BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wu S, Duan B, Zeng X, Lu A, Xu X, Wang Y, Ye Q, Zhang L. Construction of blood compatible lysine-immobilized chitin/carbon nanotube microspheres and potential applications for blood purified therapy. J Mater Chem B 2017;5:2952-63. [DOI: 10.1039/c7tb00101k] [Cited by in Crossref: 51] [Cited by in F6Publishing: 54] [Article Influence: 8.5] [Reference Citation Analysis]
Number Citing Articles
1 Zou Y, Yue P, Cao H, Wu L, Xu L, Liu Z, Wu S, Ye Q. Biocompatible and biodegradable chitin-based hydrogels crosslinked by BDDE with excellent mechanical properties for effective prevention of postoperative peritoneal adhesion. Carbohydr Polym 2023;305:120543. [PMID: 36737194 DOI: 10.1016/j.carbpol.2023.120543] [Reference Citation Analysis]
2 Gan N, Sun Q, Peng X, Ai P, Wu D, Yi B, Xia H, Wang X, Li H. MOFs-alginate/polyacrylic acid/poly (ethylene imine) heparin-mimicking beads as a novel hemoadsorbent for bilirubin removal in vitro and vivo models. Int J Biol Macromol 2023;235:123868. [PMID: 36870639 DOI: 10.1016/j.ijbiomac.2023.123868] [Reference Citation Analysis]
3 Hazarika S, Ahmed S, Chamkha AJ. Heat Transfer of Casson Fluid in Poiseuille Flow of Carbon Nanotubes: A Power Series Approach. j nanofluids 2023;12:242-250. [DOI: 10.1166/jon.2023.1995] [Reference Citation Analysis]
4 Liu J, Lu X, Shu G, Li K, Kong X, Zheng S, Li T, Yang J. Heparin/polyethyleneimine dual-sided functional polyvinylidene fluoride plasma separation membrane for bilirubin removal. Journal of Membrane Science 2023. [DOI: 10.1016/j.memsci.2023.121404] [Reference Citation Analysis]
5 Bao C, Zhang X, Shen J, Li C, Zhang J, Feng X. Freezing-triggered gelation of quaternized chitosan reinforced with microfibrillated cellulose for highly efficient removal of bilirubin. J Mater Chem B 2022;10:8650-63. [PMID: 36218039 DOI: 10.1039/d2tb01407f] [Reference Citation Analysis]
6 Zhang G, Shao D, Yu H, Wan Y, Jiao Y, Li L, Tian J, Zhou C, Lu L. MXene Nanosheet-Enhanced Chitin Aerogel Spheres for Bilirubin Adsorption. ACS Appl Nano Mater 2022. [DOI: 10.1021/acsanm.2c04461] [Reference Citation Analysis]
7 Li C, Zhang X, Bao C, Zhang J, Tian Y, Shen J, Feng X. Freezing-induced chemical crosslinking to fabricate nanocellulose-based cryogels for efficient bilirubin removal. Separation and Purification Technology 2022;300:121865. [DOI: 10.1016/j.seppur.2022.121865] [Reference Citation Analysis]
8 Qamar SA, Riasat A, Jahangeer M, Fatima R, Bilal M, Iqbal HMN, Mu BZ. Prospects of microbial polysaccharides-based hybrid constructs for biomimicking applications. J Basic Microbiol 2022;62:1319-36. [PMID: 35048396 DOI: 10.1002/jobm.202100596] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
9 Liu Y, Wang ZK, Liu CZ, Liu YY, Li Q, Wang H, Cui F, Zhang DW, Li ZT. Supramolecular Organic Frameworks as Adsorbents for Efficient Removal of Excess Bilirubin in Hemoperfusion. ACS Appl Mater Interfaces 2022. [PMID: 36223402 DOI: 10.1021/acsami.2c11458] [Reference Citation Analysis]
10 Yan S, Wang L, Fan H, Li X, You H, You R, Zhang Q, Xu W, Zhang Y. Biomimetic Natural Silk Nanofibrous Microspheres for Multifunctional Biomedical Applications. ACS Nano 2022;16:15115-23. [PMID: 36001029 DOI: 10.1021/acsnano.2c06331] [Reference Citation Analysis]
11 Wu S, Chen B, Ye Q. Blood compatible chitin composite nanofibrous microspheres as efficient adsorbents for removal of blood ammonia in hyperammonemia. Microporous and Mesoporous Materials 2022;343:112137. [DOI: 10.1016/j.micromeso.2022.112137] [Reference Citation Analysis]
12 Heidarian P, Gharaie S, Yousefi H, Paulino M, Kaynak A, Varley R, Kouzani AZ. A 3D printable dynamic nanocellulose/nanochitin self-healing hydrogel and soft strain sensor. Carbohydrate Polymers 2022;291:119545. [DOI: 10.1016/j.carbpol.2022.119545] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
13 Holmannova D, Borsky P, Svadlakova T, Borska L, Fiala Z. Carbon Nanoparticles and Their Biomedical Applications. Applied Sciences 2022;12:7865. [DOI: 10.3390/app12157865] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Manikandan SK, Giannakoudakis DA, Prekodravac JR, Nair V, Colmenares JC. Role of catalyst supports in biocatalysis. J of Chemical Tech & Biotech 2022. [DOI: 10.1002/jctb.7177] [Reference Citation Analysis]
15 Veettil UT, Olza S, Brugerolle de Fraissinette N, Bascans E, Castejón N, Adrien A, Fernández-Marín R, Nardin C, Fernandes SCM. Contributions of Women in Recent Research on Biopolymer Science. Polymers (Basel) 2022;14:1420. [PMID: 35406293 DOI: 10.3390/polym14071420] [Reference Citation Analysis]
