug Deliv Rev 2022;183:114176. [PMID: 35227872 DOI: 10.1016/j.addr.2022.114176] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Lasa-saracíbar B, El Moukhtari SH, Tsotakos T, Xanthopoulos S, Loudos G, Bouziotis P, Blanco-prieto MJ. In vivo biodistribution of edelfosine-loaded lipid nanoparticles radiolabeled with Technetium-99m: comparison of administration routes in mice. European Journal of Pharmaceutics and Biopharmaceutics 2022. [DOI: 10.1016/j.ejpb.2022.04.007] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Dai W, Zhang J, Wang Y, Jiao C, Song Z, Ma Y, Ding Y, Zhang Z, He X. Radiolabeling of Nanomaterials: Advantages and Challenges. Front Toxicol 2021;3:753316. [PMID: 35295152 DOI: 10.3389/ftox.2021.753316] [Reference Citation Analysis]
26 Chen X, Niu W, Du Z, Zhang Y, Su D, Gao X. 64Cu radiolabeled nanomaterials for positron emission tomography (PET) imaging. Chinese Chemical Letters 2022. [DOI: 10.1016/j.cclet.2022.02.070] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Xie F, Li R, Shu W, Zhao L, Wan J. Self-assembly of Peptide dendrimers and their bio-applications in theranostics. Materials Today Bio 2022;14:100239. [DOI: 10.1016/j.mtbio.2022.100239] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Yilmaz D, Sharp PS, Main MJ, Simpson PB. Advanced molecular imaging for the characterisation of complex medicines. Drug Discovery Today 2022. [DOI: 10.1016/j.drudis.2022.03.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Kim SC. Tungsten-Based Hybrid Composite Shield for Medical Radioisotope Defense. Materials (Basel) 2022;15:1338. [PMID: 35207876 DOI: 10.3390/ma15041338] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Phua VJX, Yang C, Xia B, Yan SX, Liu J, Aw SE, He T, Ng DCE. Nanomaterial Probes for Nuclear Imaging. Nanomaterials 2022;12:582. [DOI: 10.3390/nano12040582] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Yan Y, Wang H, Zhao Y. Radiolabeled peptide probe for tumor imaging. Chinese Chemical Letters 2022. [DOI: 10.1016/j.cclet.2022.02.016] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
32 Gharibkandi NA, Gierałtowska J, Wawrowicz K, Bilewicz A. Nanostructures as Radionuclide Carriers in Auger Electron Therapy. Materials (Basel) 2022;15:1143. [PMID: 35161087 DOI: 10.3390/ma15031143] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
33 Silva F, D'Onofrio A, Mendes C, Pinto C, Marques A, Campello MPC, Oliveira MC, Raposinho P, Belchior A, Di Maria S, Marques F, Cruz C, Carvalho J, Paulo A. Radiolabeled Gold Nanoseeds Decorated with Substance P Peptides: Synthesis, Characterization and In Vitro Evaluation in Glioblastoma Cellular Models. Int J Mol Sci 2022;23:617. [PMID: 35054798 DOI: 10.3390/ijms23020617] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
34 Chinnappa Reddy B, Seenappa L, Manjunatha H, Vidya Y, Sridhar K, Mahendra Kumar C, Mahaboob Pasha U. Study of antimicrobial applications of Bismuth Oxide. Materials Today: Proceedings 2022;57:112-115. [DOI: 10.1016/j.matpr.2022.01.441] [Reference Citation Analysis]
35 Qu A, Xu L, Xu C, Kuang H. Chiral nanomaterials for biosensing, bioimaging, and disease therapies. Chem Commun 2022. [DOI: 10.1039/d2cc04420j] [Reference Citation Analysis]
36 Pan Y, Tang W, Fan W, Zhang J, Chen X. Development of nanotechnology-mediated precision radiotherapy for anti-metastasis and radioprotection. Chem Soc Rev 2022. [DOI: 10.1039/d1cs01145f] [Reference Citation Analysis]
37 Hu Y, Miao Y, Zhang J, Chen Y, Qiu L, Lin J, Ye D. Alkaline Phosphatase Enabled Fluorogenic Reaction and in situ Coassembly of Near-Infrared and Radioactive Nanoparticles for in vivo Imaging. Nano Lett 2021;21:10377-85. [PMID: 34898218 DOI: 10.1021/acs.nanolett.1c03683] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
38 Seniwal B, Thipe VC, Singh S, Fonseca TCF, Freitas de Freitas L. Recent Advances in Brachytherapy Using Radioactive Nanoparticles: An Alternative to Seed-Based Brachytherapy. Front Oncol 2021;11:766407. [PMID: 34900715 DOI: 10.3389/fonc.2021.766407] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
