BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mena P, Bresciani L, Brindani N, Ludwig IA, Pereira-Caro G, Angelino D, Llorach R, Calani L, Brighenti F, Clifford MN, Gill CIR, Crozier A, Curti C, Del Rio D. Phenyl-γ-valerolactones and phenylvaleric acids, the main colonic metabolites of flavan-3-ols: synthesis, analysis, bioavailability, and bioactivity. Nat Prod Rep 2019;36:714-52. [PMID: 30468210 DOI: 10.1039/c8np00062j] [Cited by in Crossref: 85] [Cited by in F6Publishing: 44] [Article Influence: 28.3] [Reference Citation Analysis]
Number Citing Articles
1 Daoust L, Choi BS, Agrinier A, Varin TV, Ouellette A, Mitchell PL, Samson N, Pilon G, Levy E, Desjardins Y, Laplante M, Anhê FF, Houde VP, Marette A. Gnotobiotic mice housing conditions critically influence the phenotype associated with transfer of faecal microbiota in a context of obesity. Gut. [DOI: 10.1136/gutjnl-2021-326475] [Reference Citation Analysis]
2 Carregosa D, Pinto C, Ávila-Gálvez MÁ, Bastos P, Berry D, Santos CN. A look beyond dietary (poly)phenols: The low molecular weight phenolic metabolites and their concentrations in human circulation. Compr Rev Food Sci Food Saf 2022. [PMID: 36037277 DOI: 10.1111/1541-4337.13006] [Reference Citation Analysis]
3 Ottaviani JI, Schroeter H, Kuhnle GGC. Measuring the intake of dietary bioactives: Pitfalls and how to avoid them. Mol Aspects Med 2022;:101139. [PMID: 36031430 DOI: 10.1016/j.mam.2022.101139] [Reference Citation Analysis]
4 Di Pede G, Mena P, Bresciani L, Almutairi TM, Del Rio D, Clifford MN, Crozier A. Human colonic catabolism of dietary flavan-3-ol bioactives. Mol Aspects Med 2022;:101107. [PMID: 35931563 DOI: 10.1016/j.mam.2022.101107] [Reference Citation Analysis]
5 Fernanda Borgonovi T, Borghi Virgolin L, Soares Janzantti N, Neves Casarotti S, Lúcia Barretto Penna A. Fruit Bioactive Compounds: Effect on Lactic Acid Bacteria and on Intestinal Microbiota. Food Research International 2022. [DOI: 10.1016/j.foodres.2022.111809] [Reference Citation Analysis]
6 Liu C, Boeren S, Rietjens IMCM. Intra- and Inter-individual Differences in the Human Intestinal Microbial Conversion of (-)-Epicatechin and Bioactivity of Its Major Colonic Metabolite 5-(3′,4′-Dihydroxy-Phenyl)-γ-Valerolactone in Regulating Nrf2-Mediated Gene Expression. Front Nutr 2022;9:910785. [DOI: 10.3389/fnut.2022.910785] [Reference Citation Analysis]
7 Liu Z, Vincken J, de Bruijn WJ. Tea phenolics as prebiotics. Trends in Food Science & Technology 2022. [DOI: 10.1016/j.tifs.2022.06.007] [Reference Citation Analysis]
8 Pferschy-wenzig E, Pausan MR, Ardjomand-woelkart K, Röck S, Ammar RM, Kelber O, Moissl-eichinger C, Bauer R. Medicinal Plants and Their Impact on the Gut Microbiome in Mental Health: A Systematic Review. Nutrients 2022;14:2111. [DOI: 10.3390/nu14102111] [Reference Citation Analysis]
9 Nag A, Dhull N, Gupta A. Evaluation of tea (Camellia sinensis L.) phytochemicals as multi-disease modulators, a multidimensional in silico strategy with the combinations of network pharmacology, pharmacophore analysis, statistics and molecular docking. Mol Divers 2022. [PMID: 35536529 DOI: 10.1007/s11030-022-10437-1] [Reference Citation Analysis]
10 Kruk A, Granica S, Popowski D, Malinowska N, Piwowarski JP. Tiliae flos metabolites and their beneficial influence on human gut microbiota biodiversity ex vivo. J Ethnopharmacol 2022;294:115355. [PMID: 35537603 DOI: 10.1016/j.jep.2022.115355] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
