BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Moad G. RAFT polymerization to form stimuli-responsive polymers. Polym Chem 2017;8:177-219. [DOI: 10.1039/c6py01849a] [Cited by in Crossref: 233] [Cited by in F6Publishing: 236] [Article Influence: 46.6] [Reference Citation Analysis]
Number Citing Articles
1 Liu S, Sun Y, Guo D, Lu R, Mao Y, Ou H. Porous boronate imprinted microsphere prepared based on new RAFT functioned cellulose nanocrystalline with multiple H-bonding at the emulsion droplet interface for highly specific separation of Naringin. Chemical Engineering Journal 2023;452:139294. [DOI: 10.1016/j.cej.2022.139294] [Reference Citation Analysis]
2 Kumar D, Sahu B, Arif Mohammad S, Banerjee S. Phosphorus-containing smart, multifunctional polymers towards materials with dual stimuli responsivity, self-aggregation ability and tunable wettability. European Polymer Journal 2022;181:111646. [DOI: 10.1016/j.eurpolymj.2022.111646] [Reference Citation Analysis]
3 Lehnen A, Bapolisi AM, Krass M, Alsawaf A, Kurki J, Kersting S, Fuchs H, Hartlieb M. Shape Matters: Highly Selective Antimicrobial Bottle Brush Copolymers via a One-Pot RAFT Polymerization Approach. Biomacromolecules 2022. [DOI: 10.1021/acs.biomac.2c01187] [Reference Citation Analysis]
4 Chrysostomou V, Foryś A, Trzebicka B, Demetzos C, Pispas S. Amphiphilic Copolymer-Lipid Chimeric Nanosystems as DNA Vectors. Polymers 2022;14:4901. [DOI: 10.3390/polym14224901] [Reference Citation Analysis]
5 Chafran L, Carfagno A, Altalhi A, Bishop B. Green Hydrogel Synthesis: Emphasis on Proteomics and Polymer Particle-Protein Interaction. Polymers 2022;14:4755. [DOI: 10.3390/polym14214755] [Reference Citation Analysis]
6 Nastyshyn S, Stetsyshyn Y, Raczkowska J, Nastishin Y, Melnyk Y, Panchenko Y, Budkowski A. Temperature-Responsive Polymer Brush Coatings for Advanced Biomedical Applications. Polymers (Basel) 2022;14:4245. [PMID: 36236192 DOI: 10.3390/polym14194245] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
7 Chernikova EV, Mineeva KO. Reversible Deactivation Radical Copolymerization: Synthesis of Copolymers with Controlled Unit Sequence. Polym Sci Ser C 2022;64:1-25. [DOI: 10.1134/s1811238222200024] [Reference Citation Analysis]
8 Liu S, Guo R, Li F, Chiang C. Thermal analysis and pyrolysis products analysis of 4,4′-azobis (4-cyanovaleric acid) by using thermal analysis methods and combination technology. J Therm Anal Calorim. [DOI: 10.1007/s10973-022-11571-6] [Reference Citation Analysis]
9 Ji M, Huang J, Zhu C. Methods for Synthesizing Polymer Nanocomposites and Their Applications. Functional Nanomaterials 2022. [DOI: 10.1002/9783527828562.ch11] [Reference Citation Analysis]
10 Liu S, Tang M, Pang J, Hu J, Chen W, Cheng J, Liu Z, Zhao H, Tan R. CO 2 -Switchable Single-Chain Polymeric Nanoparticles Enable Gas-Controllable Reaction Separation for Asymmetric Catalysis in Water. ACS Sustainable Chem Eng . [DOI: 10.1021/acssuschemeng.2c02045] [Reference Citation Analysis]
11 Sugihara S. From controlled radical polymerization of vinyl ether to polymerization-induced self-assembly. Polym J. [DOI: 10.1038/s41428-022-00698-w] [Reference Citation Analysis]
12 Archer NE, Boeck PT, Ajirniar Y, Tanaka J, You W. RAFT Step-Growth Polymerization of Diacrylates. ACS Macro Lett 2022;:1079-84. [PMID: 35984360 DOI: 10.1021/acsmacrolett.2c00476] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Neal TJ, Penfold NJW, Armes SP. Reverse Sequence Polymerization‐Induced Self‐Assembly in Aqueous Media. Angew Chem Int Ed 2022;61. [DOI: 10.1002/anie.202207376] [Reference Citation Analysis]
14 Sahin Eguz I, Ihlamur M, Abamor ES, Topuzogullari M. Synthesis and immunogenicity of the linear conjugates of polyacrylic acid and antigenic peptide of human papillomavirus. European Polymer Journal 2022;176:111425. [DOI: 10.1016/j.eurpolymj.2022.111425] [Reference Citation Analysis]
15 Neal TJ, Penfold NJW, Armes SP. Reverse Sequence Polymerization‐Induced Self‐Assembly in Aqueous Media. Angewandte Chemie. [DOI: 10.1002/ange.202207376] [Reference Citation Analysis]
