BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Jiang Y, Lu H, Dag A, Hart-smith G, Stenzel MH. Albumin–polymer conjugate nanoparticles and their interactions with prostate cancer cells in 2D and 3D culture: comparison between PMMA and PCL. J Mater Chem B 2016;4:2017-27. [DOI: 10.1039/c5tb02576a] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Ashrafizadeh M, Aghamiri S, Tan SC, Zarrabi A, Sharifi E, Rabiee N, Kadumudi FB, Pirouz AD, Delfi M, Byrappa K, Thakur VK, Sharath Kumar KS, Girish YR, Zandsalimi F, Zare EN, Orive G, Tay F, Hushmandi K, Kumar AP, Karaman C, Karimi-maleh H, Mostafavi E, Makvandi P, Wang Y. Nanotechnological Approaches in Prostate Cancer Therapy: Integration of engineering and biology. Nano Today 2022;45:101532. [DOI: 10.1016/j.nantod.2022.101532] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
2 Araya-Sibaja AM, Wilhelm-Romero K, Quirós-Fallas MI, Vargas Huertas LF, Vega-Baudrit JR, Navarro-Hoyos M. Bovine Serum Albumin-Based Nanoparticles: Preparation, Characterization, and Antioxidant Activity Enhancement of Three Main Curcuminoids from Curcuma longa. Molecules 2022;27:2758. [PMID: 35566108 DOI: 10.3390/molecules27092758] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
3 Raveendran R, Dan Xu Y, Joshi N, Stenzel MH. Progress of albumin-polymer conjugates as efficient drug carriers. Pure and Applied Chemistry 2022;0. [DOI: 10.1515/pac-2021-2006] [Reference Citation Analysis]
4 Xu YD, Tian L, Lai RY, Li Z, Procházková E, Ho J, Stenzel MH. Development of an Albumin–Polymer Bioconjugate via Covalent Conjugation and Supramolecular Interactions. Bioconjugate Chem . [DOI: 10.1021/acs.bioconjchem.1c00536] [Reference Citation Analysis]
5 Moad G. Dithioesters in RAFT Polymerization. In: Moad G, Rizzardo E, editors. RAFT Polymerization. Wiley; 2021. pp. 223-358. [DOI: 10.1002/9783527821358.ch8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
6 Joshi N, Liu D, Dickson KA, Marsh DJ, Ford CE, Stenzel MH. An organotypic model of high-grade serous ovarian cancer to test the anti-metastatic potential of ROR2 targeted Polyion complex nanoparticles. J Mater Chem B 2021;9:9123-35. [PMID: 34676865 DOI: 10.1039/d1tb01837j] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
7 Pozzi S, Scomparin A, Israeli Dangoor S, Rodriguez Ajamil D, Ofek P, Neufeld L, Krivitsky A, Vaskovich-Koubi D, Kleiner R, Dey P, Koshrovski-Michael S, Reisman N, Satchi-Fainaro R. Meet me halfway: Are in vitro 3D cancer models on the way to replace in vivo models for nanomedicine development? Adv Drug Deliv Rev 2021;175:113760. [PMID: 33838208 DOI: 10.1016/j.addr.2021.04.001] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
8 Feng L, Yang L, Li L, Xiao J, Bie N, Xu C, Zhou J, Liu H, Gan L, Wu Y. Programmed albumin nanoparticles regulate immunosuppressive pivot to potentiate checkpoint blockade cancer immunotherapy. Nano Res 2022;15:593-602. [DOI: 10.1007/s12274-021-3525-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
9 Feng L, Wu S, Wu Y. Intracellular Bottom‐up Synthesis of Ultrasmall CuS Nanodots in Cancer Cells for Simultaneous Photothermal Therapy and COX‐2 Inactivation. Adv Funct Mater 2021;31:2101297. [DOI: 10.1002/adfm.202101297] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
10 Atanase LI. Micellar Drug Delivery Systems Based on Natural Biopolymers. Polymers (Basel) 2021;13:477. [PMID: 33540922 DOI: 10.3390/polym13030477] [Cited by in Crossref: 54] [Cited by in F6Publishing: 58] [Article Influence: 27.0] [Reference Citation Analysis]
11 Grimaudo M, Herreros-pomares A, Alonso M, Calabuig-fariñas S, Jantus-lewintre E, de la Fuente M. Biofabrication of 3D tumor models in cancer research. Biomaterials for 3D Tumor Modeling 2020. [DOI: 10.1016/b978-0-12-818128-7.00003-4] [Reference Citation Analysis]
12 Bano A, Gupta A, Sharma S, Sharma R. Recent Developments in Nanocarrier-Based Nutraceuticals for Therapeutic Purposes. Biogenic Nano-Particles and their Use in Agro-ecosystems 2020. [DOI: 10.1007/978-981-15-2985-6_20] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
13 Jose L, Hwang A, Lee C, Shim K, Song JK, An SSA, Paik H. Nitrilotriacetic acid-end-functionalized polycaprolactone as a template for polymer–protein nanocarriers. Polym Chem 2020;11:1580-8. [DOI: 10.1039/c9py01663e] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
14 Movia D, Prina-mello A. Nanotoxicity in Cancer Research: Technical Protocols and Considerations for the Use of 3D Tumour Spheroids. Unraveling the Safety Profile of Nanoscale Particles and Materials - From Biomedical to Environmental Applications 2018. [DOI: 10.5772/intechopen.69447] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
15 Jiang Y, Stenzel M. Drug Delivery Vehicles Based on Albumin-Polymer Conjugates. Macromol Biosci 2016;16:791-802. [DOI: 10.1002/mabi.201500453] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 5.0] [Reference Citation Analysis]