11 Sahadevan R, Singh S, Binoy A, Sadhukhan S. Chemico-biological aspects of (-)-epigallocatechin-3-gallate (EGCG) to improve its stability, bioavailability and membrane permeability: Current status and future prospects. Crit Rev Food Sci Nutr 2022;:1-30. [PMID: 35491671 DOI: 10.1080/10408398.2022.2068500] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
12 Wang M, Li J, Hu T, Zhao H. Metabolic fate of tea polyphenols and their crosstalk with gut microbiota. Food Science and Human Wellness 2022;11:455-66. [DOI: 10.1016/j.fshw.2021.12.003] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
13 Oesterle I, Braun D, Rompel A, Warth B. Quantifying up to 90 polyphenols simultaneously in human bio-fluids by LC-MS/MS. Analytica Chimica Acta 2022. [DOI: 10.1016/j.aca.2022.339977] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Clifford MN, Kuhnert N. LC-MS Characterization and Quantification of Known and Unknown (Poly)phenol Metabolites-Possible Pitfalls and Their Avoidance. Mol Nutr Food Res 2022;:e2101013. [PMID: 35489085 DOI: 10.1002/mnfr.202101013] [Reference Citation Analysis]
15 Wang W, Ohland C, Jobin C, Sang S. Gut Microbiota as a Novel Tool to Dissect the Complex Structures of Black Tea Polymers. J Agric Food Chem 2022. [PMID: 35420414 DOI: 10.1021/acs.jafc.2c00995] [Reference Citation Analysis]
16 Li Q, Van Herreweghen F, Onyango SO, De Mey M, Van de Wiele T. In Vitro Microbial Metabolism of (+)-Catechin Reveals Fast and Slow Converters with Individual-Specific Microbial and Metabolite Markers. J Agric Food Chem 2022. [PMID: 35420423 DOI: 10.1021/acs.jafc.2c00551] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Rubert J, Gatto P, Pancher M, Sidarovich V, Curti C, Mena P, Del Rio D, Quattrone A, Mattivi F. A Screening of Native (Poly)phenols and Gut-Related Metabolites on 3D HCT116 Spheroids Reveals Gut Health Benefits of a Flavan-3-ol Metabolite. Mol Nutr Food Res 2022;:e2101043. [PMID: 35394679 DOI: 10.1002/mnfr.202101043] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Heiss C, Istas G, Feliciano RP, Weber T, Wang B, Favari C, Mena P, Del Rio D, Rodriguez-Mateos A. Daily consumption of cranberry improves endothelial function in healthy adults: a double blind randomized controlled trial. Food Funct 2022;13:3812-24. [PMID: 35322843 DOI: 10.1039/d2fo00080f] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Bag S, Mondal A, Majumder A, Banik A. Tea and its phytochemicals: Hidden health benefits & modulation of signaling cascade by phytochemicals. Food Chem 2022;371:131098. [PMID: 34634647 DOI: 10.1016/j.foodchem.2021.131098] [Cited by in Crossref: 21] [Cited by in F6Publishing: 8] [Article Influence: 21.0] [Reference Citation Analysis]
20 Vong CI, Rathinasabapathy T, Moncada M, Komarnytsky S. All Polyphenols Are Not Created Equal: Exploring the Diversity of Phenolic Metabolites. J Agric Food Chem 2022. [PMID: 35147422 DOI: 10.1021/acs.jafc.1c07179] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Ticinesi A, Mancabelli L, Carnevali L, Nouvenne A, Meschi T, Del Rio D, Ventura M, Sgoifo A, Angelino D. Interaction Between Diet and Microbiota in the Pathophysiology of Alzheimer's Disease: Focus on Polyphenols and Dietary Fibers. J Alzheimers Dis 2022. [PMID: 35147544 DOI: 10.3233/JAD-215493] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
