BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Blackman LD, Gunatillake PA, Cass P, Locock KES. An introduction to zwitterionic polymer behavior and applications in solution and at surfaces. Chem Soc Rev 2019;48:757-70. [PMID: 30548039 DOI: 10.1039/c8cs00508g] [Cited by in Crossref: 204] [Cited by in F6Publishing: 209] [Article Influence: 51.0] [Reference Citation Analysis]
Number Citing Articles
1 Kirthika S, Goel G, Matthews A, Goel S. Review of the untapped potentials of antimicrobial materials in the construction sector. Progress in Materials Science 2023;133:101065. [DOI: 10.1016/j.pmatsci.2022.101065] [Reference Citation Analysis]
2 Leiske MN, De Geest BG, Hoogenboom R. Impact of the polymer backbone chemistry on interactions of amino-acid-derived zwitterionic polymers with cells. Bioact Mater 2023;24:524-34. [PMID: 36714331 DOI: 10.1016/j.bioactmat.2023.01.005] [Reference Citation Analysis]
3 Khan RU, Shao J, Liao JY, Qian L. pH-triggered cancer-targeting polymers: From extracellular accumulation to intracellular release. Nano Res 2023;:1-14. [PMID: 36618069 DOI: 10.1007/s12274-022-5252-z] [Reference Citation Analysis]
4 Abdul-al M, Saeinasab M, Sefat F. Encapsulation techniques overview. Principles of Biomaterials Encapsulation : Volume One 2023. [DOI: 10.1016/b978-0-323-85947-9.00002-9] [Reference Citation Analysis]
5 Paganini C, Capasso Palmiero U, Picciotto S, Molinelli A, Porello I, Adamo G, Manno M, Bongiovanni A, Arosio P. High-Yield Separation of Extracellular Vesicles Using Programmable Zwitterionic Coacervates. Small 2023;19:e2204736. [PMID: 36367966 DOI: 10.1002/smll.202204736] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Zhang X, Tian J, Wang P, Liu T, Lu X, Guo J, Jin Y, Xiao H, Song J. Impact of degree of substitution of quaternary cellulose on the adsorption on charged surfaces and associated thermodynamics. Cellulose 2022. [DOI: 10.1007/s10570-022-04975-y] [Reference Citation Analysis]
7 Li Q, Wen C, Yang J, Zhou X, Zhu Y, Zheng J, Cheng G, Bai J, Xu T, Ji J, Jiang S, Zhang L, Zhang P. Zwitterionic Biomaterials. Chem Rev 2022;122:17073-154. [PMID: 36201481 DOI: 10.1021/acs.chemrev.2c00344] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Wang R, Yang J, Liu L, Wang J, Feng Z, Zhang D, Gao S, Wang J, Ren H, Hui B. Investigation on Filtration Control of Zwitterionic Polymer AADN in High Temperature High Pressure Water-Based Drilling Fluids. Gels 2022;8. [PMID: 36547350 DOI: 10.3390/gels8120826] [Reference Citation Analysis]
9 Wang T, Deng J, Ran R, Shi W, Gao Y, Ren X, Cao J, Zhang M. In-situ forming PEG-engineering hydrogels with anti-fouling characteristics as an artificial vitreous body. Chemical Engineering Journal 2022;449:137486. [DOI: 10.1016/j.cej.2022.137486] [Reference Citation Analysis]
10 Murali S, Agirre A, Tomovska R. Zwitterionic monomers as stabilizers for high solids content polymer colloids for high-performance coatings applications. Progress in Organic Coatings 2022;173:107196. [DOI: 10.1016/j.porgcoat.2022.107196] [Reference Citation Analysis]
11 Horne R, Ben-shlomo N, Jensen M, Ellerman M, Escudero C, Hua R, Bennion D, Guymon CA, Hansen MR. Reducing the foreign body response on human cochlear implants and their materialsin vivowith photografted zwitterionic hydrogel coatings.. [DOI: 10.1101/2022.11.28.518125] [Reference Citation Analysis]
12 Wang R, Sun M, Wang C, Dong A, Zhang J. A facile and versatile strategy for synthesis of dopamine‐functionalized polymers. Journal of Polymer Science 2022. [DOI: 10.1002/pol.20220524] [Reference Citation Analysis]
13 Baek M, Nguyen D, Kim D, Yoo S, Lee SM, Lee J, Kim D. Tailoring Renal Clearable Zwitterionic Cyclodextrin for Colorectal Cancer-Selective Drug Delivery.. [DOI: 10.21203/rs.3.rs-2200358/v1] [Reference Citation Analysis]
14 Spanjers JM, Brodszkij E, Gal N, Skov Pedersen J, Städler B. On the assembly of zwitterionic block copolymers with phospholipids. European Polymer Journal 2022;180:111612. [DOI: 10.1016/j.eurpolymj.2022.111612] [Reference Citation Analysis]
15 Yaagoob IY, Ali SA. Homo- and co-cyclopolymers containing symmetrical motifs of (diallylammonio)diacetate. Reactive and Functional Polymers 2022;179:105379. [DOI: 10.1016/j.reactfunctpolym.2022.105379] [Reference Citation Analysis]
16 Liu L, Sun J, Wang R, Qu Y, Liu F, Yang J, Cheng R, Gao S, Huang H. Synthesis of a new high temperature and salt resistant zwitterionic filtrate reducer and its application in water-based drilling fluid. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022;651:129730. [DOI: 10.1016/j.colsurfa.2022.129730] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Alsafran M, Saleem MH, Al Jabri H, Rizwan M, Usman K. Principles and Applicability of Integrated Remediation Strategies for Heavy Metal Removal/Recovery from Contaminated Environments. J Plant Growth Regul. [DOI: 10.1007/s00344-022-10803-1] [Reference Citation Analysis]
18 Lin W, Wei X, Liu S, Zhang J, Yang T, Chen S. Recent Advances in Mechanical Reinforcement of Zwitterionic Hydrogels. Gels 2022;8:580. [DOI: 10.3390/gels8090580] [Reference Citation Analysis]
19 Zhang D, Tang Y, Yang J, Gao Y, Ma C, Che L, Wang J, Wu J, Zheng J. De novo design of allochroic zwitterions. Materials Today 2022. [DOI: 10.1016/j.mattod.2022.09.001] [Reference Citation Analysis]
20 Sun Y, Wu L, Chang Y, Li T, Lin Y, Hu F, Tsai W, Hung K. Zwitterionic poly(carboxybetaine methacrylate) (polyCBMA) decreases desiccating damage to corneal epithelial cells. Colloid and Interface Science Communications 2022;50:100648. [DOI: 10.1016/j.colcom.2022.100648] [Reference Citation Analysis]