16 Sifri RJ, Ma Y, Fors BP. Photoredox Catalysis in Photocontrolled Cationic Polymerizations of Vinyl Ethers. Acc Chem Res 2022. [PMID: 35771008 DOI: 10.1021/acs.accounts.2c00252] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
17 Huang P, Deng H, Zhou Y, Chen X. The roles of polymers in mRNA delivery. Matter 2022;5:1670-99. [DOI: 10.1016/j.matt.2022.03.006] [Reference Citation Analysis]
18 Didaskalou P, Kafetzi M, Pispas S. Cationic Polyelectrolytes Containing Perfluorinated Groups: Synthesis and Self-Assembly Properties in Aqueous Solutions. Macromol 2022;2:194-210. [DOI: 10.3390/macromol2020013] [Reference Citation Analysis]
19 Li Z, Jiang Y, Zhao H, Liu L. Ca2+-Chelation-Induced Fabrication of Multistimuli-Responsive Charged Nanogels from Phospholipid-Polymer Conjugates and Use for Drug/Protein Loading. Langmuir 2022. [PMID: 35578744 DOI: 10.1021/acs.langmuir.2c00464] [Reference Citation Analysis]
20 Ghasemi S, Owrang M, Javaheri F, Farjadian F. Spermine Modified PNIPAAm Nano-Hydrogel Serving as Thermo-Responsive System for Delivery of Cisplatin. Macromol Res . [DOI: 10.1007/s13233-022-0035-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
21 Krishnan A, Roy S, Menon S. Amphiphilic Block Copolymers: From Synthesis Including Living Polymerization Methods to Applications in Drug Delivery. European Polymer Journal 2022. [DOI: 10.1016/j.eurpolymj.2022.111224] [Reference Citation Analysis]
22 Moad G. Reversible Deactivation Radical Polymerization: RAFT. Macromolecular Engineering 2022. [DOI: 10.1002/9783527815562.mme0010] [Reference Citation Analysis]
23 Zhao X, Sun J, Ma J, Liu T, Guo Z, Yang Z, Yao W, Jiang X. Combining RAFT polymerization and thiol-ene click reaction for application of core-shell structured VO2@polymer nanoparticles to smart window. Sustainable Materials and Technologies 2022. [DOI: 10.1016/j.susmat.2022.e00420] [Reference Citation Analysis]
24 Toms RV, Prokopov NI, Mineev KO, Plutalova AV, Chernikova EV. Controlling monomer sequence distribution in RAFT polymerization of styrene and acrylic acid. Mendeleev Communications 2022;32:238-40. [DOI: 10.1016/j.mencom.2022.03.028] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
25 Wang H, Fliedel C, Manoury E, Poli R. Core-crosslinked micelles with a poly-anionic poly(styrene sulfonate)-based outer shell made by RAFT polymerization. Polymer 2022. [DOI: 10.1016/j.polymer.2022.124640] [Reference Citation Analysis]
26 Chrysostomou V, Forys A, Trzebicka B, Demetzos C, Pispas S. Structure of micelleplexes formed between QPDMAEMA-b-PLMA amphiphilic cationic copolymer micelles and DNA of different lengths. European Polymer Journal 2022. [DOI: 10.1016/j.eurpolymj.2022.111048] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
27 Chan NJ, Lentz S, Gurr PA, Tan S, Scheibel T, Qiao GG. Vernetzte Polypeptide durch RAFT‐vermittelte Polymerisation zum kontinuierlichen Aufbau von Polymerfilmen. Angewandte Chemie. [DOI: 10.1002/ange.202112842] [Reference Citation Analysis]
28 Sharifi M, Marjani A, Mahdavian L, Shamlouei HR. Computational Study on Production Mechanism of Nano-Graphene Oxide/Poly Diallyl Dimethyl Ammonium Chloride (NGO/PDADMAC) Nanocomposite. Polycyclic Aromatic Compounds. [DOI: 10.1080/10406638.2022.2025867] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
29 Zhou D, Zhu L, Wu B, Xu Z, Wan L. End-functionalized polymers by controlled/living radical polymerizations: synthesis and applications. Polym Chem 2022;13:300-58. [DOI: 10.1039/d1py01252e] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
30 Xiang L, Zhong Z, Shang M, Su Y. Microflow synthesis of stimuli-responsive star polymers and its application on catalytic reduction. Polymer 2022;238:124383. [DOI: 10.1016/j.polymer.2021.124383] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
31 Jazani AM, Oh JK. Synthesis of multiple stimuli-responsive degradable block copolymers via facile carbonyl imidazole-induced postpolymerization modification. Polym Chem . [DOI: 10.1039/d2py00729k] [Reference Citation Analysis]
32 Degirmenci A, Sanyal R, Arslan M, Sanyal A. Benzothiazole-disulfide based redox-responsive polymers: facile access to reversibly functionalizable polymeric coatings. Polym Chem . [DOI: 10.1039/d2py00133k] [Reference Citation Analysis]