22 Tabone M, García-Merino JA, Bressa C, Rocha Guzman NE, Herrera Rocha K, Chu Van E, Castelli FA, Fenaille F, Larrosa M. Chronic Consumption of Cocoa Rich in Procyanidins Has a Marginal Impact on Gut Microbiota and on Serum and Fecal Metabolomes in Male Endurance Athletes. J Agric Food Chem 2022. [PMID: 35112856 DOI: 10.1021/acs.jafc.1c07547] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Han S, Luo Y, Hu Z, Qin D, Luo F. Targeting gut microbiota in type 2 diabetes mellitus: Potential roles of dietary flavonoids. Food Bioscience 2022;45:101500. [DOI: 10.1016/j.fbio.2021.101500] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
24 Ma H, Hu Y, Zhang B, Shao Z, Roura E, Wang S. Tea polyphenol – gut microbiota interactions: hints on improving the metabolic syndrome in a multi-element and multi-target manner. Food Science and Human Wellness 2022;11:11-21. [DOI: 10.1016/j.fshw.2021.07.002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
25 Li Q, Van Herreweghen F, De Mey M, Goeminne G, Van de Wiele T. The Donor-Dependent and Colon-Region-Dependent Metabolism of (+)-Catechin by Colonic Microbiota in the Simulator of the Human Intestinal Microbial Ecosystem. Molecules 2021;27:73. [PMID: 35011305 DOI: 10.3390/molecules27010073] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Diotallevi C, Fontana M, Latimer C, Ternan NG, Pourshahidi LK, Lawther R, O'Connor G, Conterno L, Gasperotti M, Angeli A, Lotti C, Bianchi M, Vrhovsek U, Fava F, Gobbetti M, Gill CIR, Tuohy KM. Ex Vivo Fecal Fermentation of Human Ileal Fluid Collected After Wild Strawberry Consumption Modulates Human Microbiome Community Structure and Metabolic Output and Protects Against DNA Damage in Colonic Epithelial Cells. Mol Nutr Food Res 2021;:e2100405. [PMID: 34821456 DOI: 10.1002/mnfr.202100405] [Reference Citation Analysis]
27 Mena P, Favari C, Acharjee A, Chernbumroong S, Bresciani L, Curti C, Brighenti F, Heiss C, Rodriguez-Mateos A, Del Rio D. Metabotypes of flavan-3-ol colonic metabolites after cranberry intake: elucidation and statistical approaches. Eur J Nutr 2021. [PMID: 34750642 DOI: 10.1007/s00394-021-02692-z] [Reference Citation Analysis]
28 Si W, Zhang Y, Li X, Du Y, Xu Q. Understanding the Functional Activity of Polyphenols Using Omics-Based Approaches. Nutrients 2021;13:3953. [PMID: 34836207 DOI: 10.3390/nu13113953] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
29 Iglesias-Aguirre CE, Cortés-Martín A, Ávila-Gálvez MÁ, Giménez-Bastida JA, Selma MV, González-Sarrías A, Espín JC. Main drivers of (poly)phenol effects on human health: metabolite production and/or gut microbiota-associated metabotypes? Food Funct 2021;12:10324-55. [PMID: 34558584 DOI: 10.1039/d1fo02033a] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
30 Chen W, Zhang L, Zhao L, Yan F, Zhu X, Lu Q, Liu R. Metabolomic profiles of A-type procyanidin dimer and trimer with gut microbiota in vitro. Journal of Functional Foods 2021;85:104637. [DOI: 10.1016/j.jff.2021.104637] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
