BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Liu X, Yang G, Zhang L, Liu Z, Cheng Z, Zhu X. Photosensitizer cross-linked nano-micelle platform for multimodal imaging guided synergistic photothermal/photodynamic therapy. Nanoscale 2016;8:15323-39. [DOI: 10.1039/c6nr04835h] [Cited by in Crossref: 63] [Cited by in F6Publishing: 63] [Article Influence: 9.0] [Reference Citation Analysis]
Number Citing Articles
1 Hari SK, Gauba A, Shrivastava N, Tripathi RM, Jain SK, Pandey AK. Polymeric micelles and cancer therapy: an ingenious multimodal tumor-targeted drug delivery system. Drug Deliv Transl Res 2023;13:135-63. [PMID: 35727533 DOI: 10.1007/s13346-022-01197-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
2 Xie Y, Wang M, Sun Q, Wang D, Li C. Recent Advances in Tetrakis (4‐Carboxyphenyl) Porphyrin‐Based Nanocomposites for Tumor Therapy. Advanced NanoBiomed Research 2022. [DOI: 10.1002/anbr.202200136] [Reference Citation Analysis]
3 Peng C, Chen M, Spicer JB, Jiang X. Acoustics at the nanoscale (nanoacoustics): A comprehensive literature review.: Part II: Nanoacoustics for biomedical imaging and therapy. Sens Actuators A Phys 2021;332:112925. [PMID: 34937992 DOI: 10.1016/j.sna.2021.112925] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
4 Zhou M, Liu Y, Su Y, Su Q. Plasmonic Oxygen Defects in MO3- x (M = W or Mo) Nanomaterials: Synthesis, Modifications, and Biomedical Applications. Adv Healthc Mater 2021;10:e2101331. [PMID: 34549537 DOI: 10.1002/adhm.202101331] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
5 Yang YL, Lin K, Yang L. Progress in Nanocarriers Codelivery System to Enhance the Anticancer Effect of Photodynamic Therapy. Pharmaceutics 2021;13:1951. [PMID: 34834367 DOI: 10.3390/pharmaceutics13111951] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
6 Pham TC, Nguyen VN, Choi Y, Lee S, Yoon J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem Rev 2021;121:13454-619. [PMID: 34582186 DOI: 10.1021/acs.chemrev.1c00381] [Cited by in Crossref: 141] [Cited by in F6Publishing: 172] [Article Influence: 70.5] [Reference Citation Analysis]
7 Dias LD, Buzzá HH, Stringasci MD, Bagnato VS. Recent Advances in Combined Photothermal and Photodynamic Therapies against Cancer Using Carbon Nanomaterial Platforms for In Vivo Studies. Photochem 2021;1:434-450. [DOI: 10.3390/photochem1030026] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
8 Geraldes CF, Castro MMC, Peters JA. Mn(III) porphyrins as potential MRI contrast agents for diagnosis and MRI-guided therapy. Coordination Chemistry Reviews 2021;445:214069. [DOI: 10.1016/j.ccr.2021.214069] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
9 Tian J, Huang B, Cui Z, Wang P, Chen S, Yang G, Zhang W. Mitochondria-targeting and ROS-sensitive smart nanoscale supramolecular organic framework for combinational amplified photodynamic therapy and chemotherapy. Acta Biomater 2021;130:447-59. [PMID: 34082096 DOI: 10.1016/j.actbio.2021.05.048] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
10 Liu W, Dong A, Wang B, Zhang H. Current Advances in Black Phosphorus-Based Drug Delivery Systems for Cancer Therapy. Adv Sci (Weinh) 2021;8:2003033. [PMID: 33717847 DOI: 10.1002/advs.202003033] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 15.5] [Reference Citation Analysis]
11 Alimardani V, Abolmaali SS, Yousefi G, Rahiminezhad Z, Abedi M, Tamaddon A, Ahadian S. Microneedle Arrays Combined with Nanomedicine Approaches for Transdermal Delivery of Therapeutics. J Clin Med 2021;10:E181. [PMID: 33419118 DOI: 10.3390/jcm10020181] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 12.0] [Reference Citation Analysis]
12 Escudero A, Carrillo-carrión C, Castillejos MC, Romero-ben E, Rosales-barrios C, Khiar N. Photodynamic therapy: photosensitizers and nanostructures. Mater Chem Front 2021;5:3788-812. [DOI: 10.1039/d0qm00922a] [Cited by in Crossref: 28] [Cited by in F6Publishing: 33] [Article Influence: 14.0] [Reference Citation Analysis]
13 Jiao L, Liu Y, Zhang X, Hong G, Zheng J, Cui J, Peng X, Song F. Constructing a Local Hydrophobic Cage in Dye-Doped Fluorescent Silica Nanoparticles to Enhance the Photophysical Properties. ACS Cent Sci 2020;6:747-59. [PMID: 32490191 DOI: 10.1021/acscentsci.0c00071] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 8.3] [Reference Citation Analysis]
