1 |
Wang L, Fan L, Yi K, Jiang Y, Filppula AM, Zhang H. Advances in the delivery systems for oral antibiotics. Biomedical Technology 2023;2:49-57. [DOI: 10.1016/j.bmt.2022.11.010] [Reference Citation Analysis]
|
2 |
Deb J, Kundu A, Garg N, Sarkar U, Chakraborty B. Copper Decorated Graphyne as a Promising Nanocarrier for Cisplatin Anti-cancer Drug: A DFT Study. Applied Surface Science 2023. [DOI: 10.1016/j.apsusc.2023.156885] [Reference Citation Analysis]
|
3 |
Patel RJ, Pandey P, Patel AA, Prajapati BG, Alexander A, Pandya V, Trivedi N, Shah S, Patel V. Ordered mesoporous silica nanocarriers: An innovative paradigm and a promising therapeutic efficient carrier for delivery of drugs. Journal of Drug Delivery Science and Technology 2023. [DOI: 10.1016/j.jddst.2023.104306] [Reference Citation Analysis]
|
4 |
Wijewantha N, Sane S, Eikanger M, Antony RM, Potts RA, Lang L, Rezvani K, Sereda G. Enhancing Anti-Tumorigenic Efficacy of Eugenol in Human Colon Cancer Cells Using Enzyme-Responsive Nanoparticles. Cancers (Basel) 2023;15. [PMID: 36831488 DOI: 10.3390/cancers15041145] [Reference Citation Analysis]
|
5 |
Tollemeto M, Huang Z, Christensen JB, Mørck Nielsen H, Rønholt S. Mucoadhesive Dendrons Conjugated to Mesoporous Silica Nanoparticles as a Drug Delivery Approach for Orally Administered Biopharmaceuticals. ACS Appl Mater Interfaces 2023;15:8798-810. [PMID: 36749788 DOI: 10.1021/acsami.2c16502] [Reference Citation Analysis]
|
6 |
Kanniyappan H, Jose J, Chakraborty S, Ramasamy M, Muthuvijayan V. pH-responsive drug release from positively charged mesoporous silica nanoparticles and their potential for anticancer drug delivery. J Aust Ceram Soc 2023. [DOI: 10.1007/s41779-022-00827-x] [Reference Citation Analysis]
|
7 |
Tripathi S, Siddiqui MH, Kumar A, Vimal A. Nanoparticles: a promising vehicle for the delivery of therapeutic enzymes. Int Nano Lett 2022. [DOI: 10.1007/s40089-022-00391-z] [Reference Citation Analysis]
|
8 |
Mansi K, Kumar R, Narula D, Pandey SK, Kumar V, Singh K. Microwave-Induced CuO Nanorods: A Comparative Approach between Curcumin, Quercetin, and Rutin to Study Their Antioxidant, Antimicrobial, and Anticancer Effects against Normal Skin Cells and Human Breast Cancer Cell Lines MCF-7 and T-47D. ACS Appl Bio Mater 2022;5:5762-78. [PMID: 36417758 DOI: 10.1021/acsabm.2c00769] [Reference Citation Analysis]
|
9 |
Alkhazaleh A, Elfagih S, Chakka LRJ, Armstrong SR, Comnick CL, Qian F, Salem AK, Guymon CA, Haes AJ, Vidal CMP. Development of Proanthocyanidin-Loaded Mesoporous Silica Nanoparticles for Improving Dental Adhesion. Mol Pharm 2022;19:4675-84. [PMID: 36349888 DOI: 10.1021/acs.molpharmaceut.2c00728] [Reference Citation Analysis]
|
10 |
Di Cristo L, Ude VC, Tsiliki G, Tatulli G, Romaldini A, Murphy F, Wohlleben W, Oomen AG, Pompa PP, Arts J, Stone V, Sabella S. Grouping of orally ingested silica nanomaterials via use of an integrated approach to testing and assessment to streamline risk assessment. Part Fibre Toxicol 2022;19:68. [PMID: 36461106 DOI: 10.1186/s12989-022-00508-4] [Reference Citation Analysis]
|
11 |
Ebrahimi SM, Karamat Iradmousa M, Rashed M, Fattahi Y, Hosseinzadeh Ardakani Y, Bahadorikhalili S, Bafkary R, Erfan M, Dinarvand R, Mahboubi A. Enzyme and Thermo Dual-stimuli Responsive DOX Carrier Based on PNIPAM Conjugated Mesoporous Silica. Iran J Pharm Res 2022;21:e130474. [PMID: 36915404 DOI: 10.5812/ijpr-130474] [Reference Citation Analysis]
|
12 |
Takeuchi Y, Obata S, Ohkura K, Nishina Y. In Situ Synthesis of Ultrathin Amorphous Silica Nanosheet with Large Specific Surface Area on Graphene Oxide. ACS Materials Lett 2022. [DOI: 10.1021/acsmaterialslett.2c00805] [Reference Citation Analysis]