31 Rajković E, Schwarz C, Tischler D, Schedle K, Reisinger N, Emsenhuber C, Ocelova V, Roth N, Frieten D, Dusel G, Gierus M. Potential of Grape Extract in Comparison with Therapeutic Dosage of Antibiotics in Weaning Piglets: Effects on Performance, Digestibility and Microbial Metabolites of the Ileum and Colon. Animals (Basel) 2021;11:2771. [PMID: 34679793 DOI: 10.3390/ani11102771] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Wu Z, Huang S, Li T, Li N, Han D, Zhang B, Xu ZZ, Zhang S, Pang J, Wang S, Zhang G, Zhao J, Wang J. Gut microbiota from green tea polyphenol-dosed mice improves intestinal epithelial homeostasis and ameliorates experimental colitis. Microbiome 2021;9:184. [PMID: 34493333 DOI: 10.1186/s40168-021-01115-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
33 Knezevic S, Ghafoor A, Mehri S, Barazi A, Dziura M, Trant JF, Dieni CA. Catechin and other catechol-containing secondary metabolites: Bacterial biotransformation and regulation of carbohydrate metabolism. PharmaNutrition 2021;17:100273. [DOI: 10.1016/j.phanu.2021.100273] [Reference Citation Analysis]
34 Unno K, Nakamura Y. Green Tea Suppresses Brain Aging. Molecules 2021;26:4897. [PMID: 34443485 DOI: 10.3390/molecules26164897] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 8.0] [Reference Citation Analysis]
35 Kandylis P, Dimitrellou D, Moschakis T. Recent applications of grapes and their derivatives in dairy products. Trends in Food Science & Technology 2021;114:696-711. [DOI: 10.1016/j.tifs.2021.05.029] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
36 Mannino G, Chinigò G, Serio G, Genova T, Gentile C, Munaron L, Bertea CM. Proanthocyanidins and Where to Find Them: A Meta-Analytic Approach to Investigate Their Chemistry, Biosynthesis, Distribution, and Effect on Human Health. Antioxidants (Basel) 2021;10:1229. [PMID: 34439477 DOI: 10.3390/antiox10081229] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 10.0] [Reference Citation Analysis]
37 Rodríguez-Daza MC, Pulido-Mateos EC, Lupien-Meilleur J, Guyonnet D, Desjardins Y, Roy D. Polyphenol-Mediated Gut Microbiota Modulation: Toward Prebiotics and Further. Front Nutr 2021;8:689456. [PMID: 34268328 DOI: 10.3389/fnut.2021.689456] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Chaves LD, Abyad S, Honan AM, Bryniarski MA, McSkimming DI, Stahura CM, Wells SC, Ruszaj DM, Morris ME, Quigg RJ, Yacoub R. Unconjugated p-cresol activates macrophage macropinocytosis leading to increased LDL uptake. JCI Insight 2021;6:144410. [PMID: 33914709 DOI: 10.1172/jci.insight.144410] [Reference Citation Analysis]
39 Sallam IE, Abdelwareth A, Attia H, Aziz RK, Homsi MN, von Bergen M, Farag MA. Effect of Gut Microbiota Biotransformation on Dietary Tannins and Human Health Implications. Microorganisms 2021;9:965. [PMID: 33947064 DOI: 10.3390/microorganisms9050965] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Corral-Jara KF, Nuthikattu S, Rutledge J, Villablanca A, Morand C, Schroeter H, Milenkovic D. Integrated Multi-Omic Analyses of the Genomic Modifications by Gut Microbiome-Derived Metabolites of Epicatechin, 5-(4'-Hydroxyphenyl)-γ-Valerolactone, in TNFalpha-Stimulated Primary Human Brain Microvascular Endothelial Cells. Front Neurosci 2021;15:622640. [PMID: 33841078 DOI: 10.3389/fnins.2021.622640] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Martín MÁ, Ramos S. Impact of Dietary Flavanols on Microbiota, Immunity and Inflammation in Metabolic Diseases. Nutrients 2021;13:850. [PMID: 33807621 DOI: 10.3390/nu13030850] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 16.0] [Reference Citation Analysis]
42 Liu Z, de Bruijn WJC, Sanders MG, Wang S, Bruins ME, Vincken JP. Insights in the Recalcitrance of Theasinensin A to Human Gut Microbial Degradation. J Agric Food Chem 2021;69:2477-84. [PMID: 33619960 DOI: 10.1021/acs.jafc.1c00727] [Reference Citation Analysis]
