BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lazzari G, Couvreur P, Mura S. Multicellular tumor spheroids: a relevant 3D model for the in vitro preclinical investigation of polymer nanomedicines. Polym Chem 2017;8:4947-69. [DOI: 10.1039/c7py00559h] [Cited by in Crossref: 114] [Cited by in F6Publishing: 117] [Article Influence: 19.0] [Reference Citation Analysis]
Number Citing Articles
1 Sun M, Zhang J, Fu W, Xuanyuan T, Liu W. Facile construction of a 3D tumor model with multiple biomimetic characteristics using a micropatterned chip for large-scale chemotherapy investigation. Lab Chip 2023. [PMID: 36943157 DOI: 10.1039/d3lc00009e] [Reference Citation Analysis]
2 Nascimento C, Castro F, Domingues M, Lage A, Alves É, de Oliveira R, de Melo C, Eduardo Calzavara-Silva C, Sarmento B. Reprogramming of tumor-associated macrophages by polyaniline-coated iron oxide nanoparticles applied to treatment of breast cancer. Int J Pharm 2023;636:122866. [PMID: 36934882 DOI: 10.1016/j.ijpharm.2023.122866] [Reference Citation Analysis]
3 Gonzales-Aloy E, Ahmed-Cox A, Tsoli M, Ziegler DS, Kavallaris M. From cells to organoids: The evolution of blood-brain barrier technology for modelling drug delivery in brain cancer. Adv Drug Deliv Rev 2023;196:114777. [PMID: 36931346 DOI: 10.1016/j.addr.2023.114777] [Reference Citation Analysis]
4 Alserihi RF, Razeeth Shait Mohammed M, Kaleem M, Imran Khan M, Sechi M, Zughaibi TA, Tabrez S. Comparative efficacy of epigallocatechin gallate and its nano-formulation in prostate cancer 3D spheroids model. Journal of King Saud University - Science 2023. [DOI: 10.1016/j.jksus.2023.102627] [Reference Citation Analysis]
5 Feng A, Cheng X, Huang X, Liu Y, He Z, Zhao J, Duan H, Shi Z, Guo J, Wang S, Yan X. Engineered Organic Nanorockets with Light-Driven Ultrafast Transportability for Antitumor Therapy. Small 2023;:e2206426. [PMID: 36840673 DOI: 10.1002/smll.202206426] [Reference Citation Analysis]
6 Nkune NW, Abrahamse H. Anti-Hypoxia Nanoplatforms for Enhanced Photosensitizer Uptake and Photodynamic Therapy Effects in Cancer Cells. Int J Mol Sci 2023;24. [PMID: 36768975 DOI: 10.3390/ijms24032656] [Reference Citation Analysis]
7 Bessot A, Gunter J, Waugh D, Clements JA, Hutmacher DW, McGovern J, Bock N. GelMA and Biomimetic Culture Allow the Engineering of Mineralized, Adipose, and Tumor Tissue Human Microenvironments for the Study of Advanced Prostate Cancer In Vitro and In Vivo. Adv Healthc Mater 2023;:e2201701. [PMID: 36708740 DOI: 10.1002/adhm.202201701] [Reference Citation Analysis]
8 Yusoh NA, Chia SL, Saad N, Ahmad H, Gill MR. Synergy of ruthenium metallo-intercalator, [Ru(dppz)(2)(PIP)](2+), with PARP inhibitor Olaparib in non-small cell lung cancer cells. Sci Rep 2023;13:1456. [PMID: 36702871 DOI: 10.1038/s41598-023-28454-x] [Reference Citation Analysis]
9 Ugrinic M, Decanini D, Bidan N, Lazzari G, Harouri A, Hwang G, Haghiri-gosnet A, Mura S. Fabrication of high aspect ratio microfluidic devices for long term in vitro culture of 3D tumor models. Microelectronic Engineering 2023;267-268:111898. [DOI: 10.1016/j.mee.2022.111898] [Reference Citation Analysis]
10 Idrisova KF, Simon HU, Gomzikova MO. Role of Patient-Derived Models of Cancer in Translational Oncology. Cancers (Basel) 2022;15. [PMID: 36612135 DOI: 10.3390/cancers15010139] [Reference Citation Analysis]