21 Zhang L, Yang L, Huang J, Chen S, Huang C, Lin Y, Shen A, Zheng Z, Zheng W, Tang S. A zwitterionic polymer-inspired material mediated efficient CRISPR-Cas9 gene editing. Asian Journal of Pharmaceutical Sciences 2022. [DOI: 10.1016/j.ajps.2022.08.001] [Reference Citation Analysis]
22 Javan Nikkhah S, Vandichel M. Modeling Polyzwitterion-Based Drug Delivery Platforms: A Perspective of the Current State-of-the-Art and Beyond. ACS Eng Au 2022;2:274-294. [DOI: 10.1021/acsengineeringau.2c00008] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
23 Zhao M, Zhang X, Cho J. Phase Behaviors of a Binary Blend of Oppositely Charged Polyelectrolytes: A Weak Segregation Approach. Macromolecules. [DOI: 10.1021/acs.macromol.2c00883] [Reference Citation Analysis]
24 Nguyen HN, Ngo TLH, Iwasaki Y, Huang C. Biodegradable Phosphocholine Cross‐Linker With Ion‐Pair Design for Tough Zwitterionic Hydrogel. Adv Materials Inter. [DOI: 10.1002/admi.202201002] [Reference Citation Analysis]
25 Bairagi U, Jacob J. Regenerative macroporous polyzwitterionic gels for brackish/sea water desalination. Desalination 2022;535:115801. [DOI: 10.1016/j.desal.2022.115801] [Reference Citation Analysis]
26 Pourhashem S, Seif A, Saba F, Nezhad EG, Ji X, Zhou Z, Zhai X, Mirzaee M, Duan J, Rashidi A, Hou B. Antifouling nanocomposite polymer coatings for marine applications: A review on experiments, mechanisms, and theoretical studies. Journal of Materials Science & Technology 2022;118:73-113. [DOI: 10.1016/j.jmst.2021.11.061] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
27 Khorate A, Kadam AV. An overview of patents and recent development in flexible supercapacitors. Journal of Energy Storage 2022;52:104887. [DOI: 10.1016/j.est.2022.104887] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
28 Mkpuma VO, Moheimani NR, Fischer K, Schulze A, Ennaceri H. Membrane surface zwitterionization for an efficient microalgal harvesting: A review. Algal Research 2022;66:102797. [DOI: 10.1016/j.algal.2022.102797] [Reference Citation Analysis]
29 Gu H, Yu J, Zhang H, Sun G, Li R, Liu P, Li Y, Wang J. Theory-Guided Design of a Method to Obtain Competitive Balance between U(VI) Adsorption and Swaying Zwitterion-Induced Fouling Resistance on Natural Hemp Fibers. Int J Mol Sci 2022;23:6517. [PMID: 35742958 DOI: 10.3390/ijms23126517] [Reference Citation Analysis]
30 Mondal AK, Xu D, Wu S, Zou Q, Lin W, Huang F, Ni Y. Lignin-containing hydrogels with anti-freezing, excellent water retention and super-flexibility for sensor and supercapacitor applications. Int J Biol Macromol 2022;214:77-90. [PMID: 35691432 DOI: 10.1016/j.ijbiomac.2022.06.030] [Reference Citation Analysis]
31 Guo F, Chen C. Zwitterionic Core-Sheath Nanofibers in Antibacterial Photodynamic Therapy. ACS Appl Polym Mater 2022;4:4576-87. [DOI: 10.1021/acsapm.2c00585] [Reference Citation Analysis]
32 Bashor CJ, Hilton IB, Bandukwala H, Smith DM, Veiseh O. Engineering the next generation of cell-based therapeutics. Nat Rev Drug Discov. [DOI: 10.1038/s41573-022-00476-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
33 He M, Du C, Xia J, Zhang ZG, Dong CM. Multivalent Polypeptide and Tannic Acid Cooperatively Iron-Coordinated Nanohybrids for Synergistic Cancer Photothermal Ferroptosis Therapy. Biomacromolecules 2022. [PMID: 35583462 DOI: 10.1021/acs.biomac.2c00409] [Reference Citation Analysis]
34 Leiske MN, Mazrad ZAI, Zelcak A, Wahi K, Davis TP, McCarroll JA, Holst J, Kempe K. Zwitterionic Amino Acid-Derived Polyacrylates as Smart Materials Exhibiting Cellular Specificity and Therapeutic Activity. Biomacromolecules 2022. [PMID: 35508075 DOI: 10.1021/acs.biomac.2c00143] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
35 Mollahosseini A, Abdelrasoul A. Novel Insights in Hemodialysis: Most Recent Theories on the Membrane Hemocompatibility Improvement. Biomedical Engineering Advances 2022. [DOI: 10.1016/j.bea.2022.100034] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
36 Zhu L, He Z, Zhang Y, Orvy MJ, Yang J, Zhou M, Zhang D. Structural Polyfluorene Derivative Nanocarriers with Promising Fluorescence Emission and Antifouling Properties. ACS Appl Polym Mater 2022;4:4013-24. [DOI: 10.1021/acsapm.2c00479] [Reference Citation Analysis]
37 Mahmoudpour M, Jouyban A, Soleymani J, Rahimi M. Rational design of smart nano-platforms based on antifouling-nanomaterials toward multifunctional bioanalysis. Adv Colloid Interface Sci 2022;302:102637. [PMID: 35290930 DOI: 10.1016/j.cis.2022.102637] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
38 Zhang D, Zhang X, Luan C, Tang B, Zhang Z, Pu N, Zhang K, Liu J, Yan C. Zwitterionic Interface Engineering Enables Ultrathin Composite Membrane for High-rate Vanadium Flow Battery. Energy Storage Materials 2022. [DOI: 10.1016/j.ensm.2022.04.033] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Vatanpour V, Iranpour Boroujeni N, Pasaoglu ME, Mahmodi G, Mohammadikish M, Kazemi-andalib F, Koyuncu I. Novel infinite coordination polymer (ICP) modified thin-film polyamide nanocomposite membranes for simultaneous enhancement of antifouling and chlorine-resistance performance. Journal of Membrane Science 2022;647:120305. [DOI: 10.1016/j.memsci.2022.120305] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
40 Hua C, Li Z, Chen K, Sun L, Yu L, Guo X. Tunable Protein Adsorption by Zwitterionic Spherical Poly(CBAA) Brushes Prepared via Photoemulsion Polymerization. Ind Eng Chem Res 2022;61:4460-4468. [DOI: 10.1021/acs.iecr.2c00075] [Reference Citation Analysis]