39 Mamai M, Giasafaki D, Salvanou EA, Charalambopoulou G, Steriotis T, Bouziotis P. Biodistribution of Mesoporous Carbon Nanoparticles via Technetium-99m Radiolabelling after Oral Administration to Mice. Nanomaterials (Basel) 2021;11:3260. [PMID: 34947611 DOI: 10.3390/nano11123260] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
40 Southcott L, Orvig C. Inorganic radiopharmaceutical chemistry of oxine. Dalton Trans 2021;50:16451-8. [PMID: 34709268 DOI: 10.1039/d1dt02685b] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
41 Zhao C, Pang X, Yang Z, Wang S, Deng H, Chen X. Nanomaterials targeting tumor associated macrophages for cancer immunotherapy. J Control Release 2021;341:272-84. [PMID: 34813877 DOI: 10.1016/j.jconrel.2021.11.028] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
42 Xu MQ, Hao YL, Wang JR, Li ZY, Li H, Feng ZH, Wang H, Wang JW, Zhang X. Antitumor Activity of α-Linolenic Acid-Paclitaxel Conjugate Nanoparticles: In vitro and in vivo. Int J Nanomedicine 2021;16:7269-81. [PMID: 34737564 DOI: 10.2147/IJN.S331578] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
43 Hrynchak I, Santos L, Falcão A, Gomes CM, Abrunhosa AJ. Nanobody-Based Theranostic Agents for HER2-Positive Breast Cancer: Radiolabeling Strategies. IJMS 2021;22:10745. [DOI: 10.3390/ijms221910745] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
44 Díez-Villares S, Pellico J, Gómez-Lado N, Grijalvo S, Alijas S, Eritja R, Herranz F, Aguiar P, de la Fuente M. Biodistribution of 68/67Ga-Radiolabeled Sphingolipid Nanoemulsions by PET and SPECT Imaging. Int J Nanomedicine 2021;16:5923-35. [PMID: 34475757 DOI: 10.2147/IJN.S316767] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
45 Kleynhans J, Sathekge M, Ebenhan T. Obstacles and Recommendations for Clinical Translation of Nanoparticle System-Based Targeted Alpha-Particle Therapy. Materials (Basel) 2021;14:4784. [PMID: 34500873 DOI: 10.3390/ma14174784] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
46 Lee W, Il An G, Park H, Sarkar S, Ha YS, Huynh PT, Bhise A, Bhatt N, Ahn H, Pandya DN, Kim JY, Kim S, Jun E, Kim SC, Lee KC, Yoo J. Imaging Strategy that Achieves Ultrahigh Contrast by Utilizing Differential Esterase Activity in Organs: Application in Early Detection of Pancreatic Cancer. ACS Nano 2021. [PMID: 34405675 DOI: 10.1021/acsnano.1c05165] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
47 Ma Q, Bai J, Xu J, Dai H, Fan Q, Fei Z, Chu J, Yao C, Shi H, Zhou X, Bo L, Wang C. Reshaping the Inflammatory Environment in Rheumatoid Arthritis Joints by Targeting Delivery of Berberine with Platelet‐Derived Extracellular Vesicles. Adv NanoBio Res 2021;1:2100071. [DOI: 10.1002/anbr.202100071] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
48 Jaymand M, Davatgaran Taghipour Y, Rezaei A, Derakhshankhah H, Foad Abazari M, Samadian H, Hamblin MR. Radiolabeled carbon-based nanostructures: New radiopharmaceuticals for cancer therapy? Coordination Chemistry Reviews 2021;440:213974. [DOI: 10.1016/j.ccr.2021.213974] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 9.0] [Reference Citation Analysis]
49 Xu MQ, Zhong T, Yao X, Li ZY, Li H, Wang JR, Feng ZH, Zhang X. Effect of XlogP and hansen solubility parameters on the prediction of small molecule modified docetaxel, doxorubicin and irinotecan conjugates forming stable nanoparticles. Drug Deliv 2021;28:1603-15. [PMID: 34319209 DOI: 10.1080/10717544.2021.1958107] [Reference Citation Analysis]
50 Cowan MJ, Nagarajan AV, Mpourmpakis G. Correlating structural rules with electronic properties of ligand-protected alloy nanoclusters. J Chem Phys 2021;155:024303. [PMID: 34266280 DOI: 10.1063/5.0056690] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
51 Musielak M, Potoczny J, Boś-Liedke A, Kozak M. The Combination of Liposomes and Metallic Nanoparticles as Multifunctional Nanostructures in the Therapy and Medical Imaging-A Review. Int J Mol Sci 2021;22:6229. [PMID: 34207682 DOI: 10.3390/ijms22126229] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]