|
13 |
Ma X, Gong H, Liu Y, Liu Y, Ogino K, Xing R, Yan X. Orally administered covalently-assembled antioxidative peptide nanoparticles for inflammatory bowel disease therapy. Journal of Colloid and Interface Science 2022;626:156-66. [DOI: 10.1016/j.jcis.2022.06.088] [Reference Citation Analysis]
|
14 |
Peixoto FB, Raimundini Aranha AC, Nardino DA, Defendi RO, Suzuki RM. Extraction and encapsulation of bioactive compounds: A review. J Food Process Engineering. [DOI: 10.1111/jfpe.14167] [Reference Citation Analysis]
|
15 |
Guo Y, Cai L, Li X, Lin K, Wu X, Wang Z, Yu D, Li J. Contribution of molecular chiral mesoporous silica nanoparticles in delivering drugs with chiral recognition ability. Materials Science and Engineering: B 2022;284:115864. [DOI: 10.1016/j.mseb.2022.115864] [Reference Citation Analysis]
|
16 |
Kong J, Park SS, Ha C. pH-Sensitive Polyacrylic Acid-Gated Mesoporous Silica Nanocarrier Incorporated with Calcium Ions for Controlled Drug Release. Materials 2022;15:5926. [DOI: 10.3390/ma15175926] [Reference Citation Analysis]
|
17 |
Galić E, Radić K, Golub N, Vitali Čepo D, Kalčec N, Vrček E, Vinković T. Utilization of Olive Pomace in Green Synthesis of Selenium Nanoparticles: Physico-Chemical Characterization, Bioaccessibility and Biocompatibility. IJMS 2022;23:9128. [DOI: 10.3390/ijms23169128] [Reference Citation Analysis]
|
18 |
Sargazi S, Laraib U, Barani M, Rahdar A, Fatima I, Bilal M, Pandey S, Sharma RK, Kyzas GZ. Recent trends in mesoporous silica nanoparticles of rode-like morphology for cancer theranostics: A review. Journal of Molecular Structure 2022;1261:132922. [DOI: 10.1016/j.molstruc.2022.132922] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
|
19 |
Mohammed Y, Holmes A, Kwok PCL, Kumeria T, Namjoshi S, Imran M, Matteucci L, Ali M, Tai W, Benson HAE, Roberts MS. Advances and future perspectives in epithelial drug delivery. Adv Drug Deliv Rev 2022;186:114293. [PMID: 35483435 DOI: 10.1016/j.addr.2022.114293] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
20 |
Meng F, Ye X, Chen W, Qi Y, Guo Z, Liang X. Preparation of monodispersed mesoporous silica using imidazolium ionic liquids under a neutral condition. J Porous Mater. [DOI: 10.1007/s10934-022-01256-8] [Reference Citation Analysis]
|
21 |
Fahmy HM, Mohamed ER, Hussein AA, Khadrawy YA, Ahmed NA. Evaluation of the therapeutic effect of mesoporous silica nanoparticles loaded with Gallic acid on reserpine-induced depression in Wistar rats. BMC Pharmacol Toxicol 2022;23:40. [PMID: 35705968 DOI: 10.1186/s40360-022-00579-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
22 |
Choudante PC, Nethi SK, Díaz-García D, Prashar S, Misra S, Gómez-Ruiz S, Patra CR. Tin-loaded mesoporous silica nanoparticles: Antineoplastic properties and genotoxicity assessment. Biomater Adv 2022;137:212819. [PMID: 35929256 DOI: 10.1016/j.bioadv.2022.212819] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
23 |
Higino T, França R. Drug-delivery nanoparticles for bone-tissue and dental applications. Biomed Phys Eng Express 2022;8. [PMID: 35439740 DOI: 10.1088/2057-1976/ac682c] [Reference Citation Analysis]
|
24 |
Gao R, Qiu Q, Dong W. Visual Monitoring of Levofloxacin in Biofluids by Europium(III)-Functionalized Mesoporous Silica Nanoparticles. ACS Appl Nano Mater 2022;5:5631-9. [DOI: 10.1021/acsanm.2c00607] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
25 |
Kazemzadeh P, Sayadi K, Toolabi A, Sayadi J, Zeraati M, Chauhan NPS, Sargazi G. Structure-Property Relationship for Different Mesoporous Silica Nanoparticles and its Drug Delivery Applications: A Review. Front Chem 2022;10:823785. [DOI: 10.3389/fchem.2022.823785] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
