BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kuan SL, Bergamini FRG, Weil T. Functional protein nanostructures: a chemical toolbox. Chem Soc Rev 2018;47:9069-105. [PMID: 30452046 DOI: 10.1039/c8cs00590g] [Cited by in Crossref: 65] [Cited by in F6Publishing: 65] [Article Influence: 16.3] [Reference Citation Analysis]
Number Citing Articles
1 Wang Y, Wusigale, Luo Y. Colloidal nanoparticles prepared from zein and casein: interactions, characterizations and emerging food applications. Food Science and Human Wellness 2023;12:337-350. [DOI: 10.1016/j.fshw.2022.07.036] [Reference Citation Analysis]
2 Winter DL, Lebhar H, Mccluskey JB, Glover DJ. Single-step purification of functionalized protein nanostructures using multimodal chromatography.. [DOI: 10.1101/2022.08.21.504681] [Reference Citation Analysis]
3 Islam MD, Hidaka K, Suzuki Y, Sugiyama H, Endo M, Matsumura S, Ikawa Y. Box-shaped ribozyme octamer formed by face-to-face dimerization of a pair of square-shaped ribozyme tetramers. J Biosci Bioeng 2022:S1389-1723(22)00161-X. [PMID: 35810135 DOI: 10.1016/j.jbiosc.2022.06.008] [Reference Citation Analysis]
4 Navarro S, Ventura S. Computational methods to predict protein aggregation. Curr Opin Struct Biol 2022;73:102343. [PMID: 35240456 DOI: 10.1016/j.sbi.2022.102343] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
5 Jeong R, Eom JH, Gong J, Kang M, Kim J, Lee HS. Programmed hierarchical radial association of anisotropic foldamer assemblies. Nanoscale 2022;14:1700-5. [PMID: 35050287 DOI: 10.1039/d1nr05135k] [Reference Citation Analysis]
6 Kiran P, Khan A, Neekhra S, Pallod S, Srivastava R. Nanohybrids as Protein-Polymer Conjugate Multimodal Therapeutics. Front Med Technol 2021;3:676025. [PMID: 35047929 DOI: 10.3389/fmedt.2021.676025] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Chaurasia PK, Bharati SL, Yadava S. Nano-reduction of gold and silver ions: A perspective on the fate of microbial laccases as potential biocatalysts in the synthesis of metals (gold and silver) nano-particles. Curr Res Microb Sci 2022;3:100098. [PMID: 35024642 DOI: 10.1016/j.crmicr.2021.100098] [Reference Citation Analysis]
8 Wallin K, Zhang R, Schmidt-dannert C. Programmable Self-Assembling Protein Nanomaterials: Current Status and Prospects. Engineered Living Materials 2022. [DOI: 10.1007/978-3-030-92949-7_3] [Reference Citation Analysis]
9 Ioannou E, Labrou NE. Rational Design of Self-Assembling Supramolecular Protein Nanostructures Utilizing the Cucurbit[8]Uril Macrocyclic Host. Methods in Molecular Biology 2022. [DOI: 10.1007/978-1-0716-2269-8_11] [Reference Citation Analysis]
10 Han S, Jung Y. Artificial protein assemblies with well-defined supramolecular protein nanostructures. Biochem Soc Trans 2021;49:2821-30. [PMID: 34812854 DOI: 10.1042/BST20210808] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Li L, Li Q, Li X, Wang S, Zheng K, Zuo M, Zu X, Zhao Y, Yan W, Zhu J, Sun Y, Xie Y. Constructing artificial mimic-enzyme catalysts for carbon dioxide electroreduction. Sci China Chem 2022;65:106-13. [DOI: 10.1007/s11426-021-1116-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
12 Favella P, Sihler S, Raber H, Kissmann AK, Krämer M, Amann V, Kubiczek D, Baatz J, Lang F, Port F, Gottschalk KE, Mayer D, Spellerberg B, Stenger S, Müller I, Weil T, Ziener U, Rosenau F. Albumin Microspheres as "Trans-Ferry-Beads" for Easy Cell Passaging in Cell Culture Technology. Gels 2021;7:176. [PMID: 34707076 DOI: 10.3390/gels7040176] [Reference Citation Analysis]