11 Orysyk SI, Zborovskii YL, Orysyk VV, Garmanchuk LV, Borovyk PV, Shishkina SV, Pavliuk O, Pekhnyo VI, Vovk MV. Synthesis, structural and spectral characteristics of novel n,π-chelate complexes of Pd(II) and Pt(II) with N-allylthioureas and their influence on the growth of spheroids cells MCF-7 and GGT activity. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116272] [Reference Citation Analysis]
12 Joddar B, Natividad-Diaz SL, Padilla AE, Esparza AA, Ramirez SP, Chambers DR, Ibaroudene H. Engineering approaches for cardiac organoid formation and their characterization. Transl Res 2022;250:46-67. [PMID: 35995380 DOI: 10.1016/j.trsl.2022.08.009] [Reference Citation Analysis]
13 Zhu H, Roode LW, Parry AJ, Erkamp NA, Rodriguez-garcia M, Narita M, Shen Y, Ou Y, Toprakcioglu Z, Narita M, Knowles TP. Core–Shell Spheroid‐Laden Microgels Crosslinked under Biocompatible Conditions for Probing Cancer‐Stromal Communication. Advanced NanoBiomed Research 2022. [DOI: 10.1002/anbr.202200138] [Reference Citation Analysis]
14 Mohan AK, M M, Kumar TRS, Kumar GSV. Multi-Layered PLGA-PEI Nanoparticles Functionalized with TKD Peptide for Targeted Delivery of Pep5 to Breast Tumor Cells and Spheroids. IJN 2022;Volume 17:5581-5600. [DOI: 10.2147/ijn.s376358] [Reference Citation Analysis]
15 Hudson K, Cross N, Jordan-mahy N, Leyland R. Programmed death-ligand 1 expression in human cancer three-dimensional cell culture models.. [DOI: 10.1101/2022.10.31.514495] [Reference Citation Analysis]
16 Ingavle G, Das M. Bench to Bedside: New Therapeutic Approaches with Extracellular Vesicles and Engineered Biomaterials for Targeting Therapeutic Resistance of Cancer Stem Cells. ACS Biomater Sci Eng 2022. [PMID: 36194142 DOI: 10.1021/acsbiomaterials.2c00484] [Reference Citation Analysis]
17 Parvathaneni V, Chilamakuri R, Kulkarni NS, Baig NF, Agarwal S, Gupta V. Exploring Amodiaquine’s Repurposing Potential in Breast Cancer Treatment—Assessment of In-Vitro Efficacy & Mechanism of Action. IJMS 2022;23:11455. [DOI: 10.3390/ijms231911455] [Reference Citation Analysis]
18 Langer C, Köll-weber M, Holzer M, Hantel C, Süss R. Mitotane Nanocarriers for the Treatment of Adrenocortical Carcinoma: Evaluation of Albumin-Stabilized Nanoparticles and Liposomes in a Preclinical In Vitro Study with 3D Spheroids. Pharmaceutics 2022;14:1891. [DOI: 10.3390/pharmaceutics14091891] [Reference Citation Analysis]
19 Luo J, Cao J, Ma G, Wang X, Sun Y, Zhang C, Shi Z, Zeng Y, Zhang T, Huang P. Collagenase-Loaded H-TiO 2 Nanoparticles Enhance Ultrasound Imaging-Guided Sonodynamic Therapy in a Pancreatic Carcinoma Xenograft Model via Digesting Stromal Barriers. ACS Appl Mater Interfaces. [DOI: 10.1021/acsami.2c08951] [Reference Citation Analysis]
20 Zhang M, Zeng W, Lei Y, Chen X, Zhang M, Li C, Qin S. A novel sustainable luminescent ABS composite material for 3D printing. European Polymer Journal 2022;176:111406. [DOI: 10.1016/j.eurpolymj.2022.111406] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Duan S, Jia Y, Zhu Z, Wang L, Xu P, Wang Y, Di B, Hu C. Induction of CYP450 by illicit drugs: Studies using an in vitro 3D spheroidal model in comparison to animals. Toxicol Lett 2022:S0378-4274(22)00970-5. [PMID: 35914676 DOI: 10.1016/j.toxlet.2022.07.815] [Reference Citation Analysis]