14 Leitão MM, de Melo-Diogo D, Alves CG, Lima-Sousa R, Correia IJ. Prototypic Heptamethine Cyanine Incorporating Nanomaterials for Cancer Phototheragnostic. Adv Healthc Mater 2020;9:e1901665. [PMID: 31994354 DOI: 10.1002/adhm.201901665] [Cited by in Crossref: 44] [Cited by in F6Publishing: 45] [Article Influence: 14.7] [Reference Citation Analysis]
15 Demazeau M, Gibot L, Mingotaud AF, Vicendo P, Roux C, Lonetti B. Rational design of block copolymer self-assemblies in photodynamic therapy. Beilstein J Nanotechnol 2020;11:180-212. [PMID: 32082960 DOI: 10.3762/bjnano.11.15] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
16 Augé A, Camerel F, Benoist A, Zhao Y. Near-infrared light-responsive UCST-nanogels using an efficient nickel-bis(dithiolene) photothermal crosslinker. Polym Chem 2020;11:3863-75. [DOI: 10.1039/d0py00567c] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
17 Wang Y, Zhang F, Lin H, Qu F. Biodegradable Hollow MoSe2/Fe3O4 Nanospheres as the Photodynamic Therapy-Enhanced Agent for Multimode CT/MR/IR Imaging and Synergistic Antitumor Therapy. ACS Appl Mater Interfaces 2019;11:43964-75. [PMID: 31664811 DOI: 10.1021/acsami.9b17237] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 9.0] [Reference Citation Analysis]
18 Gao D, Guo X, Zhang X, Chen S, Wang Y, Chen T, Huang G, Gao Y, Tian Z, Yang Z. Multifunctional phototheranostic nanomedicine for cancer imaging and treatment. Mater Today Bio 2020;5:100035. [PMID: 32211603 DOI: 10.1016/j.mtbio.2019.100035] [Cited by in Crossref: 114] [Cited by in F6Publishing: 120] [Article Influence: 28.5] [Reference Citation Analysis]
19 Zhang H, Mi P. Polymeric Micelles for Tumor Theranostics. Theranostic Bionanomaterials 2019. [DOI: 10.1016/b978-0-12-815341-3.00012-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
20 Tham HP, Xu K, Lim WQ, Chen H, Zheng M, Thng TGS, Venkatraman SS, Xu C, Zhao Y. Microneedle-Assisted Topical Delivery of Photodynamically Active Mesoporous Formulation for Combination Therapy of Deep-Seated Melanoma. ACS Nano 2018;12:11936-48. [PMID: 30444343 DOI: 10.1021/acsnano.8b03007] [Cited by in Crossref: 84] [Cited by in F6Publishing: 92] [Article Influence: 16.8] [Reference Citation Analysis]
21 Lamch Ł, Pucek A, Kulbacka J, Chudy M, Jastrzębska E, Tokarska K, Bułka M, Brzózka Z, Wilk KA. Recent progress in the engineering of multifunctional colloidal nanoparticles for enhanced photodynamic therapy and bioimaging. Adv Colloid Interface Sci 2018;261:62-81. [PMID: 30262128 DOI: 10.1016/j.cis.2018.09.002] [Cited by in Crossref: 50] [Cited by in F6Publishing: 50] [Article Influence: 10.0] [Reference Citation Analysis]
22 Liu X, Yang T, Han Y, Zou L, Yang H, Jiang J, Liu S, Zhao Q, Huang W. In Situ Growth of CuS/SiO2-Based Multifunctional Nanotherapeutic Agents for Combined Photodynamic/Photothermal Cancer Therapy. ACS Appl Mater Interfaces 2018;10:31008-18. [PMID: 30130088 DOI: 10.1021/acsami.8b10339] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 7.2] [Reference Citation Analysis]
23 Zhang H, Tian X, Shang Y, Li Y, Yin X. Theranostic Mn-Porphyrin Metal–Organic Frameworks for Magnetic Resonance Imaging-Guided Nitric Oxide and Photothermal Synergistic Therapy. ACS Appl Mater Interfaces 2018;10:28390-8. [DOI: 10.1021/acsami.8b09680] [Cited by in Crossref: 76] [Cited by in F6Publishing: 83] [Article Influence: 15.2] [Reference Citation Analysis]
24 Dudás Z, Fagadar-Cosma E, Len A, Románszki L, Almásy L, Vlad-Oros B, Dascălu D, Krajnc A, Kriechbaum M, Kuncser A. Improved Optical and Morphological Properties of Vinyl-Substituted Hybrid Silica Materials Incorporating a Zn-Metalloporphyrin. Materials (Basel) 2018;11:E565. [PMID: 29642404 DOI: 10.3390/ma11040565] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
25 Bhattarai P, Dai Z. Cyanine based Nanoprobes for Cancer Theranostics. Adv Healthc Mater 2017;6. [PMID: 28558146 DOI: 10.1002/adhm.201700262] [Cited by in Crossref: 51] [Cited by in F6Publishing: 54] [Article Influence: 8.5] [Reference Citation Analysis]
26 Zhang Y, Yu J, Kahkoska AR, Gu Z. Photoacoustic Drug Delivery. Sensors (Basel) 2017;17:E1400. [PMID: 28617354 DOI: 10.3390/s17061400] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 4.0] [Reference Citation Analysis]