13 Jin X, Ye Q, Wang CW, Wu Y, Ma K, Yu S, Wei N, Gao H. Magnetic Nanoplatforms for Covalent Protein Immobilization Based on Spy Chemistry. ACS Appl Mater Interfaces 2021;13:44147-56. [PMID: 34515459 DOI: 10.1021/acsami.1c14670] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Hou C, Xu H, Jiang X, Li Y, Deng S, Zang M, Xu J, Liu J. Virus-Based Supramolecular Structure and Materials: Concept and Prospects. ACS Appl Bio Mater 2021;4:5961-74. [PMID: 35006905 DOI: 10.1021/acsabm.1c00633] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
15 Partridge BE, Winegar PH, Han Z, Mirkin CA. Redefining Protein Interfaces within Protein Single Crystals with DNA. J Am Chem Soc 2021;143:8925-34. [PMID: 34096291 DOI: 10.1021/jacs.1c04191] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
16 Mockler NM, Engilberge S, Rennie ML, Raston CL, Crowley PB. Protein-macrocycle framework engineering: supramolecular copolymerisation with two disparate calixarenes. Supramolecular Chemistry 2021;33:122-8. [DOI: 10.1080/10610278.2021.1935946] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Chiari L, Carpentier P, Kieffer-Jaquinod S, Gogny A, Perard J, Ravanel S, Cobessi D, Ménage S, Dumas R, Hamelin O. LEAFY protein crystals with a honeycomb structure as a platform for selective preparation of outstanding stable bio-hybrid materials. Nanoscale 2021;13:8901-8. [PMID: 33949561 DOI: 10.1039/d1nr00268f] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Wang J, Li Y, Nie G. Multifunctional biomolecule nanostructures for cancer therapy. Nat Rev Mater 2021;:1-18. [PMID: 34026278 DOI: 10.1038/s41578-021-00315-x] [Cited by in Crossref: 70] [Cited by in F6Publishing: 79] [Article Influence: 70.0] [Reference Citation Analysis]
19 Seo M, Schmidt-dannert C. Organizing Multi-Enzyme Systems into Programmable Materials for Biocatalysis. Catalysts 2021;11:409. [DOI: 10.3390/catal11040409] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
20 Arib C, Spadavecchia J, de la Chapelle ML. Enzyme mediated synthesis of hybrid polyedric gold nanoparticles. Sci Rep 2021;11:3208. [PMID: 33547353 DOI: 10.1038/s41598-021-81751-1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
21 Ramberg KO, Engilberge S, Skorek T, Crowley PB. Facile Fabrication of Protein-Macrocycle Frameworks. J Am Chem Soc 2021;143:1896-907. [PMID: 33470808 DOI: 10.1021/jacs.0c10697] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 20.0] [Reference Citation Analysis]
22 Dutta S. Exoskeleton for Biofunctionality Protection of Enzymes and Proteins for Intracellular Delivery. Adv NanoBio Res 2021;1:2000010. [DOI: 10.1002/anbr.202000010] [Reference Citation Analysis]
23 Singh N, Singh R, Sharma S, Kesharwani K, Joshi KB, Verma S. Transition-metal ion-mediated morphological transformation of pyridine-based peptide nanostructures. New J Chem 2021;45:153-61. [DOI: 10.1039/d0nj04260a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
24 Han S, Kim Y, Jo G, Kim YE, Kim HM, Choi J, Jung Y. Multivalent‐Interaction‐Driven Assembly of Discrete, Flexible, and Asymmetric Supramolecular Protein Nano‐Prisms. Angew Chem 2020;132:23444-23451. [DOI: 10.1002/ange.202010054] [Reference Citation Analysis]
25 Matsuura K, Shiomi Y, Mizuta T, Inaba H. Horseradish Peroxidase-Decorated Artificial Viral Capsid Constructed from β-Annulus Peptide via Interaction between His-Tag and Ni-NTA. Processes 2020;8:1455. [DOI: 10.3390/pr8111455] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
