BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wen J, Yang K, Liu F, Li H, Xu Y, Sun S. Diverse gatekeepers for mesoporous silica nanoparticle based drug delivery systems. Chem Soc Rev 2017;46:6024-45. [DOI: 10.1039/c7cs00219j] [Cited by in Crossref: 296] [Cited by in F6Publishing: 312] [Article Influence: 59.2] [Reference Citation Analysis]
Number Citing Articles
1 Yazdi MK, Zarrintaj P, Ganjali MR, Salehnia F, Rezapour M, Seidi F, Saeb MR. Grafted polysaccharides in drug delivery. Tailor-Made Polysaccharides in Drug Delivery 2023. [DOI: 10.1016/b978-0-12-821286-8.00007-0] [Reference Citation Analysis]
2 Yi W, Xiao P, Liu X, Zhao Z, Sun X, Wang J, Zhou L, Wang G, Cao H, Wang D, Li Y. Recent advances in developing active targeting and multi-functional drug delivery systems via bioorthogonal chemistry. Sig Transduct Target Ther 2022;7:386. [DOI: 10.1038/s41392-022-01250-1] [Reference Citation Analysis]
3 Yadav S, Choudhary N, Ranjan Dash M, Ranjan Paital A. High surface area dendritic silica pairing with anthraquinone derivative: A promising single platform for dual applications of detection and remediation of nitroaromatics and copper ion. Chemical Engineering Journal 2022;450:138042. [DOI: 10.1016/j.cej.2022.138042] [Reference Citation Analysis]
4 Lee J, Kim J, Kim C. Triggered drug release of surface cyclic peptide gatekeepers with endothelial cell targeting sequence conjugated to mesoporous nanocontainers. Materials Letters 2022;327:133061. [DOI: 10.1016/j.matlet.2022.133061] [Reference Citation Analysis]
5 Choi HW, Lim JH, Kang T, Chung BG. Antioxidant, Enzyme, and H2O2-Triggered Melanoma Targeted Mesoporous Organo-Silica Nanocomposites for Synergistic Cancer Therapy. Antioxidants 2022;11:2137. [DOI: 10.3390/antiox11112137] [Reference Citation Analysis]
6 Liu Y, Zhu L, Jin S, Wang Y, Niu Y, Yu M, Li Z, Chen L, Wu X, Ding C, Wu T, Shi X, Zhang Y, Luo D. Parishin A-loaded Mesoporous Silica Nanoparticles Modulate Macrophage Polarization to Attenuate Tendinopathy.. [DOI: 10.21203/rs.3.rs-2111210/v1] [Reference Citation Analysis]
7 Wang M, Ma X, Wang G, Song Y, Zhang M, Mai Z, Zhou B, Ye Y, Xia W. Targeting UBR5 in hepatocellular carcinoma cells and precise treatment via echinacoside nanodelivery. Cell Mol Biol Lett 2022;27:92. [PMID: 36224534 DOI: 10.1186/s11658-022-00394-w] [Reference Citation Analysis]
8 Bao J, Tu H, Li J, Dong Y, Dang L, Yurievna KE, Zhang F, Xu L. Interfacial engineered iron oxide nanoring for T2-weighted magnetic resonance imaging-guided magnetothermal-chemotherapy. Front Bioeng Biotechnol 2022;10:1005719. [DOI: 10.3389/fbioe.2022.1005719] [Reference Citation Analysis]
9 Kalyane D, Choudhary D, Polaka S, Goykar H, Karanwad T, Rajpoot K, Kumar Tekade R. Reactive oxygen nano-generators for cancer therapy. Progress in Materials Science 2022;130:100974. [DOI: 10.1016/j.pmatsci.2022.100974] [Reference Citation Analysis]
10 Balakrishnan P, Gopi S. Highly efficient microencapsulation of phytonutrients by fractioned cellulose using biopolymer complexation technology. Journal of Complementary and Integrative Medicine 2022;19:607-618. [DOI: 10.1515/jcim-2022-0074] [Reference Citation Analysis]
11 Farjadian F, Ghasemi S, Akbarian M, Hoseini-ghahfarokhi M, Moghoofei M, Doroudian M. Physically stimulus-responsive nanoparticles for therapy and diagnosis. Front Chem 2022;10:952675. [DOI: 10.3389/fchem.2022.952675] [Reference Citation Analysis]
12 Zhang L, Liu Y, Huang H, Xie H, Zhang B, Xia W, Guo B. Multifunctional nanotheranostics for near infrared optical imaging-guided treatment of brain tumors. Adv Drug Deliv Rev 2022;190:114536. [PMID: 36108792 DOI: 10.1016/j.addr.2022.114536] [Reference Citation Analysis]
13 Zhao D, Wei Y, Jin Q, Yang N, Yang Y, Wang D. PEG‐Functionalized Hollow Multishelled Structures with On‐Off Switch and Rate‐Regulation for Controllable Antimicrobial Release. Angew Chem Int Ed 2022;61. [DOI: 10.1002/anie.202206807] [Reference Citation Analysis]
14 Sarkar MM, Mathur P, Mitsui T, Roy S. A review on functionalized silica nanoparticle amendment on plant growth and development under stress. Plant Growth Regul. [DOI: 10.1007/s10725-022-00891-0] [Reference Citation Analysis]
15 Chen Z, Yue Z, Wang R, Yang K, Li S. Nanomaterials: A powerful tool for tumor immunotherapy. Front Immunol 2022;13:979469. [DOI: 10.3389/fimmu.2022.979469] [Reference Citation Analysis]
16 Yang L, Peng J, Shi A, Wang X, Li J, Su Y, Yin K, Zhao L, Zhao Y. Myocardium-Targeted Micelle Nanomedicine That Salvages the Heart from Ischemia/Reperfusion Injury. ACS Appl Mater Interfaces 2022. [PMID: 35973832 DOI: 10.1021/acsami.2c11117] [Reference Citation Analysis]
17 Zhao Z, Liu J, Xi X, Wu Y, Zhang J. Synthesis of Cellular Silica Using Microbubbles as Templates. Nanomaterials 2022;12:2794. [DOI: 10.3390/nano12162794] [Reference Citation Analysis]
18 Ashrafizadeh M, Aghamiri S, Tan SC, Zarrabi A, Sharifi E, Rabiee N, Kadumudi FB, Pirouz AD, Delfi M, Byrappa K, Thakur VK, Sharath Kumar KS, Girish YR, Zandsalimi F, Zare EN, Orive G, Tay F, Hushmandi K, Kumar AP, Karaman C, Karimi-maleh H, Mostafavi E, Makvandi P, Wang Y. Nanotechnological Approaches in Prostate Cancer Therapy: Integration of engineering and biology. Nano Today 2022;45:101532. [DOI: 10.1016/j.nantod.2022.101532] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
19 Sun Y, Han Y, Dou Y, Gong X, Wang H, Yu X, Wang Q, Wang Y, Dai Y, Ye F, Jin W, Zhang H. Polymeric coating lubricates nanocontainers to escape macrophage uptake for bioreceptor recognition. Bioactive Materials 2022;14:120-33. [DOI: 10.1016/j.bioactmat.2021.12.035] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
20 Yi M, Nie Y, Zhang C, Shen B, Wang F. Application of Mesoporous Silica Nanoparticle-Chitosan-Loaded BMP-2 in the Repair of Bone Defect in Chronic Osteomyelitis. Journal of Immunology Research 2022;2022:1-11. [DOI: 10.1155/2022/4450196] [Reference Citation Analysis]
21 Lee J, Kim K, Kim C. Mesoporous nanocarriers with cyclic peptide gatekeeper containing N-cadherin binding sequence for stimulus-responsive drug release. Chem Pap . [DOI: 10.1007/s11696-022-02367-x] [Reference Citation Analysis]
22 Moritz M, Geszke-Moritz M. Mesoporous Materials as Elements of Modern Drug Delivery Systems for Anti-Inflammatory Agents: A Review of Recent Achievements. Pharmaceutics 2022;14:1542. [PMID: 35893798 DOI: 10.3390/pharmaceutics14081542] [Reference Citation Analysis]
23 Shang Y, Du J, Wang B, Lu P, Zhao Y, Yuan J. Preparation of MSNs@Keratin as pH/GSH dual responsive drug delivery system. Journal of Biomaterials Science, Polymer Edition 2022;33:1369-1382. [DOI: 10.1080/09205063.2022.2056940] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Li B, Zhao M, Lin J, Huang P, Chen X. Management of fluorescent organic/inorganic nanohybrids for biomedical applications in the NIR-II region. Chem Soc Rev 2022. [PMID: 35861173 DOI: 10.1039/d2cs00131d] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