22 Parvathaneni V, Chilamakuri R, Kulkarni NS, Wang X, Agarwal S, Gupta V. Repurposing clofazimine for malignant pleural mesothelioma treatment - In-vitro assessment of efficacy and mechanism of action. Life Sci 2022;:120843. [PMID: 35908620 DOI: 10.1016/j.lfs.2022.120843] [Reference Citation Analysis]
23 Van Zundert I, Maenhoudt N, De Vriendt S, Vankelecom H, Fortuni B, Rocha S. Fluorescence Imaging of 3D Cell Models with Subcellular Resolution. Bio Protoc 2022;12:e4469. [PMID: 35978571 DOI: 10.21769/BioProtoc.4469] [Reference Citation Analysis]
24 Roberts MG, Facca VJ, Keunen R, Yu Q, Reilly RM, Winnik MA. Changing Surface Polyethylene Glycol Architecture Affects Elongated Nanoparticle Penetration into Multicellular Tumor Spheroids. Biomacromolecules 2022. [PMID: 35816453 DOI: 10.1021/acs.biomac.2c00386] [Reference Citation Analysis]
25 Navarro-Serer B, Wood LD. Organoids: A Promising Preclinical Model for Pancreatic Cancer Research. Pancreas 2022;51:608-16. [PMID: 36206467 DOI: 10.1097/MPA.0000000000002084] [Reference Citation Analysis]
26 Awad R, Avital A, Sosnik A. Polymeric nanocarriers for nose-to-brain drug delivery in neurodegenerative diseases and neurodevelopmental disorders. Acta Pharmaceutica Sinica B 2022. [DOI: 10.1016/j.apsb.2022.07.003] [Reference Citation Analysis]
27 Rossi M, Blasi P. Multicellular Tumor Spheroids in Nanomedicine Research: A Perspective. Front Med Technol 2022;4. [DOI: 10.3389/fmedt.2022.909943] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
28 Azizipour N, Avazpour R, Weber MH, Sawan M, Ajji A, Rosenzweig DH. Uniform Tumor Spheroids on Surface-Optimized Microfluidic Biochips for Reproducible Drug Screening and Personalized Medicine. Micromachines 2022;13:587. [DOI: 10.3390/mi13040587] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
29 Klowss JJ, Browning AP, Murphy RJ, Carr EJ, Plank MJ, Gunasingh G, Haass NK, Simpson MJ. A stochastic mathematical model of 4D tumour spheroids with real-time fluorescent cell cycle labelling. J R Soc Interface 2022;19:20210903. [PMID: 35382573 DOI: 10.1098/rsif.2021.0903] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
30 Azizipour N, Avazpour R, Sawan M, Rosenzweig DH, Ajji A. Uniformity of spheroid-on-chip by surface treatment of PDMS microfluidic platforms.. [DOI: 10.1101/2022.02.15.480543] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
31 Bidan N, Lores S, Vanhecke A, Nicolas V, Domenichini S, López R, de la Fuente M, Mura S. Before in vivo studies: In vitro screening of sphingomyelin nanosystems using a relevant 3D multicellular pancreatic tumor spheroid model. Int J Pharm 2022;:121577. [PMID: 35167901 DOI: 10.1016/j.ijpharm.2022.121577] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
32 Dalir Abdolahinia E, Barati G, Ranjbar-navazi Z, Kadkhoda J, Islami M, Hashemzadeh N, Maleki Dizaj S, Sharifi S. Application of nanogels as drug delivery systems in multicellular spheroid tumor model. Journal of Drug Delivery Science and Technology 2022;68:103109. [DOI: 10.1016/j.jddst.2022.103109] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
33 Van de Vyver T, De Smedt SC, Raemdonck K. Modulating intracellular pathways to improve non-viral delivery of RNA therapeutics. Adv Drug Deliv Rev 2022;181:114041. [PMID: 34763002 DOI: 10.1016/j.addr.2021.114041] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
