BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mansfield EDH, Sillence K, Hole P, Williams AC, Khutoryanskiy VV. POZylation: a new approach to enhance nanoparticle diffusion through mucosal barriers. Nanoscale 2015;7:13671-9. [DOI: 10.1039/c5nr03178h] [Cited by in Crossref: 55] [Cited by in F6Publishing: 55] [Article Influence: 6.9] [Reference Citation Analysis]
Number Citing Articles
1 Moreno-Chaparro D, Moreno N, Usabiaga FB, Ellero M. Computational modeling of passive transport of functionalized nanoparticles. J Chem Phys 2023;158:104108. [PMID: 36922140 DOI: 10.1063/5.0136833] [Reference Citation Analysis]
2 Pangeni R, Meng T, Poudel S, Sharma D, Hutsell H, Ma J, Rubin BK, Longest W, Hindle M, Xu Q. Airway mucus in pulmonary diseases: Muco-adhesive and muco-penetrating particles to overcome the airway mucus barriers. Int J Pharm 2023;634:122661. [PMID: 36736964 DOI: 10.1016/j.ijpharm.2023.122661] [Reference Citation Analysis]
3 Abdeen SA, hefni H, Awadallah-f A, El-rahman NRA. The Synergistic Effect of Biochar and Poly(2-ethyl-2-oxazoline)/poly(2- hydroxyethylmethacarylate)/Chitosan) Hydrogels on Saline Soil Properties and Carrot Productivity.. [DOI: 10.21203/rs.3.rs-2409982/v1] [Reference Citation Analysis]
4 Upare PP, Shin HS, Lee JH, Park BG. Development of Efficient Strategies for Physical Stimuli-Responsive Programmable Nanotherapeutics. Nanorobotics and Nanodiagnostics in Integrative Biology and Biomedicine 2023. [DOI: 10.1007/978-3-031-16084-4_9] [Reference Citation Analysis]
5 Watchorn J, Stuart S, Burns DC, Gu FX. Mechanistic Influence of Polymer Species, Molecular Weight, and Functionalization on Mucin–Polymer Binding Interactions. ACS Appl Polym Mater . [DOI: 10.1021/acsapm.2c01220] [Reference Citation Analysis]
6 Mohammed M. Ways T, Filippov SK, Maji S, Glassner M, Cegłowski M, Hoogenboom R, King S, Man Lau W, Khutoryanskiy VV. Mucus-penetrating nanoparticles based on chitosan grafted with various non-ionic polymers: synthesis, structural characterisation and diffusion studies. Journal of Colloid and Interface Science 2022. [DOI: 10.1016/j.jcis.2022.06.126] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
7 Wang W, Huang Z, Huang Y, Zhang X, Huang J, Cui Y, Yue X, Ma C, Fu F, Wang W, Wu C, Pan X. Pulmonary delivery nanomedicines towards circumventing physiological barriers: Strategies and characterization approaches. Adv Drug Deliv Rev 2022;185:114309. [PMID: 35469997 DOI: 10.1016/j.addr.2022.114309] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
8 Xu Y, Fourniols T, Labrak Y, Préat V, Beloqui A, des Rieux A. Surface Modification of Lipid-Based Nanoparticles. ACS Nano 2022. [PMID: 35446546 DOI: 10.1021/acsnano.2c02347] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
9 Kumari A, Pal S, G BR, Mohny FP, Gupta N, Miglani C, Pattnaik B, Pal A, Ganguli M. Surface-Engineered Mucus Penetrating Nucleic Acid Delivery Systems with Cell Penetrating Peptides for the Lungs. Mol Pharm 2022. [PMID: 35333535 DOI: 10.1021/acs.molpharmaceut.1c00770] [Reference Citation Analysis]
10 Kazybayeva DS, Irmukhametova GS, Khutoryanskiy VV. Thiol-Ene “Click Reactions” as a Promising Approach to Polymer Materials. Polym Sci Ser B 2022;64:1-16. [DOI: 10.1134/s1560090422010055] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Wang Z, Yu H, Liyanage A, Qiu J, Thushara D, Bao B, Zhao S. Collective diffusion of charged nanoparticles in microchannel under electric field. Chemical Engineering Science 2022;248:117264. [DOI: 10.1016/j.ces.2021.117264] [Reference Citation Analysis]