25 Yang Y, Wang W, Liu K, Zhao J. Immobilization of Superoxide Dismutase in Mesoporous Silica and its Applications in Strengthening the Lifespan and Healthspan of Caenorhabditis elegans. Front Bioeng Biotechnol 2022;10:795620. [DOI: 10.3389/fbioe.2022.795620] [Reference Citation Analysis]
26 Lee J, Kim C. Superoxide-Responsive Cargo Release of Mesoporous Silica Nanocontainers with Thioketal Linker. Macromol Res . [DOI: 10.1007/s13233-022-0079-8] [Reference Citation Analysis]
27 Knezevic NZ, Ilic N, Kaluderovic GN. Functionalized Mesoporous Silica Nanoparticles for Drug Delivery to Glioblastoma Multiforme. 2022 IEEE 22nd International Conference on Nanotechnology (NANO) 2022. [DOI: 10.1109/nano54668.2022.9928669] [Reference Citation Analysis]
28 Li H, Zhu J, Xu YW, Mou FF, Shan XL, Wang QL, Liu BN, Ning K, Liu JJ, Wang YC, Mi JX, Wei X, Shao SJ, Cui GH, Lu R, Guo HD. Notoginsenoside R1-loaded mesoporous silica nanoparticles targeting the site of injury through inflammatory cells improves heart repair after myocardial infarction. Redox Biol 2022;54:102384. [PMID: 35777198 DOI: 10.1016/j.redox.2022.102384] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
29 Tengjisi, Liu Y, Zou D, Yang G, Zhao CX. Bioinspired core-shell silica nanoparticles monitoring extra- and intra-cellular drug release. J Colloid Interface Sci 2022;624:242-50. [PMID: 35660893 DOI: 10.1016/j.jcis.2022.05.099] [Reference Citation Analysis]
30 Huang Q, Pan Y, Wang M, Liu Z, Chen H, Wang J, Zhao Z, Zhang Y. Tumor microenvironment-responsive versatile "Trojan horse" theranostic nanoplatform for magnetic resonance imaging-guided multimodal synergistic antitumor treatment. Acta Biomater 2022:S1742-7061(22)00293-8. [PMID: 35595202 DOI: 10.1016/j.actbio.2022.05.024] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Mirfakhraee S, Bafkary R, Ardakani YH, Dinarvand R. Synthesis of hyaluronic acid-grafted hollow mesoporous silica nanoparticles as nano-carriers for anticancer drug delivery. J Nanopart Res 2022;24. [DOI: 10.1007/s11051-022-05478-4] [Reference Citation Analysis]
32 Fu B, Lin H, Chen N, Zhao P. Adenosine triphosphate/pH dual-responsive controlled drug release system with high cancer/normal cell selectivity and low side toxicity. J Biomater Appl. [DOI: 10.1177/08853282221087412] [Reference Citation Analysis]
33 Liu Y, Yang G, Hui Y, Ranaweera S, Zhao CX. Microfluidic Nanoparticles for Drug Delivery. Small 2022;:e2106580. [PMID: 35396770 DOI: 10.1002/smll.202106580] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
34 Zohreh N, Karimi N, Hosseini SH, Istrate C, Busuioc C. Fabrication of a magnetic nanocarrier for doxorubicin delivery based on hyperbranched polyglycerol and carboxymethyl cellulose: An investigation on the effect of borax cross-linker on pH-sensitivity. Int J Biol Macromol 2022;203:80-92. [PMID: 35092736 DOI: 10.1016/j.ijbiomac.2022.01.150] [Reference Citation Analysis]
35 Limón D, Hornick JE, Cai K, Beldjoudi Y, Duch M, Plaza JA, Pérez-García L, Stoddart JF. Polysilicon Microchips Functionalized with Bipyridinium-Based Cyclophanes for a Highly Efficient Cytotoxicity in Cancerous Cells. ACS Nano 2022. [PMID: 35357125 DOI: 10.1021/acsnano.1c08090] [Reference Citation Analysis]
36 Gao Y, Zhang Y, Hong Y, Wu F, Shen L, Wang Y, Lin X. Multifunctional Role of Silica in Pharmaceutical Formulations. AAPS PharmSciTech 2022;23:90. [PMID: 35296944 DOI: 10.1208/s12249-022-02237-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Kankala RK, Han Y, Xia H, Wang S, Chen A. Nanoarchitectured prototypes of mesoporous silica nanoparticles for innovative biomedical applications. J Nanobiotechnol 2022;20. [DOI: 10.1186/s12951-022-01315-x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 12.0] [Reference Citation Analysis]
38 Sun Q, Liu F, Wen Z, Xia J, Li H, Xu Y, Sun S. Combined effect of heat shock protein inhibitor geldanamycin and free radicals on photodynamic therapy of prostate cancer. J Mater Chem B 2022;10:1369-77. [PMID: 35022636 DOI: 10.1039/d1tb02219a] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
39 Xia X, Shi J, Deng Q, Xu N, Huang F, Xiang X. Biodegradable and self-fluorescent ditelluride-bridged mesoporous organosilica/polyethylene glycol-curcumin nanocomposite for dual-responsive drug delivery and enhanced therapy efficiency. Materials Today Chemistry 2022;23:100660. [DOI: 10.1016/j.mtchem.2021.100660] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
40 Yang Y, Chen F, Xu N, Yao Q, Wang R, Xie X, Zhang F, He Y, Shao D, Dong W, Fan J, Sun W, Peng X. Red-light-triggered self-destructive mesoporous silica nanoparticles for cascade-amplifying chemo-photodynamic therapy favoring antitumor immune responses. Biomaterials 2022;281:121368. [DOI: 10.1016/j.biomaterials.2022.121368] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 16.0] [Reference Citation Analysis]
41 Park JH, Sung KE, Kim KH, Kim JR, Kim J, Moon GD, Hyun DC. Dual gate-keeping and reversible on-off switching drug release for anti-cancer therapy with pH- and NIR light-responsive mesoporous silica-coated gold nanorods. Journal of Industrial and Engineering Chemistry 2022;106:233-42. [DOI: 10.1016/j.jiec.2021.10.031] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
42 Souri M, Soltani M, Kashkooli FM, Shahvandi MK, Chiani M, Shariati FS, Mehrabi MR, Munn LL. Towards principled design of cancer nanomedicine to accelerate clinical translation. Materials Today Bio 2022. [DOI: 10.1016/j.mtbio.2022.100208] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
43 Lee J, Kim J, Kim C. Mesoporous silica nanoparticles with cyclic peptide gatekeeper for stimulus-responsive drug release by conformational transformation. J Nanopart Res 2021;24. [DOI: 10.1007/s11051-022-05400-y] [Reference Citation Analysis]
44 Wu D, Yang K, Zhang Z, Feng Y, Rao L, Chen X, Yu G. Metal-free bioorthogonal click chemistry in cancer theranostics. Chem Soc Rev 2022. [PMID: 35050284 DOI: 10.1039/d1cs00451d] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
45 Chen X, Liu T, Yuan P, Chang X, Yin Q, Mu W, Peng Z. Anti-cancer Nanotechnology. Nanomedicine 2022. [DOI: 10.1007/978-981-13-9374-7_11-1] [Reference Citation Analysis]
46 Zhang Q, Ying Y, Ping J. Recent Advances in Plant Nanoscience. Adv Sci (Weinh) 2022;9:e2103414. [PMID: 34761568 DOI: 10.1002/advs.202103414] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
47 Gangadhar J, Tirumuruhan B, Sujith R. Applications and Future Trends in Mesoporous Materials. Advanced Functional Porous Materials 2022. [DOI: 10.1007/978-3-030-85397-6_8] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Ebrahimpour H, Toomari Y, Pooresmaeil M, Namazi H. Cluster of D-maltose clicked to β-cyclodextrin: preparation and its application as a biocompatible drug delivery nanovehicle. Soft Materials. [DOI: 10.1080/1539445x.2021.2019056] [Reference Citation Analysis]