33 Bassi da Silva J, Haddow P, Bruschi ML, Cook MT. Thermoresponsive poly(di(ethylene glycol) methyl ether methacrylate)-ran-(polyethylene glycol methacrylate) graft copolymers exhibiting temperature-dependent rheology and self-assembly. Journal of Molecular Liquids 2022;346:117906. [DOI: 10.1016/j.molliq.2021.117906] [Reference Citation Analysis]
34 Zhang Z, Sèbe G, Hou Y, Wang J, Huang J, Zhou G. Grafting polymers from cellulose nanocrystals via surface‐initiated atom transfer radical polymerization. J of Applied Polymer Sci 2021;138:51458. [DOI: 10.1002/app.51458] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
35 Rahemipoor S, Kohestanian M, Pourjavadi A, Vazifehkhorani HH, Mehrali M. Synthesis and Properties of Multi-stimuli-Responsive Water-Soluble Hyperbranched Polymers Prepared Via Reversible Addition–Fragmentation Chain Transfer Self-Condensing Vinyl Polymerization. ACS Appl Polym Mater 2022;4:692-702. [DOI: 10.1021/acsapm.1c01608] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
36 Moad G, Rizzardo E. Overview of RAFT Polymerization. RAFT Polymerization 2021. [DOI: 10.1002/9783527821358.ch1] [Reference Citation Analysis]
37 Matsubara M, Sakonaka A, Meguro N, Tokutake A, Sato T, Kanie K. Organic-Inorganic Dual-Coated TiO<sub>2</sub> Nanoparticles for Regulation of Photocatalytic Activity. Mater Trans 2021;62:1739-44. [DOI: 10.2320/matertrans.mt-m2021127] [Reference Citation Analysis]
38 Sugihara S. Morphological Control of Nanoparticles via Precision Polymerization-Induced Self-Assembly. Journal of the Japan Society of Colour Material 2021;94:285-293. [DOI: 10.4011/shikizai.94.285] [Reference Citation Analysis]
39 Bami MS, Raeisi Estabragh MA, Khazaeli P, Ohadi M, Dehghannoudeh G. pH-responsive drug delivery systems as intelligent carriers for targeted drug therapy: Brief history, properties, synthesis, mechanism and application. Journal of Drug Delivery Science and Technology 2021. [DOI: 10.1016/j.jddst.2021.102987] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
40 Derikov YI, Yablanovich AD, Litmanovich EA, Amarantov SV, Chernikova EV, Kudryavtsev YV. Stabilization of Gold Nanoparticles with Block Copolymers of Styrene and 4-Vinylpyridine Synthesized by Reversible Chain Transfer Polymerization. Polym Sci Ser B 2021;63:882-893. [DOI: 10.1134/s1560090421060087] [Reference Citation Analysis]
41 Floyd TG, Häkkinen S, Hartlieb M, Kerr A, Perrier S. Complex Polymeric Architectures Synthesized through RAFT Polymerization. In: Moad G, Rizzardo E, editors. RAFT Polymerization. Wiley; 2021. pp. 933-81. [DOI: 10.1002/9783527821358.ch20] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
42 Gayathri V, Jaisankar SN, Samanta D. Temperature and pH responsive polymers: sensing applications. Journal of Macromolecular Science, Part A. [DOI: 10.1080/10601325.2021.1988636] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
43 D'acunzo F, Masci G. Playing construction with the monomer toy box for the synthesis of multi‐stimuli responsive copolymers by reversible deactivation radical polymerization protocols. Journal of Polymer Science 2021;59:3059-83. [DOI: 10.1002/pol.20210590] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
44 Opiyo G, Jin J. Recent progress in switchable RAFT agents: Design, synthesis and application. European Polymer Journal 2021;159:110713. [DOI: 10.1016/j.eurpolymj.2021.110713] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
45 Khoo YS, Lau WJ, Liang YY, Yusof N, Fauzi Ismail A. Surface modification of PA layer of TFC membranes: Does it effective for performance Improvement? Journal of Industrial and Engineering Chemistry 2021;102:271-92. [DOI: 10.1016/j.jiec.2021.07.006] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
46 Wang Y, Zhu G, Wang S, Xie J, Chen Z, Shi Y. Preparation of Quaternary Amphiphilic Block Copolymer PMA-b-P (NVP/MAH/St) and Its Application in Surface Modification of Aluminum Nitride Powders. Molecules 2021;26:5884. [PMID: 34641428 DOI: 10.3390/molecules26195884] [Reference Citation Analysis]
