1 |
Hamley IW. Self-Assembly, Bioactivity, and Nanomaterials Applications of Peptide Conjugates with Bulky Aromatic Terminal Groups. ACS Appl Bio Mater 2023;6:384-409. [PMID: 36735801 DOI: 10.1021/acsabm.2c01041] [Reference Citation Analysis]
|
2 |
Wang N, Yang J, Gan G, Bao X, Wang L. Self-assembled insulin-like growth factor 1 peptides induce adipose stem cell differentiation to repair cartilage injury. Biomaterials Advances 2022;137:212845. [DOI: 10.1016/j.bioadv.2022.212845] [Reference Citation Analysis]
|
3 |
Hu J, Wei T, Zhao H, Chen M, Tan Y, Ji Z, Jin Q, Shen J, Han Y, Yang N, Chen L, Xiao Z, Zhang H, Liu Z, Chen Q. Mechanically active adhesive and immune regulative dressings for wound closure. Matter 2021;4:2985-3000. [DOI: 10.1016/j.matt.2021.06.044] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 8.5] [Reference Citation Analysis]
|
4 |
Xing Z, Chen Y, Qiu F. Alternative Causal Link between Peptide Fibrillization and β-Strand Conformation. ACS Omega 2021;6:12904-12. [PMID: 34056442 DOI: 10.1021/acsomega.1c01423] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
5 |
Shang Y, Liu H, Peng R, Ren C, Luo X, Ma C, Gao Y, Wang Z, Gao J, Liu J, Yang Z. PDGF-mimicking supramolecular nanofibers for ionizing radiation-induced injury repair. Chemical Engineering Journal 2021;410:128309. [DOI: 10.1016/j.cej.2020.128309] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
6 |
Lai Y, Li F, Zou Z, Saeed M, Xu Z, Yu H. Bio-inspired amyloid polypeptides: From self-assembly to nanostructure design and biotechnological applications. Applied Materials Today 2021;22:100966. [DOI: 10.1016/j.apmt.2021.100966] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
7 |
Shang Y, Ma C, Zhang J, Wang Z, Ren C, Luo X, Peng R, Liu J, Mao J, Shi Y, Fan G. Bifunctional supramolecular nanofiber inhibits atherosclerosis by enhancing plaque stability and anti-inflammation in apoE-/- mice. Theranostics 2020;10:10231-44. [PMID: 32929345 DOI: 10.7150/thno.48410] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
|
8 |
Wang Z, Ren C, Shang Y, Yang C, Guo Q, Chu L, Liu J. Co-assembled Supramolecular Nanofibers With Tunable Surface Properties for Efficient Vaccine Delivery. Front Chem 2020;8:500. [PMID: 32850613 DOI: 10.3389/fchem.2020.00500] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
9 |
Wang H, Shang Y, Chen X, Wang Z, Zhu D, Liu Y, Zhang C, Chen P, Wu J, Wu L, Kong D, Yang Z, Li Z, Chen X. Delivery of MSCs with a Hybrid β-Sheet Peptide Hydrogel Consisting IGF-1C Domain and D-Form Peptide for Acute Kidney Injury Therapy. Int J Nanomedicine 2020;15:4311-24. [PMID: 32606679 DOI: 10.2147/IJN.S254635] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
|
10 |
Chuan D, Wang Y, Fan R, Zhou L, Chen H, Xu J, Guo G. Fabrication and Properties of a Biomimetic Dura Matter Substitute Based on Stereocomplex Poly(Lactic Acid) Nanofibers]]>. IJN 2020;Volume 15:3729-40. [DOI: 10.2147/ijn.s248998] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
|
11 |
Wang Z, Shang Y, Tan Z, Li X, Li G, Ren C, Wang F, Yang Z, Liu J. A supramolecular protein chaperone for vaccine delivery. Theranostics 2020;10:657-70. [PMID: 31903143 DOI: 10.7150/thno.39132] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
|
12 |
Shy AN, Kim BJ, Xu B. Enzymatic Noncovalent Synthesis of Supramolecular Soft Matter for Biomedical Applications. Matter 2019;1:1127-47. [PMID: 32104791 DOI: 10.1016/j.matt.2019.09.015] [Cited by in Crossref: 34] [Cited by in F6Publishing: 27] [Article Influence: 8.5] [Reference Citation Analysis]
|