49 Zhen W, An S, Wang S, Hu W, Li Y, Jiang X, Li J. Precise Subcellular Organelle Targeting for Boosting Endogenous-Stimuli-Mediated Tumor Therapy. Adv Mater 2021;33:e2101572. [PMID: 34611949 DOI: 10.1002/adma.202101572] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 12.0] [Reference Citation Analysis]
50 Xu X, Duan J, Lan Q, Kuang Y, Liao T, Liu Y, Xu Z, Chen J, Jiang B, Li C. A dual-sensitive poly(amino acid)/hollow mesoporous silica nanoparticle-based anticancer drug delivery system with a rapid charge-reversal property. Journal of Drug Delivery Science and Technology 2021;66:102817. [DOI: 10.1016/j.jddst.2021.102817] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
51 Liu F, Liu X, Chen F, Fu Q. Mussel-inspired chemistry: A promising strategy for natural polysaccharides in biomedical applications. Progress in Polymer Science 2021;123:101472. [DOI: 10.1016/j.progpolymsci.2021.101472] [Cited by in Crossref: 14] [Cited by in F6Publishing: 20] [Article Influence: 14.0] [Reference Citation Analysis]
52 Álvarez E, González B, Lozano D, Doadrio AL, Colilla M, Izquierdo-Barba I. Nanoantibiotics Based in Mesoporous Silica Nanoparticles: New Formulations for Bacterial Infection Treatment. Pharmaceutics 2021;13:2033. [PMID: 34959315 DOI: 10.3390/pharmaceutics13122033] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
53 Zhu M, Shi Y, Shan Y, Guo J, Song X, Wu Y, Wu M, Lu Y, Chen W, Xu X, Tang L. Recent developments in mesoporous polydopamine-derived nanoplatforms for cancer theranostics. J Nanobiotechnology 2021;19:387. [PMID: 34819084 DOI: 10.1186/s12951-021-01131-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 9.0] [Reference Citation Analysis]
54 Cheng M, Li F, Wang Z, Li C, Sun S, Hu S. New valve-free organosilica nanocontainer for active anticorrosion of polymer coatings. Composites Part B: Engineering 2021;224:109185. [DOI: 10.1016/j.compositesb.2021.109185] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
55 Yu X, Su Q, Chang X, Chen K, Yuan P, Liu T, Tian R, Bai Y, Zhang Y, Chen X. Multimodal obstruction of tumorigenic energy supply via bionic nanocarriers for effective tumor therapy. Biomaterials 2021;278:121181. [PMID: 34653932 DOI: 10.1016/j.biomaterials.2021.121181] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
56 Heidari R, Khosravian P, Mirzaei SA, Elahian F. siRNA delivery using intelligent chitosan-capped mesoporous silica nanoparticles for overcoming multidrug resistance in malignant carcinoma cells. Sci Rep 2021;11:20531. [PMID: 34654836 DOI: 10.1038/s41598-021-00085-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
57 Iranpour S, Bahrami AR, Nekooei S, Sh Saljooghi A, Matin MM. Improving anti-cancer drug delivery performance of magnetic mesoporous silica nanocarriers for more efficient colorectal cancer therapy. J Nanobiotechnology 2021;19:314. [PMID: 34641857 DOI: 10.1186/s12951-021-01056-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
58 Kim H, Im PW, Piao Y. A Facile Route for the Preparation of Monodisperse Iron nitride at Silica Core/shell Nanostructures. Front Bioeng Biotechnol 2021;9:735727. [PMID: 34616720 DOI: 10.3389/fbioe.2021.735727] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
59 Vickerman BM, Zywot EM, Tarrant TK, Lawrence DS. Taking phototherapeutics from concept to clinical launch. Nat Rev Chem 2021;:1-19. [PMID: 34632078 DOI: 10.1038/s41570-021-00326-w] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 15.0] [Reference Citation Analysis]
60 Li Y, Yang L, Xu X, Li M, Zhang Y, Lin Q, Gong T, Sun X, Zhang Z, Zhang L. Multifunctional Size-Expandable Nanomedicines Enhance Tumor Accumulation and Penetration for Synergistic Chemo-Photothermal Therapy. ACS Appl Mater Interfaces 2021;13:46361-74. [PMID: 34579526 DOI: 10.1021/acsami.1c14170] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
61 Jin R, Liu Z, Liu T, Yuan P, Bai Y, Chen X. Redox-responsive micelles integrating catalytic nanomedicine and selective chemotherapy for effective tumor treatment. Chinese Chemical Letters 2021;32:3076-82. [DOI: 10.1016/j.cclet.2021.03.084] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 10.0] [Reference Citation Analysis]
62 Panda S, Bhol CS, Bhutia SK, Mohapatra S. DSPE-PEG-Coated Uniform Nitrogen-Doped Carbon Capsules for NIR-Mediated Synergistic Chemophototherapy of Skin Cancer. ACS Appl Bio Mater 2021;4:7059-7069. [DOI: 10.1021/acsabm.1c00687] [Reference Citation Analysis]
63 Wang P, Jin Z, Song G, Zhang X. Recent progress and strategies for precise framework structure-enabled drug delivery systems. Materials Today Sustainability 2021;13:100065. [DOI: 10.1016/j.mtsust.2021.100065] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
64 Yu H, Ma M, Jiang L, Shen J, Xue F, Chen H. A metal protoporphyrin-induced nano-self-assembly for potentiating photothermal therapy by depleting antioxidant defense systems. Chemical Engineering Journal 2021;420:129769. [DOI: 10.1016/j.cej.2021.129769] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
65 Yu T, Cheng L, Cai H, Li G, Wang X, Kong L, Zhan J, Wang H, Zhang Y, Yu Z, Zheng H. Reversible thermochromic performance of cresol red-boric acid system loaded on fibrous mesoporous silica microspheres coating material. J Coat Technol Res 2021;18:1389-99. [DOI: 10.1007/s11998-021-00504-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
66 Deng Z, Jiang C, Younis MR, Lei S, He Y, Zheng H, Huang P, Lin J. Mild hyperthermia-enhanced chemo-photothermal synergistic therapy using doxorubicin-loaded gold nanovesicles. Chinese Chemical Letters 2021;32:2411-4. [DOI: 10.1016/j.cclet.2021.03.080] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
67 Xiao J, Yan M, Zhou K, Chen H, Xu Z, Gan Y, Hong B, Tian G, Qian J, Zhang G, Wu Z. A nanoselenium-coating biomimetic cytomembrane nanoplatform for mitochondrial targeted chemotherapy- and chemodynamic therapy through manganese and doxorubicin codelivery. J Nanobiotechnology 2021;19:227. [PMID: 34330298 DOI: 10.1186/s12951-021-00971-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
68 Tonbul H, Sahin A, Tavukcuoglu E, Ultav G, Akbas S, Aktas Y, Esendaglı G, Capan Y. Folic acid decoration of mesoporous silica nanoparticles to increase cellular uptake and cytotoxic activity of doxorubicin in human breast cancer cells. Journal of Drug Delivery Science and Technology 2021;63:102535. [DOI: 10.1016/j.jddst.2021.102535] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
69 Minami K, Song J, Shrestha LK, Ariga K. Nanoarchitectonics for fullerene biology. Applied Materials Today 2021;23:100989. [DOI: 10.1016/j.apmt.2021.100989] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 10.0] [Reference Citation Analysis]