|
26 |
Sreeharsha N, Philip M, Krishna SS, Viswanad V, Sahu RK, Shiroorkar PN, Aasif AH, Fattepur S, Asdaq SMB, Nair AB, Attimarad M, Venugopala KN. Multifunctional Mesoporous Silica Nanoparticles for Oral Drug Delivery. Coatings 2022;12:358. [DOI: 10.3390/coatings12030358] [Reference Citation Analysis]
|
27 |
Ye Z, Wang S, Xu Y, Zhang J, Yan W. Enhanced Inhibition of Drug-Resistant Escherichia coli by Tetracycline Hydrochloride-Loaded Multipore Mesoporous Silica Nanoparticles. Molecules 2022;27:1218. [DOI: 10.3390/molecules27041218] [Reference Citation Analysis]
|
28 |
Zhang P, Li Y, Tang W, Zhao J, Jing L, Mchugh KJ. Theranostic nanoparticles with disease-specific administration strategies. Nano Today 2022;42:101335. [DOI: 10.1016/j.nantod.2021.101335] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 16.0] [Reference Citation Analysis]
|
29 |
Kanwal F, Ma M, Rehman MFU, Khan F, Elizur SE, Batool AI, Wang CC, Tabassum T, Lu C, Wang Y. Aspirin Repurposing in Folate-Decorated Nanoparticles: Another Way to Target Breast Cancer. Front Mol Biosci 2022;8:788279. [DOI: 10.3389/fmolb.2021.788279] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
30 |
Feng J, Sun L, Chen W, Wei N, Hou C, Chen Z, Meng F, Cao H. Synthesis, antifungal evaluation, and safety assessment of mesoporous silica nanoparticles loaded with prothioconazole against crop pathogens. Environ Sci : Nano 2022;9:2548-58. [DOI: 10.1039/d2en00226d] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
31 |
Mao Y, Han M, Chen C, Wang X, Han J, Gao Y, Wang S. A biomimetic nanocomposite made of a ginger-derived exosome and an inorganic framework for high-performance delivery of oral antibodies. Nanoscale 2021;13:20157-69. [PMID: 34846415 DOI: 10.1039/d1nr06015e] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
|
32 |
Zhao BR, Li B, Shi X. Molecular simulation of the diffusion mechanism of nanorods in cross-linked networks. Nanoscale 2021;13:17404-16. [PMID: 34647122 DOI: 10.1039/d1nr05368j] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
33 |
Iranpour S, Bahrami AR, Nekooei S, Sh Saljooghi A, Matin MM. Improving anti-cancer drug delivery performance of magnetic mesoporous silica nanocarriers for more efficient colorectal cancer therapy. J Nanobiotechnology 2021;19:314. [PMID: 34641857 DOI: 10.1186/s12951-021-01056-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
34 |
Chevallier-boutell IJ, Monti GA, Corti H, Olmos-asar JA, Franzoni MB, Acosta RH. Non-negligible interactions of alkanes with silica mesopores affect self-diffusivity: Insights from first-principles calculations. Microporous and Mesoporous Materials 2021;326:111315. [DOI: 10.1016/j.micromeso.2021.111315] [Reference Citation Analysis]
|
35 |
Moroni I, Garcia-Bennett AE. Effects of Absorption Kinetics on the Catabolism of Melatonin Released from CAP-Coated Mesoporous Silica Drug Delivery Vehicles. Pharmaceutics 2021;13:1436. [PMID: 34575512 DOI: 10.3390/pharmaceutics13091436] [Reference Citation Analysis]
|
36 |
Liu R, Zhou B, Zhang H, Chen Y, Fan C, Zhang T, Qin T, Han J, Zhang S, Chen X, Shen W, Chang J, Yin Z. Inhibition of ROS activity by controlled release of proanthocyanidins from mesoporous silica nanocomposites effectively ameliorates heterotopic ossification in tendon. Chemical Engineering Journal 2021;420:129415. [DOI: 10.1016/j.cej.2021.129415] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
37 |