41 Lei C, Guo Y, Guan W, Lu H, Shi W, Yu G. Polyzwitterionic Hydrogels for Efficient Atmospheric Water Harvesting. Angew Chem Int Ed Engl 2022;61:e202200271. [PMID: 35089612 DOI: 10.1002/anie.202200271] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 10.0] [Reference Citation Analysis]
42 Duarte-Peña L, Bucio E. Antifouling PVC Catheters by Gamma Radiation-Induced Zwitterionic Polymer Grafting. Polymers (Basel) 2022;14:1185. [PMID: 35335516 DOI: 10.3390/polym14061185] [Reference Citation Analysis]
43 Le M, Huang W, Chen K, Lin C, Cai L, Zhang H, Jia Y. Upper critical solution temperature polymeric drug carriers. Chemical Engineering Journal 2022;432:134354. [DOI: 10.1016/j.cej.2021.134354] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
44 Lu H, Shi W, Guo Y, Guan W, Lei C, Yu G. Materials Engineering for Atmospheric Water Harvesting: Progress and Perspectives. Adv Mater 2022;34:e2110079. [PMID: 35122451 DOI: 10.1002/adma.202110079] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 21.0] [Reference Citation Analysis]
45 Aleid S, Wu M, Li R, Wang W, Zhang C, Zhang L, Wang P. Salting-in Effect of Zwitterionic Polymer Hydrogel Facilitates Atmospheric Water Harvesting. ACS Materials Lett . [DOI: 10.1021/acsmaterialslett.1c00723] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 16.0] [Reference Citation Analysis]
46 Matsumoto A. Rheology of Polyelectrolyte Solutions: Current Understanding and Perspectives. J Soc Rheol , Jpn 2022;50:43-50. [DOI: 10.1678/rheology.50.43] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Ahmed ST, Leckband DE. Forces between mica and end-grafted statistical copolymers of sulfobetaine and oligoethylene glycol in aqueous electrolyte solutions. J Colloid Interface Sci 2022;608:1857-67. [PMID: 34752975 DOI: 10.1016/j.jcis.2021.09.175] [Reference Citation Analysis]
48 Ebhodaghe SO. A scoping review on the biomedical applications of polymeric particles. International Journal of Polymeric Materials and Polymeric Biomaterials. [DOI: 10.1080/00914037.2022.2032708] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
49 Qian H, Wang K, Lv M, Zhao C, Wang H, Wen S, Huang D, Chen W, Zhong Y. Recent advances on next generation of polyzwitterion-based nano-vectors for targeted drug delivery. J Control Release 2022:S0168-3659(22)00079-7. [PMID: 35149143 DOI: 10.1016/j.jconrel.2022.02.004] [Reference Citation Analysis]
50 Liu T, Xie Z, Chen M, Tang S, Liu Y, Wang J, Zhang R, Wang H, Guo X, Gu A, Yuan Y, Wang N. Mussel-inspired dual-crosslinked polyamidoxime photothermal hydrogel with enhanced mechanical strength for highly efficient and selective uranium extraction from seawater. Chemical Engineering Journal 2022;430:133182. [DOI: 10.1016/j.cej.2021.133182] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
51 Giuffrida SG, Forysiak W, Cwynar P, Szweda R. Shaping Macromolecules for Sensing Applications—From Polymer Hydrogels to Foldamers. Polymers 2022;14:580. [DOI: 10.3390/polym14030580] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
52 Lew JH, Matar OK, Müller EA, Maung MTM, Luckham PF. Adsorption of Hydrolysed Polyacrylamide onto Calcium Carbonate. Polymers 2022;14:405. [DOI: 10.3390/polym14030405] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
53 Ahmed ST, Madinya JJ, Leckband DE. Ionic strength dependent forces between end-grafted Poly(sulfobetaine) films and mica. J Colloid Interface Sci 2022;606:298-306. [PMID: 34392027 DOI: 10.1016/j.jcis.2021.08.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
54 Morimoto N, Ota K, Miura Y, Shin H, Yamamoto M. Sulfobetaine polymers for effective permeability into multicellular tumor spheroids (MCTSs). J Mater Chem B 2022. [PMID: 35024722 DOI: 10.1039/d1tb02337c] [Reference Citation Analysis]
55 Liu H, Prachyathipsakul T, Koyasseril-Yehiya TM, Le SP, Thayumanavan S. Molecular bases for temperature sensitivity in supramolecular assemblies and their applications as thermoresponsive soft materials. Mater Horiz 2022;9:164-93. [PMID: 34549764 DOI: 10.1039/d1mh01091c] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
56 Nazari S, Abdelrasoul A. Surface Zwitterionization of HemodialysisMembranesfor Hemocompatibility Enhancement and Protein-mediated anti-adhesion: A Critical Review. Biomedical Engineering Advances 2022. [DOI: 10.1016/j.bea.2022.100026] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
57 Wang Y, Matyjaszewski K. Hairy nanoparticles by atom transfer radical polymerization in miniemulsion. Reactive and Functional Polymers 2022;170:105104. [DOI: 10.1016/j.reactfunctpolym.2021.105104] [Reference Citation Analysis]
58 Arabaghian H, Wang M, Ordonez J, Rodrigues DF. Zwitterionic polymers in biofouling and inorganic fouling mechanisms. 60 Years of the Loeb-Sourirajan Membrane 2022. [DOI: 10.1016/b978-0-323-89977-2.00013-0] [Reference Citation Analysis]
59 Liu G, Matindi C, Hu M, Li X, Ma X, Li J. Zwitterion-modified membranes for water reclamation. 60 Years of the Loeb-Sourirajan Membrane 2022. [DOI: 10.1016/b978-0-323-89977-2.00002-6] [Reference Citation Analysis]
60 Poulladofonou G, Neumann K. Poly(sulfur ylides): a new class of zwitterionic polymers with distinct thermal and solution behaviour. Polym Chem 2022;13:4416-20. [DOI: 10.1039/d2py00851c] [Reference Citation Analysis]
61 Pfeifer A, Kemmer A, Heinze T. Synthesis and structure characterization of novel polyampholytes based on cellulose. Advanced Industrial and Engineering Polymer Research 2022;5:26-32. [DOI: 10.1016/j.aiepr.2021.06.001] [Reference Citation Analysis]