70 Abbasi M, Ghoran SH, Niakan MH, Jamali K, Moeini Z, Jangjou A, Izadpanah P, Amani AM. Mesoporous silica nanoparticle: Heralding a brighter future in cancer nanomedicine. Microporous and Mesoporous Materials 2021;319:110967. [DOI: 10.1016/j.micromeso.2021.110967] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 10.0] [Reference Citation Analysis]
71 Niu S, Zhang X, Williams GR, Wu J, Gao F, Fu Z, Chen X, Lu S, Zhu LM. Hollow Mesoporous Silica Nanoparticles Gated by Chitosan-Copper Sulfide Composites as Theranostic Agents for the Treatment of Breast Cancer. Acta Biomater 2021;126:408-20. [PMID: 33731303 DOI: 10.1016/j.actbio.2021.03.024] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 19.0] [Reference Citation Analysis]
72 Xu X, Han C, Zhang C, Yan D, Ren C, Kong L. Intelligent phototriggered nanoparticles induce a domino effect for multimodal tumor therapy. Theranostics 2021;11:6477-90. [PMID: 33995669 DOI: 10.7150/thno.55708] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
73 Frickenstein AN, Hagood JM, Britten CN, Abbott BS, McNally MW, Vopat CA, Patterson EG, MacCuaig WM, Jain A, Walters KB, McNally LR. Mesoporous Silica Nanoparticles: Properties and Strategies for Enhancing Clinical Effect. Pharmaceutics 2021;13:570. [PMID: 33920503 DOI: 10.3390/pharmaceutics13040570] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 16.0] [Reference Citation Analysis]
74 Mandani S, Rezaei B, Ensafi AA, Sabzalian MR. Development of a new simple spectroscopic determination coupled acid-motivated delivery system based on fluorescence turn-off MSNs@MPA-ZnS QDs for infection. Microporous and Mesoporous Materials 2021;317:110971. [DOI: 10.1016/j.micromeso.2021.110971] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
75 He W, Huang K. Poly-adenine DNA as the high-affinity goalkeeper of mesoporous silica nanoparticles for molecular encapsulation and signal-amplification detection. Surfaces and Interfaces 2021;23:100933. [DOI: 10.1016/j.surfin.2021.100933] [Reference Citation Analysis]
76 Chen M, Wang M, Niu W, Cheng W, Guo Y, Wang Y, Luo M, Xie C, Leng T, Zhang X, Lin C, Lei B. Multifunctional Protein-Decorated Bioactive Glass Nanoparticles for Tumor-Specific Therapy and Bioimaging In Vitro and In Vivo. ACS Appl Mater Interfaces 2021;13:14985-94. [PMID: 33779130 DOI: 10.1021/acsami.1c01337] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
77 Ikigaki K, Okada K, Takahashi M. Epitaxial Growth of Multilayered Metal–Organic Framework Thin Films for Electronic and Photonic Applications. ACS Appl Nano Mater 2021;4:3467-75. [DOI: 10.1021/acsanm.0c03462] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
78 Li W, Zhang W, Jin W, Zhu L, Li W, Song P, Tao Y, Ge F. Fabrication of a pH-Responsive 5-FU@MSN-SA Nanoplatform for Anti-Tumor Activity. NANO 2021;16:2150035. [DOI: 10.1142/s1793292021500351] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
79 Vázquez-González M, Willner I. Aptamer-Functionalized Hybrid Nanostructures for Sensing, Drug Delivery, Catalysis and Mechanical Applications. Int J Mol Sci 2021;22:1803. [PMID: 33670386 DOI: 10.3390/ijms22041803] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
80 Yang K, Zhang S, He J, Nie Z. Polymers and inorganic nanoparticles: A winning combination towards assembled nanostructures for cancer imaging and therapy. Nano Today 2021;36:101046. [DOI: 10.1016/j.nantod.2020.101046] [Cited by in Crossref: 31] [Cited by in F6Publishing: 15] [Article Influence: 31.0] [Reference Citation Analysis]
81 Jin G, Gao Z, Liu Y, Zhao J, Ou H, Xu F, Ding D. Polymeric Nitric Oxide Delivery Nanoplatforms for Treating Cancer, Cardiovascular Diseases, and Infection. Adv Healthc Mater 2021;10:e2001550. [PMID: 33314793 DOI: 10.1002/adhm.202001550] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 20.0] [Reference Citation Analysis]
82 Wang B, Kostarelos K, Nelson BJ, Zhang L. Trends in Micro-/Nanorobotics: Materials Development, Actuation, Localization, and System Integration for Biomedical Applications. Adv Mater 2021;33:e2002047. [PMID: 33617105 DOI: 10.1002/adma.202002047] [Cited by in Crossref: 113] [Cited by in F6Publishing: 120] [Article Influence: 113.0] [Reference Citation Analysis]
83 Zou Y, Huang B, Cao L, Deng Y, Su J. Tailored Mesoporous Inorganic Biomaterials: Assembly, Functionalization, and Drug Delivery Engineering. Adv Mater 2021;33:e2005215. [PMID: 33251635 DOI: 10.1002/adma.202005215] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 36.0] [Reference Citation Analysis]
84 Tao Y, Chan HF, Shi B, Li M, Leong KW. Light: A Magical Tool for Controlled Drug Delivery. Adv Funct Mater 2020;30:2005029. [PMID: 34483808 DOI: 10.1002/adfm.202005029] [Cited by in Crossref: 65] [Cited by in F6Publishing: 66] [Article Influence: 32.5] [Reference Citation Analysis]
85 Yang M, Zhang N, Zhang T, Yin X, Shen J. Fabrication of doxorubicin-gated mesoporous polydopamine nanoplatforms for multimode imaging-guided synergistic chemophotothermal therapy of tumors. Drug Deliv 2020;27:367-77. [PMID: 32091284 DOI: 10.1080/10717544.2020.1730523] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 7.5] [Reference Citation Analysis]
86 Mukherjee MB, Mullick R, Reddy BU, Das S, Raichur AM. Galactose Functionalized Mesoporous Silica Nanoparticles As Delivery Vehicle in the Treatment of Hepatitis C Infection. ACS Appl Bio Mater 2020;3:7598-610. [PMID: 35019500 DOI: 10.1021/acsabm.0c00814] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
87 Cheng M, Lyu Q, Shan B, Zhao X, Wang Z, Sun S, Li C, Hu S. Inhibitor-self-gated stimuli-responsive anticorrosion system based on π-π stacking. Chemical Engineering Journal 2020;400:125917. [DOI: 10.1016/j.cej.2020.125917] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
88 Wang S, Liu J, Huang Y, Yang N. Selective sensing of Mn2+ based on ZnCdS/ZnS QD/carboxymethyl chitosan/g-C3N4 nanosheet nanocomposite film by the conformational regulation of polymer chain. Applied Surface Science 2020;530:147255. [DOI: 10.1016/j.apsusc.2020.147255] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
89 Asadi F, Forootanfar H, Ranjbar M, Asadipour A. Eco friendly synthesis of the LiY(MoO4)2 coral-like quantum dots in biotemplate MOF (QD/BioMOF) for in vivo imaging and ibuprofen removal from an aqueous media study. Arabian Journal of Chemistry 2020;13:7820-8. [DOI: 10.1016/j.arabjc.2020.09.013] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
90 Brilmayer R, Brodrecht M, Kaiser C, Breitzke H, Kumari B, Wachtveitl J, Buntkowsky G, Andrieu‐brunsen A. The Interplay of Nanoconfinement and pH from the Perspective of a Dye‐Reporter Molecule. ChemNanoMat 2020;6:1843-53. [DOI: 10.1002/cnma.202000423] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
91 Zhou Y, Xu Q, Li C, Chen Y, Zhang Y, Lu B. Hollow mesoporous silica nanoparticles as nanocarriers employed in cancer therapy: A review. Front Mater Sci 2020;14:373-86. [DOI: 10.1007/s11706-020-0526-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