Zhu Q, Chen Z, Paul PK, Lu Y, Wu W, Qi J. Oral delivery of proteins and peptides: Challenges, status quo and future perspectives. Acta Pharm Sin B 2021;11:2416-48. [PMID: 34522593 DOI: 10.1016/j.apsb.2021.04.001] [Cited by in Crossref: 28] [Cited by in F6Publishing: 18] [Article Influence: 14.0] [Reference Citation Analysis]
|
38 |
Zhang GL, Wang CF, Qian C, Ji YX, Wang YZ. Role and mechanism of neural stem cells of the subventricular zone in glioblastoma. World J Stem Cells 2021;13:877-93. [PMID: 34367482 DOI: 10.4252/wjsc.v13.i7.877] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 7.5] [Reference Citation Analysis]
|
39 |
Zhou Z. Co-drug delivery of regorafenib and cisplatin with amphiphilic copolymer nanoparticles: enhanced in vivo antitumor cancer therapy in nursing care. Drug Deliv 2020;27:1319-28. [PMID: 32936009 DOI: 10.1080/10717544.2020.1815897] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
|
40 |
Rizzi F, Castaldo R, Latronico T, Lasala P, Gentile G, Lavorgna M, Striccoli M, Agostiano A, Comparelli R, Depalo N, Curri ML, Fanizza E. High Surface Area Mesoporous Silica Nanoparticles with Tunable Size in the Sub-Micrometer Regime: Insights on the Size and Porosity Control Mechanisms. Molecules 2021;26:4247. [PMID: 34299522 DOI: 10.3390/molecules26144247] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
|
41 |
Thananukul K, Kaewsaneha C, Opaprakasit P, Lebaz N, Errachid A, Elaissari A. Smart gating porous particles as new carriers for drug delivery. Adv Drug Deliv Rev 2021;174:425-46. [PMID: 33930490 DOI: 10.1016/j.addr.2021.04.023] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
|
42 |
Gao Y, Zhang Y, Li J, Zhang H, Li X. Precise engineering of nanoassembled Corilagin small molecule into supramolecular nanoparticles for the treatment and care against cervical carcinoma. Process Biochemistry 2021;106:103-111. [DOI: 10.1016/j.procbio.2021.04.001] [Reference Citation Analysis]
|
43 |
Poyatos-Racionero E, González-Álvarez I, Sánchez-Moreno P, Sitia L, Gatto F, Pompa PP, Aznar E, González-Álvarez M, Martínez-Máñez R, Marcos MD, Bernardos A. Lactose-Gated Mesoporous Silica Particles for Intestinal Controlled Delivery of Essential Oil Components: An In Vitro and In Vivo Study. Pharmaceutics 2021;13:982. [PMID: 34209675 DOI: 10.3390/pharmaceutics13070982] [Reference Citation Analysis]
|
44 |
Hochstrasser J, Juère E, Kleitz F, Wang W, Kübel C, Tallarek U. Insights into the intraparticle morphology of dendritic mesoporous silica nanoparticles from electron tomographic reconstructions. J Colloid Interface Sci 2021;592:296-309. [PMID: 33676192 DOI: 10.1016/j.jcis.2021.02.069] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
45 |
Mundaca-Uribe R, Karshalev E, Esteban-Fernández de Ávila B, Wei X, Nguyen B, Litvan I, Fang RH, Zhang L, Wang J. A Microstirring Pill Enhances Bioavailability of Orally Administered Drugs. Adv Sci (Weinh) 2021;8:2100389. [PMID: 34194949 DOI: 10.1002/advs.202100389] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
46 |
Shi L, Devanathadesikan Seshadri V, Mustafa Poyil M, Karrar Alsharif MH, Kaveriyappan Govindarajan R, Ock Kim Y, Won Na S, Kim H, Gabr GA, Mohammed Zaki R. Therapeutic potential of galactosamine-modified hollow silica nanoparticle for improved drug targeting to liver cancer. Journal of King Saud University - Science 2021;33:101434. [DOI: 10.1016/j.jksus.2021.101434] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
47 |
Sharma S, Singh UP, Singh A. Synthesis of MCM-41 supported cobalt (II) complex for the formation of polyhydroquinoline derivatives. Polyhedron 2021;199:115102. [DOI: 10.1016/j.poly.2021.115102] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