34 Soleimanbeigi M, Dousti F, Hassanzadeh F, Mirian M, Varshosaz J, Kasesaz Y, Rostami M. Boron Phenyl Alanine Targeted Chitosan-PNIPAAm Core-Shell Thermo-Responsive Nanoparticles; Boosting Drug Delivery to Glioblastoma in BNCT. Drug Development and Industrial Pharmacy. [DOI: 10.1080/03639045.2022.2032132] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Bhavya K, Mantipally M, Roy S, Arora L, Badavath VN, Gangireddy M, Dasgupta S, Gundla R, Pal D. Novel imidazo[1,2-a]pyridine derivatives induce apoptosis and cell cycle arrest in non-small cell lung cancer by activating NADPH oxidase mediated oxidative stress. Life Sci 2022;:120334. [PMID: 35065161 DOI: 10.1016/j.lfs.2022.120334] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Azizipour N, Avazpour R, Sawan M, Rosenzweig DH, Ajji A. Uniformity of spheroids-on-a-chip by surface treatment of PDMS microfluidic platforms. Sens Diagn 2022;1:750-764. [DOI: 10.1039/d2sd00004k] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
37 Alserihi RF, Mohammed MRS, Kaleem M, Khan MI, Sechi M, Sanna V, Zughaibi TA, Abuzenadah AM, Tabrez S. Development of (−)-epigallocatechin-3-gallate-loaded folate receptor-targeted nanoparticles for prostate cancer treatment. Nanotechnology Reviews 2022;11:298-311. [DOI: 10.1515/ntrev-2022-0013] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
38 El Khoury R, Nagiah N, Mudloff JA, Thakur V, Chattopadhyay M, Joddar B. 3D Bioprinted Spheroidal Droplets for Engineering the Heterocellular Coupling between Cardiomyocytes and Cardiac Fibroblasts. Cyborg and Bionic Systems 2021;2021:1-16. [DOI: 10.34133/2021/9864212] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
39 Klowss JJ, Browning AP, Murphy RJ, Carr EJ, Plank MJ, Gunasingh G, Haass NK, Simpson MJ. A stochastic mathematical model of 4D tumour spheroids with real-time fluorescent cell cycle labelling.. [DOI: 10.1101/2021.11.28.470300] [Reference Citation Analysis]
40 Boehnke N, Hammond PT. Power in Numbers: Harnessing Combinatorial and Integrated Screens to Advance Nanomedicine. JACS Au 2022;2:12-21. [DOI: 10.1021/jacsau.1c00313] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
41 Mahapatra C, Lee R, Paul MK. Emerging role and promise of nanomaterials in organoid research. Drug Discov Today 2021:S1359-6446(21)00486-4. [PMID: 34774765 DOI: 10.1016/j.drudis.2021.11.007] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
42 Zheng Y, Wu Z, Lin L, Zheng X, Hou Y, Lin JM. Microfluidic droplet-based functional materials for cell manipulation. Lab Chip 2021;21:4311-29. [PMID: 34668510 DOI: 10.1039/d1lc00618e] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
43 Hill L, Bruns J, Zustiak SP. Hydrogel matrix presence and composition influence drug responses of encapsulated glioblastoma spheroids. Acta Biomater 2021;132:437-47. [PMID: 34010694 DOI: 10.1016/j.actbio.2021.05.005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
44 Pozzi S, Scomparin A, Israeli Dangoor S, Rodriguez Ajamil D, Ofek P, Neufeld L, Krivitsky A, Vaskovich-Koubi D, Kleiner R, Dey P, Koshrovski-Michael S, Reisman N, Satchi-Fainaro R. Meet me halfway: Are in vitro 3D cancer models on the way to replace in vivo models for nanomedicine development? Adv Drug Deliv Rev 2021;175:113760. [PMID: 33838208 DOI: 10.1016/j.addr.2021.04.001] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