43 Chang X, Dong S, Bai W, Di Y, Gu R, Liu F, Zhao B, Wang Y, Liu X. Methylated Metabolites of Chicoric Acid Ameliorate Hydrogen Peroxide (H2O2)-Induced Oxidative Stress in HepG2 Cells. J Agric Food Chem 2021;69:2179-89. [PMID: 33577312 DOI: 10.1021/acs.jafc.0c07521] [Reference Citation Analysis]
44 Najjar RS, Feresin RG. Protective Role of Polyphenols in Heart Failure: Molecular Targets and Cellular Mechanisms Underlying Their Therapeutic Potential. Int J Mol Sci 2021;22:1668. [PMID: 33562294 DOI: 10.3390/ijms22041668] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Parisi A, Porzio G, Pulcini F, Cannita K, Ficorella C, Mattei V, Delle Monache S. What Is Known about Theragnostic Strategies in Colorectal Cancer. Biomedicines 2021;9:140. [PMID: 33535557 DOI: 10.3390/biomedicines9020140] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
46 Di Lorenzo C, Colombo F, Biella S, Stockley C, Restani P. Polyphenols and Human Health: The Role of Bioavailability. Nutrients 2021;13:273. [PMID: 33477894 DOI: 10.3390/nu13010273] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 16.0] [Reference Citation Analysis]
47 Westfall S, Carracci F, Estill M, Zhao D, Wu QL, Shen L, Simon J, Pasinetti GM. Optimization of probiotic therapeutics using machine learning in an artificial human gastrointestinal tract. Sci Rep 2021;11:1067. [PMID: 33441743 DOI: 10.1038/s41598-020-79947-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
48 Bellassi P, Rocchetti G, Nocetti M, Lucini L, Masoero F, Morelli L. A Combined Metabolomic and Metagenomic Approach to Discriminate Raw Milk for the Production of Hard Cheese. Foods 2021;10:E109. [PMID: 33419189 DOI: 10.3390/foods10010109] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 9.0] [Reference Citation Analysis]
49 Prasain JK, Barnes S. Cranberry polyphenols‐gut microbiota interactions and potential health benefits: An updated review. Food Frontiers 2020;1:459-64. [DOI: 10.1002/fft2.56] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
50 Liu Z, de Bruijn WJC, Bruins ME, Vincken JP. Microbial Metabolism of Theaflavin-3,3'-digallate and Its Gut Microbiota Composition Modulatory Effects. J Agric Food Chem 2021;69:232-45. [PMID: 33347309 DOI: 10.1021/acs.jafc.0c06622] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
51 Majumder I, Paul S, Nag A, Kundu R. Chloroform fraction of Chaetomorpha brachygona, a marine green alga from Indian Sundarbans inducing autophagy in cervical cancer cells in vitro. Sci Rep 2020;10:21784. [PMID: 33311531 DOI: 10.1038/s41598-020-78592-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
52 Javed I, Cui X, Wang X, Mortimer M, Andrikopoulos N, Li Y, Davis TP, Zhao Y, Ke PC, Chen C. Implications of the Human Gut-Brain and Gut-Cancer Axes for Future Nanomedicine. ACS Nano 2020;14:14391-416. [PMID: 33138351 DOI: 10.1021/acsnano.0c07258] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
53 Zhang X, Zhao A, Sandhu AK, Edirisinghe I, Burton-Freeman BM. Functional Deficits in Gut Microbiome of Young and Middle-Aged Adults with Prediabetes Apparent in Metabolizing Bioactive (Poly)phenols. Nutrients 2020;12:E3595. [PMID: 33238618 DOI: 10.3390/nu12113595] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