|
48 |
Ly KL, Hu P, Pham LHP, Luo X. Flow-assembled chitosan membranes in microfluidics: recent advances and applications. J Mater Chem B 2021;9:3258-83. [PMID: 33725061 DOI: 10.1039/d1tb00045d] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
49 |
Choi G, Rejinold NS, Piao H, Choy JH. Inorganic-inorganic nanohybrids for drug delivery, imaging and photo-therapy: recent developments and future scope. Chem Sci 2021;12:5044-63. [PMID: 34168768 DOI: 10.1039/d0sc06724e] [Cited by in Crossref: 20] [Cited by in F6Publishing: 24] [Article Influence: 10.0] [Reference Citation Analysis]
|
50 |
Pouroutzidou GK, Liverani L, Theocharidou A, Tsamesidis I, Lazaridou M, Christodoulou E, Beketova A, Pappa C, Triantafyllidis KS, Anastasiou AD, Papadopoulou L, Bikiaris DN, Boccaccini AR, Kontonasaki E. Synthesis and Characterization of Mesoporous Mg- and Sr-Doped Nanoparticles for Moxifloxacin Drug Delivery in Promising Tissue Engineering Applications. Int J Mol Sci 2021;22:E577. [PMID: 33430065 DOI: 10.3390/ijms22020577] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
|
51 |
Hines E, Cheng D, Wu W, Yu M, Xu C, Song H, Yu C. Rambutan-like silica nanoparticles at tailored particle sizes for plasmid DNA delivery. J Mater Sci 2021;56:5830-44. [DOI: 10.1007/s10853-020-05660-w] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
|
52 |
Malafatti JOD, Federal University of São Carlos, Chemistry Department, Rod. Washington Luís, Km 235-C. P.676, zip code: 13.565-905, São Carlos-SP, Brazil, de Oliveira Ruellas TM, Meirelles MR, Thomazi AC, Renda CG, Paris EC, Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, XV de Novembro St., 1452, zip code: 13560-970, São Carlos, SP, Brazil, Federal University of São Carlos, Department of Materials Engineering, Rod. Washington Luís, Km 235-C. P.676, zip code: 13.565-905, São Carlos-SP, Brazil, Institute of Chemistry, University of São Paulo, Av. Trab. São Carlense, 400, zip code: 13566-590, São Carlos-SP, Brazil. Nanocarriers of Eu<sup>3+</sup> doped silica nanoparticles modified by APTES for luminescent monitoring of cloxacillin. AIMSMATES 2021;8:760-775. [DOI: 10.3934/matersci.2021046] [Reference Citation Analysis]
|
53 |
Yao P, Zou A, Tian Z, Meng W, Fang X, Wu T, Cheng J. Construction and characterization of a temperature-responsive nanocarrier for imidacloprid based on mesoporous silica nanoparticles. Colloids Surf B Biointerfaces 2021;198:111464. [PMID: 33296822 DOI: 10.1016/j.colsurfb.2020.111464] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 4.3] [Reference Citation Analysis]
|
54 |
Wu ZL, Zhao J, Xu R. Recent Advances in Oral Nano-Antibiotics for Bacterial Infection Therapy. Int J Nanomedicine 2020;15:9587-610. [PMID: 33293809 DOI: 10.2147/IJN.S279652] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
|
55 |
Baeckmann C, Kählig H, Lindén M, Kleitz F. Irreversible Adsorption of Serum Proteins onto Nanoparticles. Part Part Syst Charact 2021;38:2000273. [DOI: 10.1002/ppsc.202000273] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
|
56 |
Guillet-Nicolas R, Wainer M, Marcoux L, Thommes M, Kleitz F. Exploring the confinement of polymer nanolayers into ordered mesoporous silica using advanced gas physisorption. J Colloid Interface Sci 2020;579:489-507. [PMID: 32622098 DOI: 10.1016/j.jcis.2020.05.103] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
|
57 |
Xiao Y, Gao Y, Li F, Deng Z. Combinational dual drug delivery system to enhance the care and treatment of gastric cancer patients. Drug Deliv 2020;27:1491-500. [PMID: 33100060 DOI: 10.1080/10717544.2020.1822460] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