92 Kankala RK, Wang SB, Chen AZ. Nanoarchitecting Hierarchical Mesoporous Siliceous Frameworks: A New Way Forward. iScience 2020;23:101687. [PMID: 33163941 DOI: 10.1016/j.isci.2020.101687] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
93 Murugan B, Sagadevan S, J AL, Fatimah I, Fatema KN, Oh W, Mohammad F, Johan MR. Role of mesoporous silica nanoparticles for the drug delivery applications. Mater Res Express 2020;7:102002. [DOI: 10.1088/2053-1591/abbf7e] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
94 Huang R, Shen YW, Guan YY, Jiang YX, Wu Y, Rahman K, Zhang LJ, Liu HJ, Luan X. Mesoporous silica nanoparticles: facile surface functionalization and versatile biomedical applications in oncology. Acta Biomater 2020;116:1-15. [PMID: 32911102 DOI: 10.1016/j.actbio.2020.09.009] [Cited by in Crossref: 34] [Cited by in F6Publishing: 21] [Article Influence: 17.0] [Reference Citation Analysis]
95 Tiemann M, Weinberger C. Selective Modification of Hierarchical Pores and Surfaces in Nanoporous Materials. Adv Mater Interfaces 2021;8:2001153. [DOI: 10.1002/admi.202001153] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
96 Dement’eva OV. Mesoporous Silica Container Particles: New Approaches and New Opportunities. Colloid J 2020;82:479-501. [DOI: 10.1134/s1061933x20050038] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
97 Yang Y, He Y, Deng Z, Li J, Huang J, Zhong S. Intelligent Nanoprobe: Acid-Responsive Drug Release and In Situ Evaluation of Its Own Therapeutic Effect. Anal Chem 2020;92:12371-8. [PMID: 32786256 DOI: 10.1021/acs.analchem.0c02099] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
98 Fathalla M, Sinatra L. pH-Responsive porphyrin-silica nanoparticles conjugate via ionic self-assembly. J Porous Mater 2021;28:183-9. [DOI: 10.1007/s10934-020-00976-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
99 Cui M, Zhang W, Xie L, Chen L, Xu L. Chiral Mesoporous Silica Materials: A Review on Synthetic Strategies and Applications. Molecules 2020;25:E3899. [PMID: 32867051 DOI: 10.3390/molecules25173899] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
100 Yang Y, Zhang M, Song H, Yu C. Silica-Based Nanoparticles for Biomedical Applications: From Nanocarriers to Biomodulators. Acc Chem Res 2020;53:1545-56. [PMID: 32667182 DOI: 10.1021/acs.accounts.0c00280] [Cited by in Crossref: 54] [Cited by in F6Publishing: 57] [Article Influence: 27.0] [Reference Citation Analysis]
101 Cai Y, Deng T, Pan Y, Zink JI. Use of Ferritin Capped Mesoporous Silica Nanoparticles for Redox and pH Triggered Drug Release In Vitro and In Vivo. Adv Funct Mater 2020;30:2002043. [DOI: 10.1002/adfm.202002043] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
102 Lin J, Yin Q, Chen B, Zhang H, Mei D, Fu J, He B, Zhang H, Dai W, Wang X, Wang Y, Zhang Q. A magnetism/laser-auxiliary cascaded drug delivery to pulmonary carcinoma. Acta Pharm Sin B 2020;10:1549-62. [PMID: 32963949 DOI: 10.1016/j.apsb.2019.12.017] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
103 Ahmadi S, Rabiee N, Bagherzadeh M, Elmi F, Fatahi Y, Farjadian F, Baheiraei N, Nasseri B, Rabiee M, Dastjerd NT, Valibeik A, Karimi M, Hamblin MR. Stimulus-Responsive Sequential Release Systems for Drug and Gene Delivery. Nano Today 2020;34:100914. [PMID: 32788923 DOI: 10.1016/j.nantod.2020.100914] [Cited by in Crossref: 75] [Cited by in F6Publishing: 64] [Article Influence: 37.5] [Reference Citation Analysis]
104 Luther DC, Huang R, Jeon T, Zhang X, Lee YW, Nagaraj H, Rotello VM. Delivery of drugs, proteins, and nucleic acids using inorganic nanoparticles. Adv Drug Deliv Rev 2020;156:188-213. [PMID: 32610061 DOI: 10.1016/j.addr.2020.06.020] [Cited by in Crossref: 82] [Cited by in F6Publishing: 70] [Article Influence: 41.0] [Reference Citation Analysis]
105 Aqeel T, Greer HF. Quantum-Sized Zinc Oxide Nanoparticles Synthesised within Mesoporous Silica (SBA-11) by Humid Thermal Decomposition of Zinc Acetate. Crystals 2020;10:549. [DOI: 10.3390/cryst10060549] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
106 Zheng Y, Zhang Z, Liu Q, Zhao Y, Zheng C, Hao J, Yi K, Wang Y, Wang C, Zhao X, Shi L, Kang C, Liu Y. Multifunctional Nanomodulators Regulate Multiple Pathways To Enhance Antitumor Immunity. ACS Appl Bio Mater 2020;3:4635-42. [DOI: 10.1021/acsabm.0c00513] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
107 Barui S, Cauda V. Multimodal Decorations of Mesoporous Silica Nanoparticles for Improved Cancer Therapy. Pharmaceutics 2020;12:E527. [PMID: 32521802 DOI: 10.3390/pharmaceutics12060527] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 12.5] [Reference Citation Analysis]
108 Wang Q, Bian X, Chen X, Han Y, Yan C. Mechanism and structure of the interaction of water-soluble pillar[5]arene and ibrutinib that enhances the anticancer activity of ibrutinib. Journal of Molecular Structure 2020;1210:128004. [DOI: 10.1016/j.molstruc.2020.128004] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
109 Kankala RK, Han YH, Na J, Lee CH, Sun Z, Wang SB, Kimura T, Ok YS, Yamauchi Y, Chen AZ, Wu KC. Nanoarchitectured Structure and Surface Biofunctionality of Mesoporous Silica Nanoparticles. Adv Mater 2020;32:e1907035. [PMID: 32319133 DOI: 10.1002/adma.201907035] [Cited by in Crossref: 178] [Cited by in F6Publishing: 187] [Article Influence: 89.0] [Reference Citation Analysis]
110 Yu Q, Deng T, Lin FC, Zhang B, Zink JI. Supramolecular Assemblies of Heterogeneous Mesoporous Silica Nanoparticles to Co-deliver Antimicrobial Peptides and Antibiotics for Synergistic Eradication of Pathogenic Biofilms. ACS Nano 2020;14:5926-37. [PMID: 32310641 DOI: 10.1021/acsnano.0c01336] [Cited by in Crossref: 64] [Cited by in F6Publishing: 66] [Article Influence: 32.0] [Reference Citation Analysis]
111 Boffito M, Torchio A, Tonda-Turo C, Laurano R, Gisbert-Garzarán M, Berkmann JC, Cassino C, Manzano M, Duda GN, Vallet-Regí M, Schmidt-Bleek K, Ciardelli G. Hybrid Injectable Sol-Gel Systems Based on Thermo-Sensitive Polyurethane Hydrogels Carrying pH-Sensitive Mesoporous Silica Nanoparticles for the Controlled and Triggered Release of Therapeutic Agents. Front Bioeng Biotechnol 2020;8:384. [PMID: 32509740 DOI: 10.3389/fbioe.2020.00384] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
112 Brilmayer R, Kübelbeck S, Khalil A, Brodrecht M, Kunz U, Kleebe H, Buntkowsky G, Baier G, Andrieu‐brunsen A. Influence of Nanoconfinement on the pKa of Polyelectrolyte Functionalized Silica Mesopores. Adv Mater Interfaces 2020;7:1901914. [DOI: 10.1002/admi.201901914] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
113 Sedighi M, Rahimi F, Shahbazi MA, Rezayan AH, Kettiger H, Einfalt T, Huwyler J, Witzigmann D. Controlled Tyrosine Kinase Inhibitor Delivery to Liver Cancer Cells by Gate-Capped Mesoporous Silica Nanoparticles. ACS Appl Bio Mater 2020;3:239-51. [PMID: 35019440 DOI: 10.1021/acsabm.9b00772] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