62 Cheng R, Jiang J, Hou J, Li G, Jiang J, Zhao Y. Water-soluble copolymers and their hydrogels with pH-tunable diverse thermoresponsive behaviors enabled by hydrogen bonding. Polym Chem . [DOI: 10.1039/d2py01044e] [Reference Citation Analysis]
63 Fu Y, Wu Y, Chen S, Zhang W, Zhang Y, Yan T, Yang B, Ma H. Zwitterionic Covalent Organic Frameworks: Attractive Porous Host for Gas Separation and Anhydrous Proton Conduction. ACS Nano 2021;15:19743-55. [PMID: 34846130 DOI: 10.1021/acsnano.1c07178] [Cited by in Crossref: 17] [Cited by in F6Publishing: 21] [Article Influence: 8.5] [Reference Citation Analysis]
64 Li X, Montague EC, Pollinzi A, Lofts A, Hoare T. Design of Smart Size-, Surface-, and Shape-Switching Nanoparticles to Improve Therapeutic Efficacy. Small 2021;:e2104632. [PMID: 34936204 DOI: 10.1002/smll.202104632] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
65 Lin Y, Fang T, Kao H, Tseng W. Nanoassembly of UCST polypeptide for NIR-modulated drug release. Biochemical Engineering Journal 2021;176:108194. [DOI: 10.1016/j.bej.2021.108194] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
66 Wu DT, Munguia-Lopez JG, Cho YW, Ma X, Song V, Zhu Z, Tran SD. Polymeric Scaffolds for Dental, Oral, and Craniofacial Regenerative Medicine. Molecules 2021;26:7043. [PMID: 34834134 DOI: 10.3390/molecules26227043] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
67 Potaufeux J, Odent J, Notta-cuvier D, Barrau S, Magnani C, Delille R, Zhang C, Liu G, Giannelis EP, Müller AJ, Lauro F, Raquez J. Mastering Superior Performance Origins of Ionic Polyurethane/Silica Hybrids. ACS Appl Polym Mater 2021;3:6684-93. [DOI: 10.1021/acsapm.1c01396] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
68 Harijan M, Singh M. Zwitterionic polymers in drug delivery: A review. J Mol Recognit 2022;35:e2944. [PMID: 34738272 DOI: 10.1002/jmr.2944] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
69 Haresco CKS, Ang MBMY, Doma BT, Huang S, Lee K. Performance enhancement of thin-film nanocomposite nanofiltration membranes via embedment of novel polydopamine-sulfobetaine methacrylate nanoparticles. Separation and Purification Technology 2021;274:119022. [DOI: 10.1016/j.seppur.2021.119022] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
70 Won C, Kwon C, Park K, Seo J, Lee T. Electronic Drugs: Spatial and Temporal Medical Treatment of Human Diseases. Adv Mater 2021;33:e2005930. [PMID: 33938022 DOI: 10.1002/adma.202005930] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
71 Taktak F, Ciğeroğlu Z, Güler B. Preparation of a New Zwitterionic Sulfobetaine Methacrylate Based Superabsorbent Copolymer Hydrogel and Its Adsorption Behavior Toward Cationic and Anionic Dyes. Journal of Macromolecular Science, Part B. [DOI: 10.1080/00222348.2021.1995946] [Reference Citation Analysis]
72 Ding SP, Zhang ZK, Ye Z, Du BY, Xu JT. Fabrication of High χ-Low N Block Copolymers with Thermally Stable Sub-5 nm Microdomains Using Polyzwitterion as a Constituent Block. ACS Macro Lett 2021;10:1321-5. [PMID: 35549030 DOI: 10.1021/acsmacrolett.1c00461] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
73 Zheng SY, Mao S, Yuan J, Wang S, He X, Zhang X, Du C, Zhang D, Wu ZL, Yang J. Molecularly Engineered Zwitterionic Hydrogels with High Toughness and Self-Healing Capacity for Soft Electronics Applications. Chem Mater 2021;33:8418-29. [DOI: 10.1021/acs.chemmater.1c02781] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 11.5] [Reference Citation Analysis]
74 Combes A, Tang KN, Klymchenko AS, Reisch A. Protein-like particles through nanoprecipitation of mixtures of polymers of opposite charge. J Colloid Interface Sci 2022;607:1786-95. [PMID: 34600342 DOI: 10.1016/j.jcis.2021.09.080] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
75 Zhang L, Li J, Wang F, Shi J, Chen W, Tao X. Flexible stimuli-responsive materials for smart personal protective equipment. Materials Science and Engineering: R: Reports 2021;146:100629. [DOI: 10.1016/j.mser.2021.100629] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
76 Yang J, Qian H, Wang J, Ju P, Lou Y, Li G, Zhang D. Mechanically durable antibacterial nanocoatings based on zwitterionic copolymers containing dopamine segments. Journal of Materials Science & Technology 2021;89:233-41. [DOI: 10.1016/j.jmst.2020.11.031] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
77 Ezeuko AS, Ojemaye MO, Okoh OO, Okoh AI. Technological advancement for eliminating antibiotic resistance genes from wastewater: A review of their mechanisms and progress. Journal of Environmental Chemical Engineering 2021;9:106183. [DOI: 10.1016/j.jece.2021.106183] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
78 Jeong M, Jang H, Cha H, Park B, Kim J, Yoo J, Park T, Yi JW, Seong DG, Oh Y. The shape tunable gelatin/carbon nanotube wet-gels for complex three-dimensional cellular structures with high elasticity. Carbon 2021;184:811-20. [DOI: 10.1016/j.carbon.2021.08.086] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
79 Huang Z, Nazifi S, Cheng K, Karim A, Ghasemi H. Scalable inter-diffused zwitterionic polyurethanes for durable antibacterial coatings. Chemical Engineering Journal 2021;422:130085. [DOI: 10.1016/j.cej.2021.130085] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
80 Du C, Zhou L, Qian J, He M, Zhang ZG, Feng C, Zhang Y, Zhang R, Dong CM. Ultrasmall Zwitterionic Polypeptide-Coordinated Nanohybrids for Highly Efficient Cancer Photothermal Ferrotherapy. ACS Appl Mater Interfaces 2021;13:44002-12. [PMID: 34494817 DOI: 10.1021/acsami.1c11381] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