|
58 |
Gallo M, Giudice F, Banchero M, Ronchetti S, Manna L, Onida B. A mesostructured hybrid CTA–silica carrier for curcumin delivery. J Sol-Gel Sci Technol 2020;96:236-246. [DOI: 10.1007/s10971-020-05374-0] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
59 |
Giménez G, Ybarra G, Soler-illia GJAA. Preparation of mesoporous silica thin films at low temperature: a comparison of mild structure consolidation and template extraction procedures. J Sol-Gel Sci Technol 2020;96:287-96. [DOI: 10.1007/s10971-020-05410-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
|
60 |
Wang Y, Pi C, Feng X, Hou Y, Zhao L, Wei Y. The Influence of Nanoparticle Properties on Oral Bioavailability of Drugs. Int J Nanomedicine 2020;15:6295-310. [PMID: 32943863 DOI: 10.2147/IJN.S257269] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 8.3] [Reference Citation Analysis]
|
61 |
M Ways TM, Ng KW, Lau WM, Khutoryanskiy VV. Silica Nanoparticles in Transmucosal Drug Delivery. Pharmaceutics 2020;12:E751. [PMID: 32785148 DOI: 10.3390/pharmaceutics12080751] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
|
62 |
Yadav R, Baskaran T, Kaiprathu A, Ahmed M, Bhosale SV, Joseph S, Al‐muhtaseb AH, Singh G, Sakthivel A, Vinu A. Recent Advances in the Preparation and Applications of Organo‐functionalized Porous Materials. Chem Asian J 2020;15:2588-621. [DOI: 10.1002/asia.202000651] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 7.7] [Reference Citation Analysis]
|
63 |
Singh J, Boddula R, Digambar Jirimali H. Utilization of secondary agricultural products for the preparation of value added silica materials and their important applications: a review. J Sol-Gel Sci Technol 2020;96:15-33. [DOI: 10.1007/s10971-020-05353-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
|
64 |
Naghavi F, Morsali A, Bozorgmehr MR, Beyramabadi SA. Quantum molecular study of mesoporous silica nanoparticle as a delivery system for troxacitabine anticancer drug. Journal of Molecular Liquids 2020;310:113155. [DOI: 10.1016/j.molliq.2020.113155] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
|
65 |
Neri G, Corsaro C, Fazio E. Plasmon-Enhanced Controlled Drug Release from Ag-PMA Capsules. Molecules 2020;25:E2267. [PMID: 32403460 DOI: 10.3390/molecules25092267] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
|
66 |
Juère E, Caillard R, Marko D, Del Favero G, Kleitz F. Smart Protein-Based Formulation of Dendritic Mesoporous Silica Nanoparticles: Toward Oral Delivery of Insulin. Chemistry 2020;26:5195-9. [PMID: 32057143 DOI: 10.1002/chem.202000773] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
|
67 |
Arruebo M, Sebastian V. Batch and microfluidic reactors in the synthesis of enteric drug carriers. Nanotechnology for Oral Drug Delivery 2020. [DOI: 10.1016/b978-0-12-818038-9.00008-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
68 |
Sharma D, Hussain CM. Smart nanomaterials in pharmaceutical analysis. Arabian Journal of Chemistry 2020;13:3319-43. [DOI: 10.1016/j.arabjc.2018.11.007] [Cited by in Crossref: 40] [Cited by in F6Publishing: 13] [Article Influence: 13.3] [Reference Citation Analysis]
|
69 |
Günday Türeli N, Türeli AE. Industrial perspectives and future of oral drug delivery. Nanotechnology for Oral Drug Delivery 2020. [DOI: 10.1016/b978-0-12-818038-9.00016-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
70 |
Ullah I, Ali E, Fakhar-ud-din. Bioavailability of Antibiotics and Their Toxicity. Emerging Contaminants and Associated Treatment Technologies 2020. [DOI: 10.1007/978-3-030-40422-2_10] [Reference Citation Analysis]
|
71 |