47 Nagase K. Thermoresponsive interfaces obtained using poly(N-isopropylacrylamide)-based copolymer for bioseparation and tissue engineering applications. Adv Colloid Interface Sci 2021;295:102487. [PMID: 34314989 DOI: 10.1016/j.cis.2021.102487] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 12.0] [Reference Citation Analysis]
48 Wang J, Hu X, Zhu N, Guo K. Continuous flow photo-RAFT and light-PISA. Chemical Engineering Journal 2021;420:127663. [DOI: 10.1016/j.cej.2020.127663] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
49 Quílez-alburquerque J, Descalzo AB, Moreno-bondi MC, Orellana G. Luminescent molecularly imprinted polymer nanocomposites for emission intensity and lifetime rapid sensing of tenuazonic acid mycotoxin. Polymer 2021;230:124041. [DOI: 10.1016/j.polymer.2021.124041] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
50 Izadi F, Arthur‐baidoo E, Strover LT, Yu L, Coote ML, Moad G, Denifl S. Selektive Bindungsspaltung in RAFT Agenzien durch niederenergetische Elektronenanlagerung. Angewandte Chemie 2021;133:19276-19281. [DOI: 10.1002/ange.202107480] [Reference Citation Analysis]
51 Miclotte MPJ, Lawrenson SB, Varlas S, Rashid B, Chapman E, O'Reilly RK. Tuning the Cloud-Point and Flocculation Temperature of Poly(2-(diethylamino)ethyl methacrylate)-Based Nanoparticles via a Postpolymerization Betainization Approach. ACS Polym Au 2021;1:47-58. [PMID: 34476421 DOI: 10.1021/acspolymersau.1c00010] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
52 Sharma R, Haldar U, Lee H. Two-in-One Dual-Channel Boronic Ester Block Copolymer for the Colorimetric Detection of Cysteine and Glucose at Neutral pH. ACS Sustainable Chem Eng 2021;9:9915-22. [DOI: 10.1021/acssuschemeng.1c03020] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
53 Xie W, Zhao L, Wei Y, Yuan J. Advances in enzyme-catalysis-mediated RAFT polymerization. Cell Reports Physical Science 2021;2:100487. [DOI: 10.1016/j.xcrp.2021.100487] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
54 Nazila Taghavi, Massoumi B, Jaymand M. A Novel pH-Responsive Magnetic Nanosystem for Delivery of Anticancer Drugs. Polym Sci Ser B 2021;63:408-417. [DOI: 10.1134/s1560090421040102] [Reference Citation Analysis]
55 Gegenhuber T, Müllner M. Molecular Polymer Brushes Made via Ring‐Opening Metathesis Polymerization from Cleavable RAFT Macromonomers. Macromol Chem Phys 2021;222:2100077. [DOI: 10.1002/macp.202100077] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
56 Selianitis D, Pispas S. P( MMA‐ co ‐HPMA )‐ b ‐POEGMA copolymers: synthesis, micelle formation in aqueous media and drug encapsulation. Polym Int 2021;70:1508-22. [DOI: 10.1002/pi.6229] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
57 Photoinitiators for Controlled/Living Polymerization Reactions. Photoinitiators 2021. [DOI: 10.1002/9783527821297.ch16] [Reference Citation Analysis]
58 Dadhwal S, Lee A, Goswami SK, Hook S, Gamble AB. Synthesis and formulation of self‐immolative PEG ‐aryl azide block copolymers and click‐to‐release reactivity with trans ‐cyclooctene. Journal of Polymer Science 2021;59:646-58. [DOI: 10.1002/pol.20210020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
59 Rossner C, König TAF, Fery A. Plasmonic Properties of Colloidal Assemblies. Adv Optical Mater 2021;9:2001869. [DOI: 10.1002/adom.202001869] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 12.0] [Reference Citation Analysis]
60 Kafetzi M, Pispas S. Multifaceted pH and Temperature Induced Self‐Assembly of P(DMAEMA‐ co ‐LMA)‐ b ‐POEGMA Terpolymers and Their Cationic Analogues in Aqueous Media. Macromol Chem Phys 2021;222:2000358. [DOI: 10.1002/macp.202000358] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
61 Farzanfar J, Farjadian F, Roointan A, Mohammadi-samani S, Tayebi L. Assessment of pH Responsive Delivery of Methotrexate Based on PHEMA-st-PEG-DA Nanohydrogels. Macromol Res 2021;29:54-61. [DOI: 10.1007/s13233-021-9007-6] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 12.0] [Reference Citation Analysis]