54 Kay CD, Clifford MN, Mena P, McDougall GJ, Andres-Lacueva C, Cassidy A, Del Rio D, Kuhnert N, Manach C, Pereira-Caro G, Rodriguez-Mateos A, Scalbert A, Tomás-Barberán F, Williamson G, Wishart DS, Crozier A. Recommendations for standardizing nomenclature for dietary (poly)phenol catabolites. Am J Clin Nutr 2020;112:1051-68. [PMID: 32936878 DOI: 10.1093/ajcn/nqaa204] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 9.5] [Reference Citation Analysis]
55 Liu C, Vervoort J, Beekmann K, Baccaro M, Kamelia L, Wesseling S, Rietjens IMCM. Interindividual Differences in Human Intestinal Microbial Conversion of (-)-Epicatechin to Bioactive Phenolic Compounds. J Agric Food Chem 2020. [PMID: 33216536 DOI: 10.1021/acs.jafc.0c05890] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
56 Moreno-Ulloa A, Sicairos Diaz V, Tejeda-Mora JA, Macias Contreras MI, Castillo FD, Guerrero A, Gonzalez Sanchez R, Mendoza-Porras O, Vazquez Duhalt R, Licea-Navarro A. Chemical Profiling Provides Insights into the Metabolic Machinery of Hydrocarbon-Degrading Deep-Sea Microbes. mSystems 2020;5:e00824-20. [PMID: 33172970 DOI: 10.1128/mSystems.00824-20] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
57 Marino M, Del Bo' C, Martini D, Porrini M, Riso P. A Review of Registered Clinical Trials on Dietary (Poly)Phenols: Past Efforts and Possible Future Directions. Foods 2020;9:E1606. [PMID: 33158145 DOI: 10.3390/foods9111606] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
58 Zhang X, Sandhu A, Edirisinghe I, Burton-Freeman BM. Plasma and Urinary (Poly)phenolic Profiles after 4-Week Red Raspberry (Rubus idaeus L.) Intake with or without Fructo-Oligosaccharide Supplementation. Molecules 2020;25:E4777. [PMID: 33080934 DOI: 10.3390/molecules25204777] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
59 Adami GR, Tangney C, Schwartz JL, Dang KC. Gut/Oral Bacteria Variability May Explain the High Efficacy of Green Tea in Rodent Tumor Inhibition and Its Absence in Humans. Molecules 2020;25:E4753. [PMID: 33081212 DOI: 10.3390/molecules25204753] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
60 Koudoufio M, Desjardins Y, Feldman F, Spahis S, Delvin E, Levy E. Insight into Polyphenol and Gut Microbiota Crosstalk: Are Their Metabolites the Key to Understand Protective Effects against Metabolic Disorders? Antioxidants (Basel) 2020;9:E982. [PMID: 33066106 DOI: 10.3390/antiox9100982] [Cited by in Crossref: 36] [Cited by in F6Publishing: 32] [Article Influence: 18.0] [Reference Citation Analysis]
61 Liu Z, de Bruijn WJC, Bruins ME, Vincken JP. Reciprocal Interactions between Epigallocatechin-3-gallate (EGCG) and Human Gut Microbiota In Vitro. J Agric Food Chem 2020;68:9804-15. [PMID: 32808768 DOI: 10.1021/acs.jafc.0c03587] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 7.5] [Reference Citation Analysis]
62 Sorrenti V, Ali S, Mancin L, Davinelli S, Paoli A, Scapagnini G. Cocoa Polyphenols and Gut Microbiota Interplay: Bioavailability, Prebiotic Effect, and Impact on Human Health. Nutrients 2020;12:E1908. [PMID: 32605083 DOI: 10.3390/nu12071908] [Cited by in Crossref: 18] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
63 Angelino D, Caffrey A, Moore K, Laird E, Moore AJ, Gill CIR, Mena P, Westley K, Pucci B, Boyd K, Mullen B, Mccarroll K, Ward M, Strain JJ, Cunningham C, Molloy AM, Mcnulty H, Del Rio D. Phenyl‐γ‐valerolactones and healthy ageing: Linking dietary factors, nutrient biomarkers, metabolic status and inflammation with cognition in older adults (the VALID project). Nutr Bull 2020;45:415-23. [DOI: 10.1111/nbu.12444] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