45 Jiang C, Wang X, Teng B, Wang Z, Li F, Zhao Y, Guo Y, Zeng Q. Peptide-Targeted High-Density Lipoprotein Nanoparticles for Combinatorial Treatment against Metastatic Breast Cancer. ACS Appl Mater Interfaces 2021;13:35248-65. [PMID: 34284582 DOI: 10.1021/acsami.1c02074] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
46 Schneckenburger H, Richter V. Challenges in 3D Live Cell Imaging. Photonics 2021;8:275. [DOI: 10.3390/photonics8070275] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
47 Boix-Montesinos P, Soriano-Teruel PM, Armiñán A, Orzáez M, Vicent MJ. The past, present, and future of breast cancer models for nanomedicine development. Adv Drug Deliv Rev 2021;173:306-30. [PMID: 33798642 DOI: 10.1016/j.addr.2021.03.018] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 11.0] [Reference Citation Analysis]
48 Srinivasulu YG, Mozhi A, Goswami N, Yao Q, Xie J. Traceable Nanocluster–Prodrug Conjugate for Chemo-photodynamic Combinatorial Therapy of Non-small Cell Lung Cancer. ACS Appl Bio Mater 2021;4:3232-3245. [DOI: 10.1021/acsabm.0c01611] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
49 Kaźmierski Ł, Maj M. 3D tumor model – a platform for anticancer drug development. Physical Sciences Reviews 2021;0. [DOI: 10.1515/psr-2019-0061] [Reference Citation Analysis]
50 Parvathaneni V, Elbatanony RS, Shukla SK, Kulkarni NS, Kanabar DD, Chauhan G, Ayehunie S, Chen Z, Muth A, Gupta V. Bypassing P-glycoprotein mediated efflux of afatinib by cyclodextrin complexation – Evaluation of intestinal absorption and anti-cancer activity. Journal of Molecular Liquids 2021;327:114866. [DOI: 10.1016/j.molliq.2020.114866] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
51 Swetha KL, Maravajjala KS, Sharma S, Chowdhury R, Roy A. Development of a tumor extracellular pH-responsive nanocarrier by terminal histidine conjugation in a star shaped poly(lactic-co-glycolic acid). European Polymer Journal 2021;147:110337. [DOI: 10.1016/j.eurpolymj.2021.110337] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
52 Goodarzi S, Prunet A, Rossetti F, Bort G, Tillement O, Porcel E, Lacombe S, Wu T, Guerquin-kern J, Delanoë-ayari H, Lux F, Rivière C. Quantifying nanotherapeutics penetration using hydrogel based microsystem as a new 3D in vitro platform.. [DOI: 10.1101/2021.01.17.427020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
53 Schneckenburger H, Richter V. Laser Scanning versus Wide-Field—Choosing the Appropriate Microscope in Life Sciences. Applied Sciences 2021;11:733. [DOI: 10.3390/app11020733] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
54 Komeri R, Syama HP, Preethi GU, Unnikrishnan BS, Shiji R, Archana MG, Mohan D, Tripathi A, Sreelekha TT. Prospects of Cell Immobilization in Cancer Research and Immunotherapy. Immobilization Strategies 2021. [DOI: 10.1007/978-981-15-7998-1_4] [Reference Citation Analysis]
55 Wade SJ, Sahin Z, Piper AK, Talebian S, Aghmesheh M, Foroughi J, Wallace GG, Moulton SE, Vine KL. Dual Delivery of Gemcitabine and Paclitaxel by Wet-Spun Coaxial Fibers Induces Pancreatic Ductal Adenocarcinoma Cell Death, Reduces Tumor Volume, and Sensitizes Cells to Radiation. Adv Healthc Mater 2020;9:e2001115. [PMID: 33000905 DOI: 10.1002/adhm.202001115] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