62 Ahmad HMN, Dutta G, Csoros J, Si B, Yang R, Halpern JM, Seitz WR, Song E. Stimuli-Responsive Templated Polymer as a Target Receptor for a Conformation-based Electrochemical Sensing Platform. ACS Appl Polym Mater 2021;3:329-41. [PMID: 33748761 DOI: 10.1021/acsapm.0c01120] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
63 Gómez-caballero A, Unceta N, Goicolea MA, Barrio RJ. Plastic Receptors Developed by Imprinting Technology as Smart Polymers Imitating Natural Behavior. Reactive and Functional Polymers Volume Three 2021. [DOI: 10.1007/978-3-030-50457-1_5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
64 Mohammad SA, Kumar D, Alam MM, Banerjee S. Ultrafast, green and recyclable photoRDRP in an ionic liquid towards multi-stimuli responsive amphiphilic copolymers. Polym Chem 2021;12:4954-60. [DOI: 10.1039/d1py01014j] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
65 Mohammad SA, Dolui S, Kumar D, Mane SR, Banerjee S. Facile access to functional polyacrylates with dual stimuli response and tunable surface hydrophobicity. Polym Chem 2021;12:3042-51. [DOI: 10.1039/d1py00378j] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
66 Sarkar J, Chan KBJ, Goto A. Reduction-responsive double hydrophilic block copolymer nano-capsule synthesized via RCMP-PISA. Polym Chem 2021;12:1060-7. [DOI: 10.1039/d0py01764g] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
67 Peng W, Cai Y, Fanslau L, Vana P. Nanoengineering with RAFT polymers: from nanocomposite design to applications. Polym Chem 2021;12:6198-229. [DOI: 10.1039/d1py01172c] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
68 Zhou M, Wang S, Ding A, Lu G, Huang X, Jiang X, Xu B. First polyallene-based well-defined amphiphilic diblock copolymer via RAFT polymerization. Polym Chem 2021;12:3088-95. [DOI: 10.1039/d1py00509j] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
69 Moad CL, Moad G. Fundamentals of reversible addition–fragmentation chain transfer (RAFT). Chemistry Teacher International 2021;3:3-17. [DOI: 10.1515/cti-2020-0026] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
70 Dhara (Ganguly) M. Smart polymeric nanostructures for targeted delivery of therapeutics. Journal of Macromolecular Science, Part A 2021;58:269-84. [DOI: 10.1080/10601325.2020.1842766] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
71 Mi X, Zhang X, Ding M, Zhang M, Pei M. Structure and properties of polycarboxylic acid dispersants synthesized by RAFT method. Polym Adv Technol 2021;32:1126-34. [DOI: 10.1002/pat.5160] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
72 Serkhacheva NS, Chernikova EV, Balashov MS, Prokopov NI, Toms RV. Facile synthesis of temperature-sensitive ABA triblock copolymers by dispersion RAFT polymerization. Mendeleev Communications 2020;30:731-3. [DOI: 10.1016/j.mencom.2020.11.014] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
73 Park CH, Kim T, Lee GH, Ku KH, Kim SH, Kim BJ. Fluorescent Polymer-MoS2-Embedded Microgels for Photothermal Heating and Colorimetric Monitoring. ACS Appl Mater Interfaces 2020;12:35415-23. [PMID: 32662977 DOI: 10.1021/acsami.0c08125] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
74 Goswami S, Cekli S, Alarousu E, Winkel RW, Younus M, Mohammed OF, Schanze KS. Light-Harvesting Two-Photon-Absorbing Polymers. Macromolecules 2020;53:6279-87. [DOI: 10.1021/acs.macromol.0c01035] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
75 Montoya-villegas KA, Ramírez-jiménez A, Zizumbo-lópez A, Pérez-sicairos S, Leal-acevedo B, Bucio E, Licea-claverie A. Controlled surface modification of silicone rubber by gamma-irradiation followed by RAFT grafting polymerization. European Polymer Journal 2020;134:109817. [DOI: 10.1016/j.eurpolymj.2020.109817] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
76 Selianitis D, Pispas S. PDEGMA‐b‐PDIPAEMA copolymers via RAFT polymerization and their pH and thermoresponsive schizophrenic self‐assembly in aqueous media. Journal of Polymer Science 2020;58:1867-1880. [DOI: 10.1002/pol.20200266] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