64 Sorrenti V, Fortinguerra S, Caudullo G, Buriani A. Deciphering the Role of Polyphenols in Sports Performance: From Nutritional Genomics to the Gut Microbiota toward Phytonutritional Epigenomics. Nutrients 2020;12:E1265. [PMID: 32365576 DOI: 10.3390/nu12051265] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
65 Godos J, Currenti W, Angelino D, Mena P, Castellano S, Caraci F, Galvano F, Del Rio D, Ferri R, Grosso G. Diet and Mental Health: Review of the Recent Updates on Molecular Mechanisms. Antioxidants (Basel) 2020;9:E346. [PMID: 32340112 DOI: 10.3390/antiox9040346] [Cited by in Crossref: 43] [Cited by in F6Publishing: 43] [Article Influence: 21.5] [Reference Citation Analysis]
66 Hur J, Kim AR, Kim HS, Lim C, Kim T, Kim TA, Sim J, Suh YG. Concise Synthesis of Catechin Metabolites 5-(3',4'-Dihydroxyphenyl)-γ-valerolactones (DHPV) in Optically Pure Form and Their Stereochemical Effects on Skin Wrinkle-Reducing Activities. Molecules 2020;25:E1970. [PMID: 32340245 DOI: 10.3390/molecules25081970] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
67 Hollands WJ, Philo M, Perez-Moral N, Needs PW, Savva GM, Kroon PA. Monomeric Flavanols Are More Efficient Substrates for Gut Microbiota Conversion to Hydroxyphenyl-γ-Valerolactone Metabolites Than Oligomeric Procyanidins: A Randomized, Placebo-Controlled Human Intervention Trial. Mol Nutr Food Res 2020;64:e1901135. [PMID: 32223044 DOI: 10.1002/mnfr.201901135] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
68 Reddy VP, Aryal P, Robinson S, Rafiu R, Obrenovich M, Perry G. Polyphenols in Alzheimer's Disease and in the Gut-Brain Axis. Microorganisms 2020;8:E199. [PMID: 32023969 DOI: 10.3390/microorganisms8020199] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 9.0] [Reference Citation Analysis]
69 González-Quilen C, Rodríguez-Gallego E, Beltrán-Debón R, Pinent M, Ardévol A, Blay MT, Terra X. Health-Promoting Properties of Proanthocyanidins for Intestinal Dysfunction. Nutrients 2020;12:E130. [PMID: 31906505 DOI: 10.3390/nu12010130] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 9.0] [Reference Citation Analysis]
70 Song R, Yu H, Huang H, Chen Y. Controlled One‐Pot Synthesis of Multiple Heterocyclic Scaffolds Based on an Amphiphilic Claisen‐Schmidt Reaction Intermediate. ChemistrySelect 2019;4:14021-6. [DOI: 10.1002/slct.201904110] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
71 Philip P, Sagaspe P, Taillard J, Mandon C, Constans J, Pourtau L, Pouchieu C, Angelino D, Mena P, Martini D, Del Rio D, Vauzour D. Acute Intake of a Grape and Blueberry Polyphenol-Rich Extract Ameliorates Cognitive Performance in Healthy Young Adults During a Sustained Cognitive Effort. Antioxidants (Basel) 2019;8:E650. [PMID: 31861125 DOI: 10.3390/antiox8120650] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]
72 Ettcheto M, Cano A, Manzine PR, Busquets O, Verdaguer E, Castro-Torres RD, García ML, Beas-Zarate C, Olloquequi J, Auladell C, Folch J, Camins A. Epigallocatechin-3-Gallate (EGCG) Improves Cognitive Deficits Aggravated by an Obesogenic Diet Through Modulation of Unfolded Protein Response in APPswe/PS1dE9 Mice. Mol Neurobiol 2020;57:1814-27. [PMID: 31838720 DOI: 10.1007/s12035-019-01849-6] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 7.7] [Reference Citation Analysis]