114 Guo X, Mei J, Zhang C. Development of Drug Dual-Carriers Delivery System with Mitochondria-Targeted and pH/Heat Responsive Capacity for Synergistic Photothermal-Chemotherapy of Ovarian Cancer. Int J Nanomedicine 2020;15:301-13. [PMID: 32021181 DOI: 10.2147/IJN.S226517] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
115 Ahmadi M, Chen Z. Challenges and future of chemical assisted heavy oil recovery processes. Adv Colloid Interface Sci 2020;275:102081. [PMID: 31830684 DOI: 10.1016/j.cis.2019.102081] [Cited by in Crossref: 35] [Cited by in F6Publishing: 39] [Article Influence: 17.5] [Reference Citation Analysis]
116 Liu D, Hong Y, Li Y, Hu C, Yip TC, Yu WK, Zhu Y, Fong CC, Wang W, Au SK, Wang S, Yang M. Targeted destruction of cancer stem cells using multifunctional magnetic nanoparticles that enable combined hyperthermia and chemotherapy. Theranostics 2020;10:1181-96. [PMID: 31938059 DOI: 10.7150/thno.38989] [Cited by in Crossref: 48] [Cited by in F6Publishing: 50] [Article Influence: 24.0] [Reference Citation Analysis]
117 Eltohamy M. Mesoporous silica nanoparticles for cancer theranostic applications. Biomaterials for 3D Tumor Modeling 2020. [DOI: 10.1016/b978-0-12-818128-7.00024-1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
118 Yang J, Dai D, Lou X, Ma L, Wang B, Yang YW. Supramolecular nanomaterials based on hollow mesoporous drug carriers and macrocycle-capped CuS nanogates for synergistic chemo-photothermal therapy. Theranostics 2020;10:615-29. [PMID: 31903141 DOI: 10.7150/thno.40066] [Cited by in Crossref: 62] [Cited by in F6Publishing: 68] [Article Influence: 31.0] [Reference Citation Analysis]
119 Wang S, Li Y, Ju D. Application of Nanomaterials for Cancer Diagnosis and Therapy. Green Synthesis of Nanoparticles: Applications and Prospects 2020. [DOI: 10.1007/978-981-15-5179-6_6] [Reference Citation Analysis]
120 Meher MK, Poluri KM. pH-Sensitive Nanomaterials for Smart Release of Drugs. Intelligent Nanomaterials for Drug Delivery Applications 2020. [DOI: 10.1016/b978-0-12-817830-0.00002-3] [Reference Citation Analysis]
121 Zhang YM, Liu YH, Liu Y. Cyclodextrin-Based Multistimuli-Responsive Supramolecular Assemblies and Their Biological Functions. Adv Mater 2020;32:e1806158. [PMID: 30773709 DOI: 10.1002/adma.201806158] [Cited by in Crossref: 160] [Cited by in F6Publishing: 166] [Article Influence: 80.0] [Reference Citation Analysis]
122 Rajiv P, Chen X, Li H, Rehaman S, Vanathi P, Abd-elsalam KA, Li X. Silica-based nanosystems: Their role in sustainable agriculture. Multifunctional Hybrid Nanomaterials for Sustainable Agri-Food and Ecosystems 2020. [DOI: 10.1016/b978-0-12-821354-4.00018-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
123 Wu J, Niu S, Bremner DH, Nie W, Fu Z, Li D, Zhu LM. A Tumor Microenvironment-Responsive Biodegradable Mesoporous Nanosystem for Anti-Inflammation and Cancer Theranostics. Adv Healthc Mater 2020;9:e1901307. [PMID: 31814332 DOI: 10.1002/adhm.201901307] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
124 Sapre N, Chakraborty R, Purohit P, Bhat S, Das G, Bajpe SR. Enteric pH responsive cargo release from PDA and PEG coated mesoporous silica nanoparticles: a comparative study in Drosophila melanogaster. RSC Adv 2020;10:11716-26. [DOI: 10.1039/c9ra11019d] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
125 Bandopadhyay S, Manchanda S, Chandra A, Ali J, Deb PK. Overview of different carrier systems for advanced drug delivery. Drug Delivery Systems 2020. [DOI: 10.1016/b978-0-12-814487-9.00005-3] [Cited by in Crossref: 10] [Article Influence: 5.0] [Reference Citation Analysis]
126 Zhao Y, Zhang H, Hou Y, Li M, Luo Z. Progress toward Safe Tumor Diagnosis and Therapy via Degradable Inorganic Nanomaterials Constructed with Metabolically Safe Elements. ACS Appl Nano Mater 2020;3:1028-42. [DOI: 10.1021/acsanm.9b01919] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
127 Yang Y, Wang L, Wan B, Gu Y, Li X. Optically Active Nanomaterials for Bioimaging and Targeted Therapy. Front Bioeng Biotechnol 2019;7:320. [PMID: 31803728 DOI: 10.3389/fbioe.2019.00320] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 8.3] [Reference Citation Analysis]
128 Wang J, Zhang W, Hao L, Sun J, Zhang W, Guo C, Mu Y, Ji W, Yu C, Yuan F. Amino acid–intercalated layered double hydroxide core @ ordered porous silica shell as drug carriers: Design and applications. J Mater Res 2019;34:3747-56. [DOI: 10.1557/jmr.2019.324] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
129 Zhou L, Liu G, Wang Y, Liu J, Zhang Y, Ma Y. AuNP and ssDNA capped mesoporous silica nanoparticles for laser controlled drug release. RSC Adv 2019;9:34958-62. [PMID: 35530699 DOI: 10.1039/c9ra07404j] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
130 Llopis-Lorente A, García-Fernández A, Murillo-Cremaes N, Hortelão AC, Patiño T, Villalonga R, Sancenón F, Martínez-Máñez R, Sánchez S. Enzyme-Powered Gated Mesoporous Silica Nanomotors for On-Command Intracellular Payload Delivery. ACS Nano 2019;13:12171-83. [PMID: 31580642 DOI: 10.1021/acsnano.9b06706] [Cited by in Crossref: 93] [Cited by in F6Publishing: 96] [Article Influence: 31.0] [Reference Citation Analysis]
131 Wang W, Yu S, Huang S, Bi S, Han H, Zhang JR, Lu Y, Zhu JJ. Bioapplications of DNA nanotechnology at the solid-liquid interface. Chem Soc Rev 2019;48:4892-920. [PMID: 31402369 DOI: 10.1039/c8cs00402a] [Cited by in Crossref: 47] [Cited by in F6Publishing: 47] [Article Influence: 15.7] [Reference Citation Analysis]
132 Su H, Hurd Price CA, Jing L, Tian Q, Liu J, Qian K. Janus particles: design, preparation, and biomedical applications. Mater Today Bio 2019;4:100033. [PMID: 32159157 DOI: 10.1016/j.mtbio.2019.100033] [Cited by in Crossref: 109] [Cited by in F6Publishing: 112] [Article Influence: 36.3] [Reference Citation Analysis]
133 Wang D, Li X, Li X, Kang A, Sun L, Sun M, Yang F, Xu C. Magnetic And pH Dual-Responsive Nanoparticles For Synergistic Drug-Resistant Breast Cancer Chemo/Photodynamic Therapy. Int J Nanomedicine 2019;14:7665-79. [PMID: 31571870 DOI: 10.2147/IJN.S214377] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
134 Andrée L, Barata D, Sutthavas P, Habibovic P, van Rijt S. Guiding mesenchymal stem cell differentiation using mesoporous silica nanoparticle-based films. Acta Biomater 2019;96:557-67. [PMID: 31284095 DOI: 10.1016/j.actbio.2019.07.008] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
135 Kankala RK, Zhang H, Liu C, Kanubaddi KR, Lee C, Wang S, Cui W, Santos HA, Lin K, Chen A. Metal Species–Encapsulated Mesoporous Silica Nanoparticles: Current Advancements and Latest Breakthroughs. Adv Funct Mater 2019;29:1902652. [DOI: 10.1002/adfm.201902652] [Cited by in Crossref: 64] [Cited by in F6Publishing: 67] [Article Influence: 21.3] [Reference Citation Analysis]