77 Moghaddam SZ, Thormann E. Surface forces and friction tuned by thermo-responsive polymer films. Current Opinion in Colloid & Interface Science 2020;47:27-45. [DOI: 10.1016/j.cocis.2019.12.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
78 Hwang K, Mun H, Kim W. Effect of Reversible Addition-Fragmentation Transfer Emulsion Styrene Butadiene Rubber (RAFT ESBR) on the Properties of Carbon Black-Filled Compounds. Polymers 2020;12:933. [DOI: 10.3390/polym12040933] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
79 Zhao L, Shi L, Wang J, Zhang Q, Yang X, Lu Y. Degradable inorganic/polymer core-shell microspheres for pH-triggered release of indole-3-acetic acid. International Journal of Polymeric Materials and Polymeric Biomaterials 2020;69:317-25. [DOI: 10.1080/00914037.2018.1563087] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
80 Sentoukas T, Pispas S. Poly(2‐(dimethylamino)ethyl methacrylate)‐ b ‐poly(hydroxypropyl methacrylate) copolymers/bovine serum albumin complexes in aqueous solutions. Journal of Polymer Science 2020;58:1241-52. [DOI: 10.1002/pol.20200065] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
81 Deane OJ, Musa OM, Fernyhough A, Armes SP. Synthesis and Characterization of Waterborne Pyrrolidone-Functional Diblock Copolymer Nanoparticles Prepared via Surfactant-free RAFT Emulsion Polymerization. Macromolecules 2020;53:1422-34. [DOI: 10.1021/acs.macromol.9b02394] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 12.5] [Reference Citation Analysis]
82 Vakil JR, De Alwis Watuthanthrige N, Digby ZA, Zhang B, Lacy HA, Sparks JL, Konkolewicz D. Controlling polymer architecture to design dynamic network materials with multiple dynamic linkers. Mol Syst Des Eng 2020;5:1267-76. [DOI: 10.1039/d0me00015a] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
83 Leiske MN, Walker JA, Zia A, Fletcher NL, Thurecht KJ, Davis TP, Kempe K. Synthesis of biscarboxylic acid functionalised EDTA mimicking polymers and their ability to form Zr( iv ) chelation mediated nanostructures. Polym Chem 2020;11:2799-810. [DOI: 10.1039/d0py00304b] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
84 Wang W, Wang J, Li S, Li C, Tan R, Yin D. Iron( ii )-folded single-chain nanoparticles: a metalloenzyme mimicking sustainable catalyst for highly enantioselective sulfa-Michael addition in water. Green Chem 2020;22:4645-55. [DOI: 10.1039/d0gc00949k] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
85 Rigo S, Kyropoulou M, Schoenenberger C, Palivan CG. Battling Bacteria with Free and Surface-Immobilized Polymeric Nanostructures. Racing for the Surface 2020. [DOI: 10.1007/978-3-030-34475-7_17] [Reference Citation Analysis]
86 Guo X, Zhang T, Wu Y, Shi W, Choi B, Feng A, Thang SH. Synthesis of CO2-responsive gradient copolymers by switchable RAFT polymerization and their controlled self-assembly. Polym Chem 2020;11:6794-6802. [DOI: 10.1039/d0py01109f] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
87 Hoffman AS, Stayton PS. Applications of “Smart Polymers” as Biomaterials. Biomaterials Science 2020. [DOI: 10.1016/b978-0-12-816137-1.00016-7] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
88 Moad G, Rizzardo E. A 20th anniversary perspective on the life of RAFT (RAFT coming of age). Polym Int 2020;69:658-61. [DOI: 10.1002/pi.5944] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
89 Song W, Huang J, Liu C, Wang X, Wang G. Investigation on the atom transfer nitroxide radical polymerization (ATNRP) mechanism and its versatile applications for bimodal polymers. Polymer 2019;183:121852. [DOI: 10.1016/j.polymer.2019.121852] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
90 Strover LT, Cantalice A, Lam JYL, Postma A, Hutt OE, Horne MD, Moad G. Electrochemical Behavior of Thiocarbonylthio Chain Transfer Agents for RAFT Polymerization. ACS Macro Lett 2019;8:1316-22. [PMID: 35651172 DOI: 10.1021/acsmacrolett.9b00598] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
91 Martínez-bailén M, Galbis E, Carmona AT, de-Paz M, Robina I. Preparation of water-soluble glycopolymers derived from five-membered iminosugars. European Polymer Journal 2019;119:213-21. [DOI: 10.1016/j.eurpolymj.2019.07.027] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