81 Onder OC, Utroša P, Caserman S, Podobnik M, Žagar E, Pahovnik D. Preparation of Synthetic Polypeptide–PolyHIPE Hydrogels with Stimuli-Responsive Behavior. Macromolecules 2021;54:8321-30. [DOI: 10.1021/acs.macromol.1c01490] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
82 Anjum R, Nishimura S, Kobayashi S, Nishida K, Anada T, Tanaka M. Protein Stabilization Effect of Zwitterionic Osmolyte-bearing Polymer. Chem Lett 2021;50:1699-702. [DOI: 10.1246/cl.210335] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
83 Flemming P, Münch AS, Fery A, Uhlmann P. Constrained thermoresponsive polymers - new insights into fundamentals and applications. Beilstein J Org Chem 2021;17:2123-63. [PMID: 34476018 DOI: 10.3762/bjoc.17.138] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
84 Lan J, Zhou B, Yin C, Weng L, Ni W, Shi L. Zwitterionic dual-network strategy for highly stretchable and transparent ionic conductor. Polymer 2021;231:124111. [DOI: 10.1016/j.polymer.2021.124111] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
85 Lau SK, Yong WF. Recent Progress of Zwitterionic Materials as Antifouling Membranes for Ultrafiltration, Nanofiltration, and Reverse Osmosis. ACS Appl Polym Mater 2021;3:4390-412. [DOI: 10.1021/acsapm.1c00779] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
86 Racovita S, Trofin MA, Loghin DF, Zaharia MM, Bucatariu F, Mihai M, Vasiliu S. Polybetaines in Biomedical Applications. Int J Mol Sci 2021;22:9321. [PMID: 34502230 DOI: 10.3390/ijms22179321] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
87 Willers A, Arens J, Mariani S, Pels H, Maessen JG, Hackeng TM, Lorusso R, Swol J. New Trends, Advantages and Disadvantages in Anticoagulation and Coating Methods Used in Extracorporeal Life Support Devices. Membranes (Basel) 2021;11:617. [PMID: 34436380 DOI: 10.3390/membranes11080617] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
88 Miclotte MPJ, Lawrenson SB, Varlas S, Rashid B, Chapman E, O'Reilly RK. Tuning the Cloud-Point and Flocculation Temperature of Poly(2-(diethylamino)ethyl methacrylate)-Based Nanoparticles via a Postpolymerization Betainization Approach. ACS Polym Au 2021;1:47-58. [PMID: 34476421 DOI: 10.1021/acspolymersau.1c00010] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
89 Wei H, Wang Z, Zhang H, Huang Y, Wang Z, Zhou Y, Xu BB, Halila S, Chen J. Ultrastretchable, Highly Transparent, Self-Adhesive, and 3D-Printable Ionic Hydrogels for Multimode Tactical Sensing. Chem Mater 2021;33:6731-42. [DOI: 10.1021/acs.chemmater.1c01246] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 8.0] [Reference Citation Analysis]
90 Wang DY, Yang G, van der Mei HC, Ren Y, Busscher HJ, Shi L. Liposomes with Water as a pH-Responsive Functionality for Targeting of Acidic Tumor and Infection Sites. Angew Chem Int Ed Engl 2021;60:17714-9. [PMID: 34028150 DOI: 10.1002/anie.202106329] [Cited by in F6Publishing: 15] [Reference Citation Analysis]
91 Wang D, Yang G, Mei HC, Ren Y, Busscher HJ, Shi L. Liposomes with Water as a pH‐Responsive Functionality for Targeting of Acidic Tumor and Infection Sites. Angew Chem 2021;133:17855-60. [DOI: 10.1002/ange.202106329] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
92 D'Agata R, Bellassai N, Jungbluth V, Spoto G. Recent Advances in Antifouling Materials for Surface Plasmon Resonance Biosensing in Clinical Diagnostics and Food Safety. Polymers (Basel) 2021;13:1929. [PMID: 34200632 DOI: 10.3390/polym13121929] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
93 Xu Q, Shu C, Li Y, Zhuang R, Jiang L, Xu X. Controllable mixed-charged co-assembly of dendritic lipopeptides into invisible capsid-like nanoparticles as potential drug carriers. Chem Commun (Camb) 2021;57:4859-62. [PMID: 33870386 DOI: 10.1039/d0cc07953g] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
94 Lin C, Wang P, Lee W, Li W, Wen T. Chitosan with various degrees of carboxylation as hydrogel electrolyte for pseudo solid-state supercapacitors. Journal of Power Sources 2021;494:229736. [DOI: 10.1016/j.jpowsour.2021.229736] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
95 Choi W, Park S, Kwon JS, Jang EY, Kim JY, Heo J, Hwang Y, Kim BS, Moon JH, Jung S, Choi SH, Lee H, Ahn HW, Hong J. Reverse Actuation of Polyelectrolyte Effect for In Vivo Antifouling. ACS Nano 2021;15:6811-28. [PMID: 33769787 DOI: 10.1021/acsnano.0c10431] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
96 Taylor ME, Clarkson D, Greenbaum SG, Panzer MJ. Examining the Impact of Polyzwitterion Chemistry on Lithium Ion Transport in Ionogel Electrolytes. ACS Appl Polym Mater 2021;3:2635-45. [DOI: 10.1021/acsapm.1c00229] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
97 Kollár J, Popelka A, Tkac J, Žabka M, Mosnáček J, Kasak P. Sulfobetaine-based polydisulfides with tunable upper critical solution temperature (UCST) in water alcohols mixture, depolymerization kinetics and surface wettability. J Colloid Interface Sci 2021;588:196-208. [PMID: 33387822 DOI: 10.1016/j.jcis.2020.12.048] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
98 Kutner N, Kunduru KR, Rizik L, Farah S. Recent Advances for Improving Functionality, Biocompatibility, and Longevity of Implantable Medical Devices and Deliverable Drug Delivery Systems. Adv Funct Mater 2021;31:2010929. [DOI: 10.1002/adfm.202010929] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
99 Trinh TKH, Qiu W, Thornton M, Carpenter EE, Guo Y. A property fine-tuned sulfobetaine cholesterol derivative for membrane protein structural biology. Biochim Biophys Acta Gen Subj 2021;1865:129908. [PMID: 33848598 DOI: 10.1016/j.bbagen.2021.129908] [Reference Citation Analysis]