136 Bai G, Yuan P, Cai B, Qiu X, Jin R, Liu S, Li Y, Chen X. Stimuli‐Responsive Scaffold for Breast Cancer Treatment Combining Accurate Photothermal Therapy and Adipose Tissue Regeneration. Adv Funct Mater 2019;29:1904401. [DOI: 10.1002/adfm.201904401] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 12.7] [Reference Citation Analysis]
137 Zhang K, Yu Z, Meng X, Zhao W, Shi Z, Yang Z, Dong H, Zhang X. A Bacteriochlorin-Based Metal-Organic Framework Nanosheet Superoxide Radical Generator for Photoacoustic Imaging-Guided Highly Efficient Photodynamic Therapy. Adv Sci (Weinh) 2019;6:1900530. [PMID: 31380214 DOI: 10.1002/advs.201900530] [Cited by in Crossref: 81] [Cited by in F6Publishing: 82] [Article Influence: 27.0] [Reference Citation Analysis]
138 Wu J, Williams GR, Niu S, Gao F, Tang R, Zhu LM. A Multifunctional Biodegradable Nanocomposite for Cancer Theranostics. Adv Sci (Weinh) 2019;6:1802001. [PMID: 31380200 DOI: 10.1002/advs.201802001] [Cited by in Crossref: 51] [Cited by in F6Publishing: 53] [Article Influence: 17.0] [Reference Citation Analysis]
139 Corvini N, El Idrissi M, Dimitriadou E, Corvini PF, Shahgaldian P. Hydrophobicity-responsive engineered mesoporous silica nanoparticles: application in the delivery of essential nutrients to bacteria combating oil spills. Chem Commun (Camb) 2019;55:7478-81. [PMID: 31184648 DOI: 10.1039/c9cc02801c] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
140 Xiong R, Chen M, Cui X, Wang Q, Liu X, Geng B. Simultaneous and Reversible Triggering of the Phase Transfer and Luminescence Change of Amidine-Modified Carbon Dots by CO2. ACS Appl Mater Interfaces 2019;11:22851-7. [PMID: 31198041 DOI: 10.1021/acsami.9b05421] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
141 Zhao H, Xu J, Huang W, Zhan G, Zhao Y, Chen H, Yang X. Spatiotemporally Light-Activatable Platinum Nanocomplexes for Selective and Cooperative Cancer Therapy. ACS Nano 2019;13:6647-61. [PMID: 31083971 DOI: 10.1021/acsnano.9b00972] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 11.3] [Reference Citation Analysis]
142 Tu Y, Peng F, Heuvelmans JM, Liu S, Nolte RJM, Wilson DA. Motion Control of Polymeric Nanomotors Based on Host–Guest Interactions. Angew Chem 2019;131:8779-83. [DOI: 10.1002/ange.201900917] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
143 Song N, Lou XY, Ma L, Gao H, Yang YW. Supramolecular nanotheranostics based on pillarenes. Theranostics 2019;9:3075-93. [PMID: 31244942 DOI: 10.7150/thno.31858] [Cited by in Crossref: 70] [Cited by in F6Publishing: 75] [Article Influence: 23.3] [Reference Citation Analysis]
144 Cheng CA, Deng T, Lin FC, Cai Y, Zink JI. Supramolecular Nanomachines as Stimuli-Responsive Gatekeepers on Mesoporous Silica Nanoparticles for Antibiotic and Cancer Drug Delivery. Theranostics 2019;9:3341-64. [PMID: 31244957 DOI: 10.7150/thno.34576] [Cited by in Crossref: 55] [Cited by in F6Publishing: 61] [Article Influence: 18.3] [Reference Citation Analysis]
145 Shen X, Zhang Y, Sun J, Lu H, Ouyang J, Na N. Biodegradable nanosyringes for intracellular amplification-based dual-diagnosis and gene therapy in single living cells. Chem Sci 2019;10:6113-9. [PMID: 31360417 DOI: 10.1039/c9sc01894h] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
146 Del Secco B, Ravotto L, Esipova TV, Vinogradov SA, Genovese D, Zaccheroni N, Rampazzo E, Prodi L. Optimized synthesis of luminescent silica nanoparticles by a direct micelle-assisted method. Photochem Photobiol Sci 2019;18:2142-9. [PMID: 31011734 DOI: 10.1039/c9pp00047j] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
147 Li T, Shi S, Goel S, Shen X, Xie X, Chen Z, Zhang H, Li S, Qin X, Yang H, Wu C, Liu Y. Recent advancements in mesoporous silica nanoparticles towards therapeutic applications for cancer. Acta Biomater 2019;89:1-13. [PMID: 30797106 DOI: 10.1016/j.actbio.2019.02.031] [Cited by in Crossref: 98] [Cited by in F6Publishing: 107] [Article Influence: 32.7] [Reference Citation Analysis]
148 Shan Y, Cao L, Xu C, Zhao P, Cao C, Li F, Xu B, Huang Q. Sulfonate-Functionalized Mesoporous Silica Nanoparticles as Carriers for Controlled Herbicide Diquat Dibromide Release through Electrostatic Interaction. Int J Mol Sci 2019;20:E1330. [PMID: 30884792 DOI: 10.3390/ijms20061330] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 8.3] [Reference Citation Analysis]
149 Wang N, Cheng X, Li N, Wang H, Chen H. Nanocarriers and Their Loading Strategies. Adv Healthc Mater 2019;8:e1801002. [PMID: 30450761 DOI: 10.1002/adhm.201801002] [Cited by in Crossref: 78] [Cited by in F6Publishing: 79] [Article Influence: 26.0] [Reference Citation Analysis]
150 Sun S, Han Q, Tan S, Long Y, Liang Q, Ding M. A magnetic, luminescent and mesoporous nanocomposite as protein drug Carrier. Microporous and Mesoporous Materials 2019;277:261-266. [DOI: 10.1016/j.micromeso.2018.10.018] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
151 Tang L, Yang Z, Zhou Z, Ma Y, Kiesewetter DO, Wang Z, Fan W, Zhu S, Zhang M, Tian R, Lang L, Niu G, Zhang X, Chen X. A Logic-Gated Modular Nanovesicle Enables Programmable Drug Release for On-Demand Chemotherapy. Theranostics 2019;9:1358-68. [PMID: 30867836 DOI: 10.7150/thno.32106] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
152 Li X, Wang Z, Xia H. Ultrasound Reversible Response Nanocarrier Based on Sodium Alginate Modified Mesoporous Silica Nanoparticles. Front Chem 2019;7:59. [PMID: 30805332 DOI: 10.3389/fchem.2019.00059] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 7.0] [Reference Citation Analysis]
153 di Nunzio MR, Gutiérrez M, Douhal A. Electronic and Molecular Motions in Silica-Material Hosts. Chemistry of Silica and Zeolite-Based Materials 2019. [DOI: 10.1016/b978-0-12-817813-3.00015-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
154 Wen J, Lv Y, Xu Y, Zhang P, Li H, Chen X, Li X, Zhang L, Liu F, Zeng W, Sun S. Construction of a biodegradable, versatile nanocarrier for optional combination cancer therapy. Acta Biomater 2019;83:359-71. [PMID: 30414486 DOI: 10.1016/j.actbio.2018.11.009] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
155 Godoy-reyes TM, Llopis-lorente A, García-fernández A, Gaviña P, Costero AM, Villalonga R, Sancenón F, Martínez-máñez R. A l -glutamate-responsive delivery system based on enzyme-controlled self-immolative arylboronate-gated nanoparticles. Org Chem Front 2019;6:1058-63. [DOI: 10.1039/c9qo00093c] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
156 Piao Y, Bei HP, Tam A, Yang Y, Zhang Q, Yang M, Zhao X. Calcium Phosphate Nanoparticle-Based Systems for Therapeutic Delivery. Theranostic Bionanomaterials 2019. [DOI: 10.1016/b978-0-12-815341-3.00006-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
157 Yan S, Gao Z, Han J, Zhang Z, Niu F, Zhang Y. Controllable fabrication of stimuli-responsive fluorescent silica nanoparticles using a tetraphenylethene-functionalized carboxylate gemini surfactant. J Mater Chem C 2019;7:12588-600. [DOI: 10.1039/c9tc03732b] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