56 Wang T, Wang L, Wang G, Zhuang Y. Leveraging and manufacturing in vitro multicellular spheroid-based tumor cell model as a preclinical tool for translating dysregulated tumor metabolism into clinical targets and biomarkers. Bioresour Bioprocess 2020;7. [DOI: 10.1186/s40643-020-00325-7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
57 Xu F, Huang X, Wang Y, Zhou S. A Size-Changeable Collagenase-Modified Nanoscavenger for Increasing Penetration and Retention of Nanomedicine in Deep Tumor Tissue. Adv Mater 2020;32:e1906745. [PMID: 32105374 DOI: 10.1002/adma.201906745] [Cited by in Crossref: 73] [Cited by in F6Publishing: 80] [Article Influence: 24.3] [Reference Citation Analysis]
58 Bahcecioglu G, Basara G, Ellis BW, Ren X, Zorlutuna P. Breast cancer models: Engineering the tumor microenvironment. Acta Biomater 2020;106:1-21. [PMID: 32045679 DOI: 10.1016/j.actbio.2020.02.006] [Cited by in Crossref: 43] [Cited by in F6Publishing: 48] [Article Influence: 14.3] [Reference Citation Analysis]
59 Feiner-gracia N, Mares AG, Buzhor M, Rodriguez-trujillo R, Samitier J, Amir RJ, Pujals S, Albertazzi L. Real-time Ratiometric Imaging of Micelles Assembly State in a Microfluidic Cancer-on-a-chip.. [DOI: 10.1101/2020.03.08.978783] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
60 An HJ, Kim HS, Kwon JA, Song J, Choi I. Adjustable and Versatile 3D Tumor Spheroid Culture Platform with Interfacial Elastomeric Wells. ACS Appl Mater Interfaces 2020;12:6924-32. [PMID: 31958950 DOI: 10.1021/acsami.9b21471] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
61 Pires Celeiro S, Baltazar F, Viana-pereira M. 3D culture systems as models for solid tumors and cancer metabolism. Biomaterials for 3D Tumor Modeling 2020. [DOI: 10.1016/b978-0-12-818128-7.00006-x] [Reference Citation Analysis]
62 Abdelhamid A, Lajili S, Elkaibi MA, Ben Salem Y, Abdelhamid A, Muller CD, Majdoub H, Kraiem J, Bouraoui A. Optimized Extraction, Preliminary Characterization and Evaluation of the in Vitro Anticancer Activity of Phlorotannin-Rich Fraction from the Brown Seaweed, Cystoseira sedoides. Journal of Aquatic Food Product Technology 2019;28:892-909. [DOI: 10.1080/10498850.2019.1662865] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
63 Zhang L, Wang Y, Yang D, Huang W, Hao P, Feng S, Appelhans D, Zhang T, Zan X. Shape Effect of Nanoparticles on Tumor Penetration in Monolayers Versus Spheroids. Mol Pharm 2019;16:2902-11. [PMID: 31184906 DOI: 10.1021/acs.molpharmaceut.9b00107] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 4.3] [Reference Citation Analysis]
64 Lazzari G, Nicolas V, Matsusaki M, Akashi M, Couvreur P, Mura S. Multicellular spheroid based on a triple co-culture: A novel 3D model to mimic pancreatic tumor complexity. Acta Biomater 2018;78:296-307. [PMID: 30099198 DOI: 10.1016/j.actbio.2018.08.008] [Cited by in Crossref: 129] [Cited by in F6Publishing: 108] [Article Influence: 25.8] [Reference Citation Analysis]
65 Björnmalm M, Thurecht KJ, Michael M, Scott AM, Caruso F. Bridging Bio-Nano Science and Cancer Nanomedicine. ACS Nano 2017;11:9594-613. [PMID: 28926225 DOI: 10.1021/acsnano.7b04855] [Cited by in Crossref: 232] [Cited by in F6Publishing: 242] [Article Influence: 38.7] [Reference Citation Analysis]