100 Zhao M, Li X, Cho J. Pressure Effects on Self-Assembly in Mixtures Containing Zwitterionic Amphiphiles. Langmuir 2021;37:3882-96. [PMID: 33754727 DOI: 10.1021/acs.langmuir.1c00024] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
101 Deng Z, Kalin GT, Shi D, Kalinichenko VV. Nanoparticle Delivery Systems with Cell-Specific Targeting for Pulmonary Diseases. Am J Respir Cell Mol Biol 2021;64:292-307. [PMID: 33095997 DOI: 10.1165/rcmb.2020-0306TR] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
102 Li X, Li H, Zhang C, Pich A, Xing L, Shi X. Intelligent nanogels with self-adaptive responsiveness for improved tumor drug delivery and augmented chemotherapy. Bioact Mater 2021;6:3473-84. [PMID: 33869898 DOI: 10.1016/j.bioactmat.2021.03.021] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 11.5] [Reference Citation Analysis]
103 Fernández-peña L, Guzmán E, Ortega F, Bureau L, Leonforte F, Velasco D, Rubio RG, Luengo GS. Physico-chemical study of polymer mixtures formed by a polycation and a zwitterionic copolymer in aqueous solution and upon adsorption onto negatively charged surfaces. Polymer 2021;217:123442. [DOI: 10.1016/j.polymer.2021.123442] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
104 Chen X, Noy A. Antifouling strategies for protecting bioelectronic devices. APL Materials 2021;9:020701. [DOI: 10.1063/5.0029994] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
105 González-Monje P, Ayala García A, Ruiz-Molina D, Roscini C. Encapsulation and sedimentation of nanomaterials through complex coacervation. J Colloid Interface Sci 2021;589:500-10. [PMID: 33486285 DOI: 10.1016/j.jcis.2020.12.067] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
106 Lamb JR, Brown CM, Johnson JA. N-Heterocyclic carbene-carbodiimide (NHC-CDI) betaine adducts: synthesis, characterization, properties, and applications. Chem Sci 2021;12:2699-715. [PMID: 34164037 DOI: 10.1039/d0sc06465c] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
107 Cottet C, Salvay AG, Peltzer MA, Fernández-García M. Incorporation of Poly(Itaconic Acid) with Quaternized Thiazole Groups on Gelatin-Based Films for Antimicrobial-Active Food Packaging. Polymers (Basel) 2021;13:E200. [PMID: 33429952 DOI: 10.3390/polym13020200] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
108 Takano S, Sakurai K, Fujii S. Internalization into cancer cells of zwitterionic amino acid polymers via amino acid transporter recognition. Polym Chem 2021;12:6083-7. [DOI: 10.1039/d1py01010g] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
109 Duarte L, López-saucedo J, Vázquez E, Flores-rojas GG, Lopéz-saucedo F, Bucio E. Antimicrobial Materials for Local Drug Delivery. Environmental and Microbial Biotechnology 2021. [DOI: 10.1007/978-981-15-7098-8_12] [Reference Citation Analysis]
110 Zhang C, Liu Y, Sun Y, Dong X. Complicated effects of a zwitterionic polymer containing dimethyl chains on the structures, activities and stabilities of different enzymes. Biochemical Engineering Journal 2021;165:107813. [DOI: 10.1016/j.bej.2020.107813] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
111 Jung KH, Kim HJ, Kim MH, Seo H, Lee J. Superamphiphilic zwitterionic block copolymer surfactant-assisted fabrication of polyamide thin-film composite membrane with highly enhanced desalination performance. Journal of Membrane Science 2021;618:118677. [DOI: 10.1016/j.memsci.2020.118677] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
112 Camacho-cruz LA, Velazco-medel MA, Cruz-gómez A, Bucio E. Antimicrobial Polymers. Environmental and Microbial Biotechnology 2021. [DOI: 10.1007/978-981-15-7098-8_1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
113 Mertens C, Aksakal R, Badi N, Du Prez FE. Sequence-defined oligoampholytes using hydrolytically stable vinyl sulfonamides: design and UCST behaviour. Polym Chem 2021;12:4193-204. [DOI: 10.1039/d1py00662b] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
114 North SM, Armes SP. Aqueous one-pot synthesis of well-defined zwitterionic diblock copolymers by RAFT polymerization: an efficient and environmentally-friendly route to a useful dispersant for aqueous pigments. Green Chem 2021;23:1248-58. [DOI: 10.1039/d0gc04271d] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
115 North SM, Armes SP. Synthesis of polyampholytic diblock copolymers via RAFT aqueous solution polymerization. Polym Chem 2021;12:4846-55. [DOI: 10.1039/d1py01020d] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
116 Zhang Q, Kelland MA, Lewoczko EM, Bohannon CA, Zhao B. Non-amide based zwitterionic poly(sulfobetaine methacrylate)s as kinetic hydrate inhibitors. Chemical Engineering Science 2021;229:116031. [DOI: 10.1016/j.ces.2020.116031] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
117 Huang Y, Masuda T, Takai M. A Modifiable, Spontaneously Formed Polymer Gel with Zwitterionic and N -Hydroxysuccinimide Moieties for an Enzymatic Biofuel Cell. ACS Appl Polym Mater 2021;3:631-9. [DOI: 10.1021/acsapm.0c00881] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
118 Madduma‐bandarage USK, Madihally SV. Synthetic hydrogels: Synthesis, novel trends, and applications. J Appl Polym Sci 2021;138:50376. [DOI: 10.1002/app.50376] [Cited by in Crossref: 61] [Cited by in F6Publishing: 68] [Article Influence: 20.3] [Reference Citation Analysis]
119 Saha P, Santi M, Emondts M, Roth H, Rahimi K, Großkurth J, Ganguly R, Wessling M, Singha NK, Pich A. Stimuli-Responsive Zwitterionic Core–Shell Microgels for Antifouling Surface Coatings. ACS Appl Mater Interfaces 2020;12:58223-38. [DOI: 10.1021/acsami.0c17427] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