16 Sang S, Cheng R, Cao Y, Yan Y, Shen Z, Zhao Y, Han Y. Biocompatible chitosan/polyethylene glycol/multi-walled carbon nanotube composite scaffolds for neural tissue engineering. J Zhejiang Univ Sci B 2022;23:58-73. [PMID: 35029088 DOI: 10.1631/jzus.B2100155] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Dou W, Wang J, Yao Z, Xiao W, Huang M, Zhang L. A critical review of hemoperfusion adsorbents: materials, functionalization and matrix structure selection. Mater Adv 2022;3:918-30. [DOI: 10.1039/d1ma00892g] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
18 Li X, Zhang H, Dong J, Ma S, Ou J. One-pot synthesis of glucose-derived carbonaceous material with high hydrophilicity and adsorption capacity as bilirubin adsorbent. J Mater Sci 2021;56:18006-18018. [DOI: 10.1007/s10853-021-06456-2] [Reference Citation Analysis]
19 Liu J, Lu X, Shu G, Ni F, Li K, Kong X, Zheng S, Ma R, Li T, Liu H, Yang J. Structure design and performance study on filtration-adsorption bifunctional blood purification membrane. Journal of Membrane Science 2021;636:119535. [DOI: 10.1016/j.memsci.2021.119535] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
20 Li Z, Yan X, Wu K, Jiao Y, Zhou C, Yang J. Surface Modification of Reduced Graphene Oxide Beads: Integrating Efficient Endotoxin Adsorption and Improved Blood Compatibility. ACS Appl Bio Mater 2021;4:4896-906. [PMID: 35007038 DOI: 10.1021/acsabm.0c01666] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
21 Bi S, Li F, Qin D, Wang M, Yuan S, Cheng X, Chen X. Construction of chitin functional materials based on a “green” alkali/urea solvent and their applications in biomedicine: Recent advance. Applied Materials Today 2021;23:101030. [DOI: 10.1016/j.apmt.2021.101030] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
22 Suryawanshi N, Eswari JS. Shrimp shell waste as a potential raw material for biorefinery—a revisit. Biomass Conv Bioref 2022;12:1977-84. [DOI: 10.1007/s13399-020-01271-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
23 Yang K, Peng Y, Wang L, Ren L. Polymyxin B engineered polystyrene-divinylbenzene microspheres for the adsorption of bilirubin and endotoxin. RSC Adv 2021;11:39978-39984. [DOI: 10.1039/d1ra06684f] [Reference Citation Analysis]
24 Asano T, Yoshioka T, Shirosaki Y, Tsuru K, Hayakawa S, Osaka A. Blood-compatible ceramic particles, coating layers, and macrospheres for blood purification and related applications. Bioceramics 2021. [DOI: 10.1016/b978-0-08-102999-2.00010-7] [Reference Citation Analysis]
25 Bi S, Qin D, Yuan S, Cheng X, Chen X. Homogeneous modification of chitin and chitosan based on an alkali/urea soluble system and their applications in biomedical engineering. Green Chem 2021;23:9318-33. [DOI: 10.1039/d1gc03205d] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
26 Pei X, Jiao H, Fu H, Yin X, Luo D, Long S, Gong W, Zhang L. Facile Construction of a Highly Dispersed Pt Nanocatalyst Anchored on Biomass-Derived N/O-Doped Carbon Nanofibrous Microspheres and Its Catalytic Hydrogenation. ACS Appl Mater Interfaces 2020;12:51459-67. [PMID: 33147002 DOI: 10.1021/acsami.0c14581] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
27 Song C, Li Y, Wang B, Hong Y, Xue C, Li Q, Shen E, Cui D. A novel anticoagulant affinity membrane for enhanced hemocompatibility and bilirubin removal. Colloids Surf B Biointerfaces 2021;197:111430. [PMID: 33125976 DOI: 10.1016/j.colsurfb.2020.111430] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
28 Zhong Y, Cai J, Zhang L. A Review of Chitin Solvents and Their Dissolution Mechanisms. Chin J Polym Sci 2020;38:1047-60. [DOI: 10.1007/s10118-020-2459-x] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 6.7] [Reference Citation Analysis]
29 Ju J, Liang F, Zhang X, Sun R, Pan X, Guan X, Cui G, He X, Li M. Advancement in separation materials for blood purification therapy. Chinese Journal of Chemical Engineering 2019;27:1383-90. [DOI: 10.1016/j.cjche.2019.01.022] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
30 Chen K, Cai H, Zhang H, Zhu H, Gu Z, Gong Q, Luo K. Stimuli-responsive polymer-doxorubicin conjugate: Antitumor mechanism and potential as nano-prodrug. Acta Biomater 2019;84:339-55. [PMID: 30503561 DOI: 10.1016/j.actbio.2018.11.050] [Cited by in Crossref: 76] [Cited by in F6Publishing: 79] [Article Influence: 19.0] [Reference Citation Analysis]
31 Vilela C, Pinto RJB, Pinto S, Marques P, Silvestre A, da Rocha Freire Barros CS. Polysaccharides-Based Hybrids with Carbon Nanotubes. SpringerBriefs in Molecular Science 2018. [DOI: 10.1007/978-3-030-00347-0_5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]