26 Chen X, Zheng Y, Song S, Liu Y, Wang Y, Huang Y, Zhang X, Zhang M, Zhao M, Wang Y, Li L. Design and Synthesis of Biotinylated Bivalent Carboline Derivatives as Potent Antitumor Agents. J Org Chem 2020;85:11618-25. [PMID: 32808519 DOI: 10.1021/acs.joc.0c01067] [Reference Citation Analysis]
27 Kuan SL, Raabe M. Solid-Phase Protein Modifications: Towards Precision Protein Hybrids for Biological Applications. ChemMedChem 2021;16:94-104. [PMID: 32667697 DOI: 10.1002/cmdc.202000412] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
28 Chen H, Yang G, Zhang E, Du Q, Liu R, Wu L, Feng Y, Chen G. Hierarchical self-assembly of native protein and its dynamic regulation directed by inducing ligand with oligosaccharide. European Polymer Journal 2020;135:109871. [DOI: 10.1016/j.eurpolymj.2020.109871] [Reference Citation Analysis]
29 Wang X, Liu X, Huang X. Bioinspired Protein-Based Assembling: Toward Advanced Life-Like Behaviors. Adv Mater 2020;32:e2001436. [PMID: 32374501 DOI: 10.1002/adma.202001436] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 14.0] [Reference Citation Analysis]
30 Matsuura K. Dressing up artificial viral capsids self-assembled from C-terminal-modified β-annulus peptides. Polym J 2020;52:1035-41. [DOI: 10.1038/s41428-020-0355-4] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
31 Borsari C, Trader DJ, Tait A, Costi MP. Designing Chimeric Molecules for Drug Discovery by Leveraging Chemical Biology. J Med Chem 2020;63:1908-28. [PMID: 32023055 DOI: 10.1021/acs.jmedchem.9b01456] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
32 Chronopoulou EG, Ioannou E, Perperopoulou F, Labrou NE. Protein Nanostructures with Purpose-Designed Properties in Biotechnology and Medicine. Microbial Enzymes and Biotechniques 2020. [DOI: 10.1007/978-981-15-6895-4_5] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
33 Yang G, Zheng W, Tao G, Wu L, Zhou QF, Kochovski Z, Ji T, Chen H, Li X, Lu Y, Ding HM, Yang HB, Chen G, Jiang M. Diversiform and Transformable Glyco-Nanostructures Constructed from Amphiphilic Supramolecular Metallocarbohydrates through Hierarchical Self-Assembly: The Balance between Metallacycles and Saccharides. ACS Nano 2019;13:13474-85. [PMID: 31651143 DOI: 10.1021/acsnano.9b07134] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
34 Gačanin J, Synatschke CV, Weil T. Biomedical Applications of DNA‐Based Hydrogels. Adv Funct Mater 2019;30:1906253. [DOI: 10.1002/adfm.201906253] [Cited by in Crossref: 108] [Cited by in F6Publishing: 112] [Article Influence: 36.0] [Reference Citation Analysis]
35 Solomonov A, Shimanovich U. Self‐Assembly in Protein‐Based Bionanomaterials. Isr J Chem 2020;60:1152-70. [DOI: 10.1002/ijch.201900083] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
36 Engilberge S, Rennie ML, Dumont E, Crowley PB. Tuning Protein Frameworks via Auxiliary Supramolecular Interactions. ACS Nano 2019;13:10343-50. [PMID: 31490058 DOI: 10.1021/acsnano.9b04115] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 9.0] [Reference Citation Analysis]
37 Heck AJ, Ostertag T, Schnell L, Fischer S, Agrawalla BK, Winterwerber P, Wirsching E, Fauler M, Frick M, Kuan SL, Weil T, Barth H. Supramolecular Toxin Complexes for Targeted Pharmacological Modulation of Polymorphonuclear Leukocyte Functions. Adv Healthc Mater 2019;8:e1900665. [PMID: 31318180 DOI: 10.1002/adhm.201900665] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
38 Hamley IW. Protein Assemblies: Nature-Inspired and Designed Nanostructures. Biomacromolecules 2019;20:1829-48. [PMID: 30912925 DOI: 10.1021/acs.biomac.9b00228] [Cited by in Crossref: 54] [Cited by in F6Publishing: 57] [Article Influence: 18.0] [Reference Citation Analysis]