92 Penfold NJW, Yeow J, Boyer C, Armes SP. Emerging Trends in Polymerization-Induced Self-Assembly. ACS Macro Lett 2019;8:1029-54. [PMID: 35619484 DOI: 10.1021/acsmacrolett.9b00464] [Cited by in Crossref: 286] [Cited by in F6Publishing: 296] [Article Influence: 95.3] [Reference Citation Analysis]
93 Terada S, Matsumoto A. Role of N-substituents of maleimides on penultimate unit effect for sequence control during radical copolymerization. Polym J 2019;51:1137-46. [DOI: 10.1038/s41428-019-0227-y] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
94 Abbasian M, Bighlari P, Mahmoodzadeh F, Acar MH, Jaymand M. A de novo formulation of metformin using chitosan‐based nanomicelles for potential diabetes therapy. J Appl Polym Sci 2019;136:48037. [DOI: 10.1002/app.48037] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
95 Kudo Y, Ono J, Kotsuchibashi Y. Controlled water-soluble properties of poly(vinyl alcohol) films via the benzoxaborole-containing temperature-responsive copolymers. Polymer 2019;175:1-7. [DOI: 10.1016/j.polymer.2019.04.074] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
96 Reyhani A, Ranji-burachaloo H, Mckenzie TG, Fu Q, Qiao GG. Heterogeneously Catalyzed Fenton-Reversible Addition–Fragmentation Chain Transfer Polymerization in the Presence of Air. Macromolecules 2019;52:3278-87. [DOI: 10.1021/acs.macromol.9b00038] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 9.7] [Reference Citation Analysis]
97 Takada K, Tsuji N, Suzuki Y, Matsumoto A. Synthesis of Transparent and Heat-Resistant Acrylic Block Copolymers by Living Radical Polymerization. KOBUNSHI RONBUNSHU 2019;76:113-40. [DOI: 10.1295/koron.2018-0056] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
98 Montoya-villegas KA, Licea-claveríe Á, Zapata-gonzález I, Gómez E, Ramírez-jiménez A. The effect in the RAFT polymerization of two oligo(ethylene glycol) methacrylates when the CTA 4-cyano-4-(propylthiocarbonothioylthio) pentanoic acid is auto-hydrolyzed to its corresponding amide. J Polym Res 2019;26. [DOI: 10.1007/s10965-019-1718-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
99 Hu Q, Kong J, Han D, Niu L, Zhang X. Electrochemical DNA Biosensing via Electrochemically Controlled Reversible Addition-Fragmentation Chain Transfer Polymerization. ACS Sens 2019;4:235-41. [PMID: 30620562 DOI: 10.1021/acssensors.8b01357] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 8.7] [Reference Citation Analysis]
100 Wang W, Li C, Pi Y, Wang J, Tan R, Yin D. Chiral salen Cr( iii ) complexes encapsulated in thermo-responsive polymer nanoreactors for asymmetric epoxidation of alkenes in water. Catal Sci Technol 2019;9:5626-35. [DOI: 10.1039/c9cy01398a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
101 Zhou Y, Zhang Z, Postma A, Moad G. Kinetics and mechanism for thermal and photochemical decomposition of 4,4′-azobis(4-cyanopentanoic acid) in aqueous media. Polym Chem 2019;10:3284-7. [DOI: 10.1039/c9py00507b] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
102 Yang X, Ruan J, Ma C, Hao B, Huang X, Lu G, Feng C. Synthesis and self-seeding behavior of oligo( p -phenylene vinylene)- b -poly( N -(2-hydroxypropyl)methacrylamide). Polym Chem 2019;10:4718-31. [DOI: 10.1039/c9py00816k] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
103 Prasher A, Hu H, Tanaka J, Nicewicz DA, You W. Alcohol mediated degenerate chain transfer controlled cationic polymerisation of para -alkoxystyrene. Polym Chem 2019;10:4126-33. [DOI: 10.1039/c9py00480g] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
104 Zhang B, Ke J, Vakil JR, Cummings SC, Digby ZA, Sparks JL, Ye Z, Zanjani MB, Konkolewicz D. Dual-dynamic interpenetrated networks tuned through macromolecular architecture. Polym Chem 2019;10:6290-304. [DOI: 10.1039/c9py01387c] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 9.7] [Reference Citation Analysis]
105 Dzhardimalieva GI, Uflyand IE. Synthetic Methodologies for Chelating Polymer Ligands: Recent Advances and Future Development. ChemistrySelect 2018;3:13234-70. [DOI: 10.1002/slct.201802516] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