Meher MK, Poluri KM. pH-Sensitive Nanomaterials for Smart Release of Drugs. Intelligent Nanomaterials for Drug Delivery Applications 2020. [DOI: 10.1016/b978-0-12-817830-0.00002-3] [Reference Citation Analysis]
|
72 |
Rajiv P, Chen X, Li H, Rehaman S, Vanathi P, Abd-elsalam KA, Li X. Silica-based nanosystems: Their role in sustainable agriculture. Multifunctional Hybrid Nanomaterials for Sustainable Agri-Food and Ecosystems 2020. [DOI: 10.1016/b978-0-12-821354-4.00018-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
|
73 |
Ju Z, Ren G, Zhou M, Jing J, Xiang J, Liu X, Huang R, Zhou P. Exposure to a combination of silica nanoparticles and low-dose radiation aggravates lung fibrosis in mice via gut microbiota modulation. Environ Sci : Nano 2020;7:3979-98. [DOI: 10.1039/d0en01021a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
74 |
Shen L, Guo L, Chen S, Wei A, Osaka A, Chen W. Self-assembly of silica spheres on silk fibroin spheres for synthesis of porous hollow silica spheres and their in vitro biocompatibility and drug delivery property. Journal of Non-Crystalline Solids 2019;522:119557. [DOI: 10.1016/j.jnoncrysol.2019.119557] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
75 |
Hadipour Moghaddam SP, Mohammadpour R, Ghandehari H. In vitro and in vivo evaluation of degradation, toxicity, biodistribution, and clearance of silica nanoparticles as a function of size, porosity, density, and composition. J Control Release 2019;311-312:1-15. [PMID: 31465825 DOI: 10.1016/j.jconrel.2019.08.028] [Cited by in Crossref: 75] [Cited by in F6Publishing: 71] [Article Influence: 18.8] [Reference Citation Analysis]
|
76 |
Abeer MM, Meka AK, Pujara N, Kumeria T, Strounina E, Nunes R, Costa A, Sarmento B, Hasnain SZ, Ross BP, Popat A. Rationally Designed Dendritic Silica Nanoparticles for Oral Delivery of Exenatide. Pharmaceutics 2019;11:E418. [PMID: 31430872 DOI: 10.3390/pharmaceutics11080418] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 8.8] [Reference Citation Analysis]
|
77 |
Patra P, Soni SR, Seesala VS, Dhara S, Ghosh A, Pal S. Synthesis of a novel copolymer using glycogen and poly(lactide) as a carrier of dual drugs—ornidazole and ofloxacin. J Polym Sci Part A: Polym Chem 2019;57:1697-703. [DOI: 10.1002/pola.29434] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
78 |
Wu ZY, Lee CC, Lin HM. Hyaluronidase-Responsive Mesoporous Silica Nanoparticles with Dual-Imaging and Dual-Target Function. Cancers (Basel) 2019;11:E697. [PMID: 31137518 DOI: 10.3390/cancers11050697] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
|
79 |
Alberti S, Steinberg PY, Giménez G, Amenitsch H, Ybarra G, Azzaroni O, Angelomé PC, Soler-illia GJAA. Chemical Stability of Mesoporous Oxide Thin Film Electrodes under Electrochemical Cycling: from Dissolution to Stabilization. Langmuir 2019;35:6279-87. [DOI: 10.1021/acs.langmuir.9b00224] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 4.5] [Reference Citation Analysis]
|
80 |
Shan Y, Cao L, Xu C, Zhao P, Cao C, Li F, Xu B, Huang Q. Sulfonate-Functionalized Mesoporous Silica Nanoparticles as Carriers for Controlled Herbicide Diquat Dibromide Release through Electrostatic Interaction. Int J Mol Sci 2019;20:E1330. [PMID: 30884792 DOI: 10.3390/ijms20061330] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 6.3] [Reference Citation Analysis]
|
81 |
Kretzmann JA, Luther DC, Norret M, Rotello VM, Iyer KS. Targeted Therapeutic Genome Engineering: Opportunities and Bottlenecks in Medical Translation. ACS Symposium Series 2019. [DOI: 10.1021/bk-2019-1309.ch001] [Reference Citation Analysis]
|
82 |