120 Welch NG, Winkler DA, Thissen H. Antifibrotic strategies for medical devices. Adv Drug Deliv Rev 2020;167:109-20. [PMID: 32553685 DOI: 10.1016/j.addr.2020.06.008] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 6.3] [Reference Citation Analysis]
121 Racovita S, Baranov N, Macsim AM, Lionte C, Cheptea C, Sunel V, Popa M, Vasiliu S, Desbrieres J. New Grafted Copolymers Carrying Betaine Units Based on Gellan and N-Vinylimidazole as Precursors for Design of Drug Delivery Systems. Molecules 2020;25:E5451. [PMID: 33233752 DOI: 10.3390/molecules25225451] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
122 Masood ul Hasan I, Peng L, Mao J, He R, Wang Y, Fu J, Xu N, Qiao J. Carbon‐based metal‐free catalysts for electrochemical CO 2 reduction: Activity, selectivity, and stability. Carbon Energy 2021;3:24-49. [DOI: 10.1002/cey2.87] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 7.3] [Reference Citation Analysis]
123 Kreuzer LP, Widmann T, Aldosari N, Bießmann L, Mangiapia G, Hildebrand V, Laschewsky A, Papadakis CM, Müller-buschbaum P. Cyclic Water Storage Behavior of Doubly Thermoresponsive Poly(sulfobetaine)-Based Diblock Copolymer Thin Films. Macromolecules 2020;53:9108-21. [DOI: 10.1021/acs.macromol.0c01335] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
124 Blackman LD, Fros MK, Welch NG, Gengenbach TR, Qu Y, Pasic P, Gunatillake PA, Thissen H, Cass P, Locock KES. Dual Action Antimicrobial Surfaces: Alternating Photopatterns Maintain Contact‐Killing Properties with Reduced Biofilm Formation. Macromol Mater Eng 2020;305:2000371. [DOI: 10.1002/mame.202000371] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
125 Zhang T, Qu Y, Gunatillake PA, Cass P, Locock KES, Blackman LD. Honey-inspired antimicrobial hydrogels resist bacterial colonization through twin synergistic mechanisms. Sci Rep 2020;10:15796. [PMID: 32978445 DOI: 10.1038/s41598-020-72478-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
126 Kawelah M, He Y, Alamri H, Gizzatov A, Swager TM, Zhu SS. Dynamic Adsorption of Functionalized Zwitterionic Copolymers on Carbonate Surfaces under Extreme Reservoir Conditions. Energy Fuels 2020;34:12018-25. [DOI: 10.1021/acs.energyfuels.0c01423] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
127 Cho HI, Yi S, Hwang J, Seo J, Lee J. Roles of zwitterionic charges in polymers on synthesis of Ag seeds with anisotropic growth properties. Journal of Industrial and Engineering Chemistry 2020;89:166-174. [DOI: 10.1016/j.jiec.2020.05.008] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
128 Yu X, Zhao J, Wu C, Li B, Sun C, Huang S, Tian X. Highly durable antifogging coatings resistant to long-term airborne pollution and intensive UV irradiation. Materials & Design 2020;194:108956. [DOI: 10.1016/j.matdes.2020.108956] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
129 Schauenburg D, Divandari M, Neumann K, Spiegel CA, Hackett T, Dzeng Y, Spencer ND, Bode JW. Synthesis of Polymers Containing Potassium Acyltrifluoroborates (KATs) and Post‐polymerization Ligation and Conjugation. Angew Chem 2020;132:14764-71. [DOI: 10.1002/ange.202006273] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
130 Saha P, Santi M, Frenken M, Palanisamy AR, Ganguly R, Singha NK, Pich A. Dual-Temperature-Responsive Microgels from a Zwitterionic Functional Graft Copolymer with Superior Protein Repelling Property. ACS Macro Lett 2020;9:895-901. [PMID: 35648523 DOI: 10.1021/acsmacrolett.0c00304] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
131 Byun J, Cho S, Moon J, Kim H, Kang H, Jung J, Lim EK, Jeong J, Park HG, Cho WK, Kang T. Zwitterionic Polydopamine/Protein G Coating for Antibody Immobilization: Toward Suppression of Nonspecific Binding in Immunoassays. ACS Appl Bio Mater 2020;3:3631-9. [PMID: 35025233 DOI: 10.1021/acsabm.0c00264] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
132 Víšová I, Vrabcová M, Forinová M, Zhigunová Y, Mironov V, Houska M, Bittrich E, Eichhorn K, Hashim H, Schovánek P, Dejneka A, Vaisocherová-lísalová H. Surface Preconditioning Influences the Antifouling Capabilities of Zwitterionic and Nonionic Polymer Brushes. Langmuir 2020;36:8485-93. [DOI: 10.1021/acs.langmuir.0c00996] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
133 Lin Y, Hu H, Yi P, Sun S, Li Y, Liu X, Li G. Zwitterionic hydrogels formed via quadruple hydrogen-bonds with ultra-fast room-temperature self-healing ability. Materials Letters 2020;269:127665. [DOI: 10.1016/j.matlet.2020.127665] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
134 Ting JM, Marras AE, Mitchell JD, Campagna TR, Tirrell MV. Comparing Zwitterionic and PEG Exteriors of Polyelectrolyte Complex Micelles. Molecules 2020;25:E2553. [PMID: 32486282 DOI: 10.3390/molecules25112553] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
135 Li B, Yuan Z, Jain P, Hung HC, He Y, Lin X, McMullen P, Jiang S. De novo design of functional zwitterionic biomimetic material for immunomodulation. Sci Adv 2020;6:eaba0754. [PMID: 32523997 DOI: 10.1126/sciadv.aba0754] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 8.0] [Reference Citation Analysis]
136 Kreuzer LP, Widmann T, Bießmann L, Hohn N, Pantle J, Märkl R, Moulin J, Hildebrand V, Laschewsky A, Papadakis CM, Müller-buschbaum P. Phase Transition Kinetics of Doubly Thermoresponsive Poly(sulfobetaine)-Based Diblock Copolymer Thin Films. Macromolecules 2020;53:2841-55. [DOI: 10.1021/acs.macromol.0c00046] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