158 von Baeckmann C, Guillet-Nicolas R, Renfer D, Kählig H, Kleitz F. A Toolbox for the Synthesis of Multifunctionalized Mesoporous Silica Nanoparticles for Biomedical Applications. ACS Omega 2018;3:17496-510. [PMID: 31458354 DOI: 10.1021/acsomega.8b02784] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 9.0] [Reference Citation Analysis]
159 Tang W, Fan W, Wang Z, Zhang W, Zhou S, Liu Y, Yang Z, Shao E, Zhang G, Jacobson O, Shan L, Tian R, Cheng S, Lin L, Dai Y, Shen Z, Niu G, Xie J, Chen X. Acidity/Reducibility Dual-Responsive Hollow Mesoporous Organosilica Nanoplatforms for Tumor-Specific Self-Assembly and Synergistic Therapy. ACS Nano 2018;12:12269-83. [PMID: 30418749 DOI: 10.1021/acsnano.8b06058] [Cited by in Crossref: 61] [Cited by in F6Publishing: 71] [Article Influence: 15.3] [Reference Citation Analysis]
160 Wang Y, Liu Y, Wu H, Zhang J, Tian Q, Yang S. Functionalized Holmium-Doped Hollow Silica Nanospheres for Combined Sonodynamic and Hypoxia-Activated Therapy. Adv Funct Mater 2019;29:1805764. [DOI: 10.1002/adfm.201805764] [Cited by in Crossref: 57] [Cited by in F6Publishing: 58] [Article Influence: 14.3] [Reference Citation Analysis]
161 Wang D, Zhang Y, Guo Q. Sub-10 nm Cu5FeS4 cube for magnetic resonance imaging-guided photothermal therapy of cancer. Int J Nanomedicine 2018;13:7987-96. [PMID: 30538472 DOI: 10.2147/IJN.S181056] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
162 Wu C, Chen X, He Z. Polymer/silica hybrid hollow nanoparticles with channels and thermo-responsive gatekeepers for drug storage and release. Colloid Polym Sci 2018;296:1961-9. [DOI: 10.1007/s00396-018-4397-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
163 Dubovoy V, Ganti A, Zhang T, Al-Tameemi H, Cerezo JD, Boyd JM, Asefa T. One-Pot Hydrothermal Synthesis of Benzalkonium-Templated Mesostructured Silica Antibacterial Agents. J Am Chem Soc 2018;140:13534-7. [PMID: 30260224 DOI: 10.1021/jacs.8b04843] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 7.3] [Reference Citation Analysis]
164 Ma M, Gao N, Sun Y, Du X, Ren J, Qu X. Redox-Activated Near-Infrared-Responsive Polyoxometalates Used for Photothermal Treatment of Alzheimer's Disease. Adv Healthc Mater 2018;7:e1800320. [PMID: 29920995 DOI: 10.1002/adhm.201800320] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 7.5] [Reference Citation Analysis]
165 Yang B, Chen Y, Shi J. Exogenous/Endogenous-Triggered Mesoporous Silica Cancer Nanomedicine. Adv Healthc Mater 2018;7:e1800268. [PMID: 29938917 DOI: 10.1002/adhm.201800268] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 7.8] [Reference Citation Analysis]
166 Gonçalves MC. Sol-gel Silica Nanoparticles in Medicine: A Natural Choice. Design, Synthesis and Products. Molecules 2018;23:E2021. [PMID: 30104542 DOI: 10.3390/molecules23082021] [Cited by in Crossref: 64] [Cited by in F6Publishing: 67] [Article Influence: 16.0] [Reference Citation Analysis]
167 Sedighi M, Rahimi F, Rezayan AH, Shahbazi M, Witzigmann D, Huwyler J. Combined cerium oxide nanocapping and layer-by-layer coating of porous silicon containers for controlled drug release. J Mater Sci 2018;53:14975-88. [DOI: 10.1007/s10853-018-2731-4] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
168 Cheng X, Li D, Lin A, Xu J, Wu L, Gu H, Huang Z, Liu J, Zhang Y, Yin X. Fabrication of multifunctional triple-responsive platform based on CuS-capped periodic mesoporous organosilica nanoparticles for chemo-photothermal therapy. Int J Nanomedicine 2018;13:3661-77. [PMID: 29983561 DOI: 10.2147/IJN.S167407] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
169 Chen X, Zhang Q, Li J, Yang M, Zhao N, Xu FJ. Rattle-Structured Rough Nanocapsules with in-Situ-Formed Gold Nanorod Cores for Complementary Gene/Chemo/Photothermal Therapy. ACS Nano 2018;12:5646-56. [PMID: 29870655 DOI: 10.1021/acsnano.8b01440] [Cited by in Crossref: 122] [Cited by in F6Publishing: 127] [Article Influence: 30.5] [Reference Citation Analysis]
170 Jin R, Liu Z, Bai Y, Zhou Y, Gooding JJ, Chen X. Core–Satellite Mesoporous Silica–Gold Nanotheranostics for Biological Stimuli Triggered Multimodal Cancer Therapy. Adv Funct Mater 2018;28:1801961. [DOI: 10.1002/adfm.201801961] [Cited by in Crossref: 65] [Cited by in F6Publishing: 66] [Article Influence: 16.3] [Reference Citation Analysis]
171 Song B, Ding X, Li C, An G. A Porous Zn 2 (abct) Framework as an Efficient Carrier for 5-Fu Delivery and Inhibiting Human Liver Cancer Cells: A Porous Zn 2 (abct) Framework as an Efficient Carrier for 5-Fu Delivery and Inhibiting Human Liver Cancer Cells. Z Anorg Allg Chem 2018;644:472-6. [DOI: 10.1002/zaac.201800059] [Reference Citation Analysis]
172 AbouAitah K, Swiderska-Sroda A, Farghali AA, Wojnarowicz J, Stefanek A, Gierlotka S, Opalinska A, Allayeh AK, Ciach T, Lojkowski W. Folic acid-conjugated mesoporous silica particles as nanocarriers of natural prodrugs for cancer targeting and antioxidant action. Oncotarget 2018;9:26466-90. [PMID: 29899871 DOI: 10.18632/oncotarget.25470] [Cited by in Crossref: 45] [Cited by in F6Publishing: 47] [Article Influence: 11.3] [Reference Citation Analysis]
173 Shao D, Li M, Wang Z, Zheng X, Lao YH, Chang Z, Zhang F, Lu M, Yue J, Hu H, Yan H, Chen L, Dong WF, Leong KW. Bioinspired Diselenide-Bridged Mesoporous Silica Nanoparticles for Dual-Responsive Protein Delivery. Adv Mater 2018;:e1801198. [PMID: 29808576 DOI: 10.1002/adma.201801198] [Cited by in Crossref: 177] [Cited by in F6Publishing: 194] [Article Influence: 44.3] [Reference Citation Analysis]
174 Du X, Kleitz F, Li X, Huang H, Zhang X, Qiao S. Disulfide‐Bridged Organosilica Frameworks: Designed, Synthesis, Redox‐Triggered Biodegradation, and Nanobiomedical Applications. Adv Funct Mater 2018;28:1707325. [DOI: 10.1002/adfm.201707325] [Cited by in Crossref: 111] [Cited by in F6Publishing: 114] [Article Influence: 27.8] [Reference Citation Analysis]
175 Wang H, Liu M, Ma Y, Gong K, Liu W, Ran R, Weng D, Wu X, Liu S. Simple Strategy Generating Hydrothermally Stable Core–Shell Platinum Catalysts with Tunable Distribution of Acid Sites. ACS Catal 2018;8:2796-804. [DOI: 10.1021/acscatal.7b04327] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 6.0] [Reference Citation Analysis]
176 Akiba U, Minaki D, Anzai JI. Host-Guest Chemistry in Layer-by-Layer Assemblies Containing Calix[n]arenes and Cucurbit[n]urils: A Review. Polymers (Basel) 2018;10:E130. [PMID: 30966166 DOI: 10.3390/polym10020130] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
177 Paunesku T, Woloschak GE. Future Directions of Intraoperative Radiation Therapy: A Brief Review. Front Oncol 2017;7:300. [PMID: 29312882 DOI: 10.3389/fonc.2017.00300] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 3.4] [Reference Citation Analysis]