Su H, Wang Y, Liu S, Wang Y, Liu Q, Liu G, Chen Q. Emerging transporter-targeted nanoparticulate drug delivery systems. Acta Pharm Sin B 2019;9:49-58. [PMID: 30766777 DOI: 10.1016/j.apsb.2018.10.005] [Cited by in Crossref: 33] [Cited by in F6Publishing: 36] [Article Influence: 8.3] [Reference Citation Analysis]
|
83 |
von Baeckmann C, Guillet-Nicolas R, Renfer D, Kählig H, Kleitz F. A Toolbox for the Synthesis of Multifunctionalized Mesoporous Silica Nanoparticles for Biomedical Applications. ACS Omega 2018;3:17496-510. [PMID: 31458354 DOI: 10.1021/acsomega.8b02784] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 7.2] [Reference Citation Analysis]
|
84 |
Meka AK, Jenkins LJ, Dàvalos-Salas M, Pujara N, Wong KY, Kumeria T, Mariadason JM, Popat A. Enhanced Solubility, Permeability and Anticancer Activity of Vorinostat Using Tailored Mesoporous Silica Nanoparticles. Pharmaceutics 2018;10:E283. [PMID: 30562958 DOI: 10.3390/pharmaceutics10040283] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 6.8] [Reference Citation Analysis]
|
85 |
Gawas RU, Anand S, Ghosh BK, Shivbhagwan P, Choudhary K, Ghosh NN, Banerjee M, Chatterjee A. Development of a Water-Dispersible SBA-15-Benzothiazole-Derived Fluorescence Nanosensor by Physisorption and Its Use in Organic-Solvent-Free Detection of Perborate and Hydrazine. ChemistrySelect 2018;3:10585-92. [DOI: 10.1002/slct.201802328] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
|
86 |
Ferri D, Gaviña P, Parra M, Costero AM, El Haskouri J, Amorós P, Merino V, Teruel AH, Sancenón F, Martínez-Máñez R. Mesoporous silica microparticles gated with a bulky azo derivative for the controlled release of dyes/drugs in colon. R Soc Open Sci 2018;5:180873. [PMID: 30225077 DOI: 10.1098/rsos.180873] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
|
87 |
Amara RO, Ramadan AA, El-Moslemany RM, Eissa MM, El-Azzouni MZ, El-Khordagui LK. Praziquantel-lipid nanocapsules: an oral nanotherapeutic with potential Schistosoma mansoni tegumental targeting. Int J Nanomedicine 2018;13:4493-505. [PMID: 30122922 DOI: 10.2147/IJN.S167285] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 5.4] [Reference Citation Analysis]
|
88 |
Suttiruengwong S, Pivsa-art S, Chareonpanich M. Hydrophilic and Hydrophobic Mesoporous Silica Derived from Rice Husk Ash as a Potential Drug Carrier. Materials 2018;11:1142. [DOI: 10.3390/ma11071142] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
|
89 |
Xu J, Wang X, Teng Z, Lu G, He N, Wang Z. Multifunctional Yolk–Shell Mesoporous Silica Obtained via Selectively Etching the Shell: A Therapeutic Nanoplatform for Cancer Therapy. ACS Appl Mater Interfaces 2018;10:24440-9. [DOI: 10.1021/acsami.8b08574] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
|
90 |
Du X, Kleitz F, Li X, Huang H, Zhang X, Qiao S. Disulfide‐Bridged Organosilica Frameworks: Designed, Synthesis, Redox‐Triggered Biodegradation, and Nanobiomedical Applications. Adv Funct Mater 2018;28:1707325. [DOI: 10.1002/adfm.201707325] [Cited by in Crossref: 111] [Cited by in F6Publishing: 114] [Article Influence: 22.2] [Reference Citation Analysis]
|
91 |
Croissant JG, Zink JI, Raehm L, Durand JO. Two-Photon-Excited Silica and Organosilica Nanoparticles for Spatiotemporal Cancer Treatment. Adv Healthc Mater 2018;7:e1701248. [PMID: 29345434 DOI: 10.1002/adhm.201701248] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 6.2] [Reference Citation Analysis]
|
92 |
Akiba U, Minaki D, Anzai JI. Host-Guest Chemistry in Layer-by-Layer Assemblies Containing Calix[n]arenes and Cucurbit[n]urils: A Review. Polymers (Basel) 2018;10:E130. [PMID: 30966166 DOI: 10.3390/polym10020130] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
|