137 Peng S, Wang H, Zhao W, Xin Y, Liu Y, Yu X, Zhan M, Shen S, Lu L. Zwitterionic Polysulfamide Drug Nanogels with Microwave Augmented Tumor Accumulation and On‐Demand Drug Release for Enhanced Cancer Therapy. Adv Funct Mater 2020;30:2001832. [DOI: 10.1002/adfm.202001832] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]
138 Wang X, Yao C, Zhang G, Liu S. Regulating vesicle bilayer permeability and selectivity via stimuli-triggered polymersome-to-PICsome transition. Nat Commun 2020;11:1524. [PMID: 32251282 DOI: 10.1038/s41467-020-15304-x] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 12.7] [Reference Citation Analysis]
139 Bai Z, Liu Q, Zhang H, Yu J, Chen R, Liu J, Song D, Li R, Wang J. Anti-Biofouling and Water—Stable Balanced Charged Metal Organic Framework-Based Polyelectrolyte Hydrogels for Extracting Uranium from Seawater. ACS Appl Mater Interfaces 2020;12:18012-22. [DOI: 10.1021/acsami.0c03007] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 13.0] [Reference Citation Analysis]
140 Mallick SP, Suman DK, Singh BN, Srivastava P, Siddiqui N, Yella VR, Madhual A, Vemuri PK. Strategies toward development of biodegradable hydrogels for biomedical applications. Polymer-Plastics Technology and Materials 2020;59:911-27. [DOI: 10.1080/25740881.2020.1719135] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
141 Dahlke J, Kimmig J, Abend M, Zechel S, Vitz J, Schubert US, Hager MD. Quantification of the scratch-healing efficiency for novel zwitterionic polymers. NPG Asia Mater 2020;12. [DOI: 10.1038/s41427-019-0190-2] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 4.7] [Reference Citation Analysis]
142 Paschke S, Lienkamp K. Polyzwitterions: From Surface Properties and Bioactivity Profiles to Biomedical Applications. ACS Appl Polym Mater 2020;2:129-51. [DOI: 10.1021/acsapm.9b00897] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 9.7] [Reference Citation Analysis]
143 Heggestad JT, Fontes CM, Joh DY, Hucknall AM, Chilkoti A. In Pursuit of Zero 2.0: Recent Developments in Nonfouling Polymer Brushes for Immunoassays. Adv Mater 2020;32:e1903285. [PMID: 31782843 DOI: 10.1002/adma.201903285] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 10.3] [Reference Citation Analysis]
144 Liu L, Gou S, Zhang H, Zhou L, Tang L, Liu L. A zwitterionic polymer containing a hydrophobic group: enhanced rheological properties. New J Chem 2020;44:9703-11. [DOI: 10.1039/d0nj01687j] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
145 Audureau N, Coumes F, Guigner J, Nguyen TPT, Ménager C, Stoffelbach F, Rieger J. Thermoresponsive properties of poly(acrylamide- co -acrylonitrile)-based diblock copolymers synthesized (by PISA) in water. Polym Chem 2020;11:5998-6008. [DOI: 10.1039/d0py00895h] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
146 Zhang X, Zhu Y, Wang X, Wang P, Tian J, Zhu W, Song J, Xiao H. Revealing Adsorption Behaviors of Amphoteric Polyacrylamide on Cellulose Fibers and Impact on Dry Strength of Fiber Networks. Polymers (Basel) 2019;11:E1886. [PMID: 31731637 DOI: 10.3390/polym11111886] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
147 Gupta A, Maharjan A, Kim BS. Shape Memory Polyurethane and its Composites for Various Applications. Applied Sciences 2019;9:4694. [DOI: 10.3390/app9214694] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
148 Li J, Wu W, Niu L, Bai M, Zhang Y, Jiang Y. Reservoir applicability and flooding effect of amphoteric ion crosslinked polymer solution. Journal of Dispersion Science and Technology 2021;42:352-62. [DOI: 10.1080/01932691.2019.1681281] [Reference Citation Analysis]
149 Han YJ, Liu YL. Preparation of Cross-Linkable Zwitterionic Polybenzoxazine with Sulfobetaine Groups and Corresponding Zwitterionic Thermosetting Resin for Antifouling Surface Coating. ACS Appl Bio Mater 2019;2:3799-807. [PMID: 35021353 DOI: 10.1021/acsabm.9b00412] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
150 Bakhshandeh A, Dos Santos AP, Diehl A, Levin Y. Isothermal adsorption of polyampholytes on charged nanopatterned surfaces. J Chem Phys 2019;151:084101. [PMID: 31470708 DOI: 10.1063/1.5115404] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
151 Stubbs C, Bailey TL, Murray K, Gibson MI. Polyampholytes as Emerging Macromolecular Cryoprotectants. Biomacromolecules 2020;21:7-17. [PMID: 31418266 DOI: 10.1021/acs.biomac.9b01053] [Cited by in Crossref: 51] [Cited by in F6Publishing: 54] [Article Influence: 12.8] [Reference Citation Analysis]
152 Vilela C, Moreirinha C, Domingues EM, Figueiredo FML, Almeida A, Freire CSR. Antimicrobial and Conductive Nanocellulose-Based Films for Active and Intelligent Food Packaging. Nanomaterials (Basel) 2019;9:E980. [PMID: 31284559 DOI: 10.3390/nano9070980] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 10.3] [Reference Citation Analysis]
153 Charaya H, La T, Rieger J, Chung H. Thermochromic and Piezocapacitive Flexible Sensor Array by Combining Composite Elastomer Dielectrics and Transparent Ionic Hydrogel Electrodes. Adv Mater Technol 2019;4:1900327. [DOI: 10.1002/admt.201900327] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 7.5] [Reference Citation Analysis]
154 Park MS, Kim NU, Park BJ, Ryu DY, Kim JH. Ultra-selective ferric ion-complexed membranes composed of water-based zwitterionic comb copolymers. J Mater Chem A 2019;7:20847-53. [DOI: 10.1039/c9ta06216e] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
155 Lin Y, Zeng Z, Li Y, Sun S, Liu X, He D, Li G. Self-healing zwitterionic sulfobetaine nanocomposite hydrogels with good mechanical properties. RSC Adv 2019;9:31806-11. [DOI: 10.1039/c9ra06728k] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]