73 Angelino D, Carregosa D, Domenech-Coca C, Savi M, Figueira I, Brindani N, Jang S, Lakshman S, Molokin A, Urban JF Jr, Davis CD, Brito MA, Kim KS, Brighenti F, Curti C, Bladé C, Del Bas JM, Stilli D, Solano-Aguilar GI, Santos CND, Del Rio D, Mena P. 5-(Hydroxyphenyl)-γ-Valerolactone-Sulfate, a Key Microbial Metabolite of Flavan-3-ols, Is Able to Reach the Brain: Evidence from Different in Silico, In Vitro and In Vivo Experimental Models. Nutrients 2019;11:E2678. [PMID: 31694297 DOI: 10.3390/nu11112678] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 7.7] [Reference Citation Analysis]
74 Anesi A, Mena P, Bub A, Ulaszewska M, Del Rio D, Kulling SE, Mattivi F. Quantification of Urinary Phenyl-γ-Valerolactones and Related Valeric Acids in Human Urine on Consumption of Apples. Metabolites 2019;9:E254. [PMID: 31671768 DOI: 10.3390/metabo9110254] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
75 Sasaki GY, Li J, Cichon MJ, Riedl KM, Kopec RE, Bruno RS. Green Tea Extract Treatment in Obese Mice with Nonalcoholic Steatohepatitis Restores the Hepatic Metabolome in Association with Limiting Endotoxemia-TLR4-NFκB-Mediated Inflammation. Mol Nutr Food Res 2019;63:e1900811. [PMID: 31574193 DOI: 10.1002/mnfr.201900811] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
76 Márquez Campos E, Stehle P, Simon MC. Microbial Metabolites of Flavan-3-Ols and Their Biological Activity. Nutrients 2019;11:E2260. [PMID: 31546992 DOI: 10.3390/nu11102260] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 5.7] [Reference Citation Analysis]
77 Gómez-Juaristi M, Sarria B, Martínez-López S, Bravo Clemente L, Mateos R. Flavanol Bioavailability in Two Cocoa Products with Different Phenolic Content. A Comparative Study in Humans. Nutrients 2019;11:E1441. [PMID: 31247980 DOI: 10.3390/nu11071441] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
78 Cao SY, Zhao CN, Gan RY, Xu XY, Wei XL, Corke H, Atanasov AG, Li HB. Effects and Mechanisms of Tea and Its Bioactive Compounds for the Prevention and Treatment of Cardiovascular Diseases: An Updated Review. Antioxidants (Basel) 2019;8:E166. [PMID: 31174371 DOI: 10.3390/antiox8060166] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 9.3] [Reference Citation Analysis]
79 Oracz J, Nebesny E, Zyzelewicz D, Budryn G, Luzak B. Bioavailability and metabolism of selected cocoa bioactive compounds: A comprehensive review. Crit Rev Food Sci Nutr 2020;60:1947-85. [PMID: 31124371 DOI: 10.1080/10408398.2019.1619160] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 6.7] [Reference Citation Analysis]
80 Zhou Y, Zhang N, Arikawa AY, Chen C. Inhibitory Effects of Green Tea Polyphenols on Microbial Metabolism of Aromatic Amino Acids in Humans Revealed by Metabolomic Analysis. Metabolites 2019;9:E96. [PMID: 31083533 DOI: 10.3390/metabo9050096] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 6.3] [Reference Citation Analysis]
81 Le Bourvellec C, Bagano Vilas Boas P, Lepercq P, Comtet-Marre S, Auffret P, Ruiz P, Bott R, Renard CMGC, Dufour C, Chatel JM, Mosoni P. Procyanidin-Cell Wall Interactions within Apple Matrices Decrease the Metabolization of Procyanidins by the Human Gut Microbiota and the Anti-Inflammatory Effect of the Resulting Microbial Metabolome In Vitro. Nutrients 2019;11:E664. [PMID: 30893845 DOI: 10.3390/nu11030664] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 6.7] [Reference Citation Analysis]