106 Sugihara S. Polymerization‐Induced Self‐assembly of Block Copolymer Nano‐objects via Green RAFT Polymerization. In: Yamamoto H, Kato T, editors. Molecular Technology. Wiley; 2018. pp. 1-29. [DOI: 10.1002/9783527823987.vol4_c1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
107 Lei Q, Peng B, Ma KKY, Zhang Z, Wang X, Luo J, Tam KC. ARGET ATRP of Triblock Copolymers (PMMA-b-PEO-b-PMMA) and Their Microstructure in Aqueous Solution. ACS Omega 2018;3:15996-6004. [PMID: 31458238 DOI: 10.1021/acsomega.8b02489] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
108 Sentoukas T, Pispas S. Poly(dimethylaminoethyl methacrylate)- b -poly(hydroxypropyl methacrylate) copolymers: Synthesis and pH/thermo-responsive behavior in aqueous solutions. J Polym Sci Part A: Polym Chem 2018;56:1962-77. [DOI: 10.1002/pola.29082] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
109 Masoumi S, Duever TA, Penlidis A, Azimi R, López-domínguez P, Vivaldo-lima E. Model Discrimination between RAFT Polymerization Models Using Sequential Bayesian Methodology. Macromol Theory Simul 2018;27:1800016. [DOI: 10.1002/mats.201800016] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
110 Nagase K, Okano T, Kanazawa H. Design of Functional Thermoresponsive Polymer Brushes and Their Application to Bioseparation. KOBUNSHI RONBUNSHU 2018;75:143-54. [DOI: 10.1295/koron.2017-0073] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
111 Song Y, Duan H, Zhu S, Lü J, Lü C. Preparation of a temperature-responsive block copolymer-anchored graphene oxide@ZnS NPs luminescent nanocomposite for selective detection of 2,4,6-trinitrotoluene. New J Chem 2018;42:9598-605. [DOI: 10.1039/c7nj04515h] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
112 Gan W, Cao X, Gao H. Recent Progress on Grafting-onto Synthesis of Molecular Brushes by Reversible Deactivation Radical Polymerization and CuAAC Coupling Reaction. ACS Symposium Series 2018. [DOI: 10.1021/bk-2018-1285.ch014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
113 Roka N, Pitsikalis M. Statistical copolymers of N-vinylpyrrolidone and benzyl methacrylate via RAFT: Monomer reactivity ratios, thermal properties and kinetics of thermal decomposition. Journal of Macromolecular Science, Part A 2018;55:222-30. [DOI: 10.1080/10601325.2017.1403858] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.6] [Reference Citation Analysis]
114 He J, Ren J, Mastan E. Sequence-Controlled Polymers by Chain Polymerization. Sequence-Controlled Polymers 2017. [DOI: 10.1002/9783527806096.ch10] [Reference Citation Analysis]
115 Pothanagandhi N, Vijayakrishna K. RAFT derived chiral and achiral poly(ionic liquids) resins: Synthesis and application in organocatalysis. European Polymer Journal 2017;95:785-94. [DOI: 10.1016/j.eurpolymj.2017.08.002] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
116 Gardiner J, Martinez-botella I, Kohl TM, Krstina J, Moad G, Tyrell JH, Coote ML, Tsanaktsidis J. 4-Halogeno-3,5-dimethyl-1 H -pyrazole-1-carbodithioates: versatile reversible addition fragmentation chain transfer agents with broad applicability: 4-Halogeno-3,5-dimethyl-1 H -pyrazole-1-carbodithioates as RAFT agents. Polym Int 2017;66:1438-47. [DOI: 10.1002/pi.5423] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 5.4] [Reference Citation Analysis]
117 Takada K, Matsumoto A. Reversible addition-fragmentation chain transfer polymerization of diisopropyl fumarate using various dithiobenzoates as chain transfer agents. J Polym Sci Part A: Polym Chem 2017;55:3266-75. [DOI: 10.1002/pola.28701] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
118 Weaver LG, Stockmann R, Thang SH, Postma A. Temperature-responsive methacrylamide polyampholytes. RSC Adv 2017;7:31033-41. [DOI: 10.1039/c7ra04723a] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
119 Guo R, Yao Y, Bai S, Wang Y, Shi Z, Zhang J. Determination and correlation of regioselectivity and dead dormant species from head addition in acrylate RAFT polymerization. Polym Chem 2017;8:3560-73. [DOI: 10.1039/c7py00720e] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]