12 Makhayeva DN, Filippov SK, Yestemes SS, Irmukhametova GS, Khutoryanskiy VV. Polymeric iodophors with poly(2-ethyl-2-oxazoline) and poly(N-vinylpyrrolidone): optical, hydrodynamic, thermodynamic, and antimicrobial properties. European Polymer Journal 2022. [DOI: 10.1016/j.eurpolymj.2022.111005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Hock N, Racaniello GF, Aspinall S, Denora N, Khutoryanskiy VV, Bernkop-Schnürch A. Thiolated Nanoparticles for Biomedical Applications: Mimicking the Workhorses of Our Body. Adv Sci (Weinh) 2022;9:e2102451. [PMID: 34773391 DOI: 10.1002/advs.202102451] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Liyanage A, Thushara D, Gunawardena S. Simulation of Diffusive Transport of Nanoparticles under an Externally Applied Electric Field. 2021 From Innovation To Impact (FITI) 2021. [DOI: 10.1109/fiti54902.2021.9833056] [Reference Citation Analysis]
15 Putra N, Tigrine A, Aksakal S, de la Rosa V, Taheri P, Fratila-apachitei L, Mol J, Zhou J, Zadpoor A. Poly(2-ethyl-2-oxazoline) coating of additively manufactured biodegradable porous iron. Materials Science and Engineering: C 2021. [DOI: 10.1016/j.msec.2021.112617] [Reference Citation Analysis]
16 Wright L, Joyce P, Barnes TJ, Prestidge CA. Mimicking the Gastrointestinal Mucus Barrier: Laboratory-Based Approaches to Facilitate an Enhanced Understanding of Mucus Permeation. ACS Biomater Sci Eng 2021. [PMID: 34784462 DOI: 10.1021/acsbiomaterials.1c00814] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 Neves J, Sarmento B. Controlled Drug Delivery via the Vaginal and Rectal Routes. Fundamentals of Drug Delivery 2021. [DOI: 10.1002/9781119769644.ch19] [Reference Citation Analysis]
18 das Neves J, Notario-Pérez F, Sarmento B. Women-specific routes of administration for drugs: A critical overview. Adv Drug Deliv Rev 2021;176:113865. [PMID: 34280514 DOI: 10.1016/j.addr.2021.113865] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
19 Friedl JD, Nele V, De Rosa G, Bernkop‐schnürch A. Bioinert, Stealth or Interactive: How Surface Chemistry of Nanocarriers Determines Their Fate In Vivo. Adv Funct Materials 2021;31:2103347. [DOI: 10.1002/adfm.202103347] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
20 Lavikainen J, Dauletbekova M, Toleutay G, Kaliva M, Chatzinikolaidou M, Kudaibergenov SE, Tenkovtsev A, Khutoryanskiy VV, Vamvakaki M, Aseyev V. Poly(2‐ethyl‐2‐oxazoline) grafted gellan gum for potential application in transmucosal drug delivery. Polym Adv Technol 2021;32:2770-80. [DOI: 10.1002/pat.5298] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
21 Gil Alvaradejo G, Glassner M, Kumar R, Trouillet V, Welle A, Wang Y, de la Rosa VR, Sekula-Neuner S, Hirtz M, Hoogenboom R, Delaittre G. Thioacetate-Based Initiators for the Synthesis of Thiol-End-Functionalized Poly(2-oxazoline)s. Macromol Rapid Commun 2020;41:e2000320. [PMID: 33463837 DOI: 10.1002/marc.202000320] [Reference Citation Analysis]
22 Bandi SP, Bhatnagar S, Venuganti VVK. Advanced materials for drug delivery across mucosal barriers. Acta Biomater 2021;119:13-29. [PMID: 33141051 DOI: 10.1016/j.actbio.2020.10.031] [Cited by in Crossref: 28] [Cited by in F6Publishing: 32] [Article Influence: 14.0] [Reference Citation Analysis]
23 Ghanem R, Laurent V, Roquefort P, Haute T, Ramel S, Le Gall T, Aubry T, Montier T. Optimizations of In Vitro Mucus and Cell Culture Models to Better Predict In Vivo Gene Transfer in Pathological Lung Respiratory Airways: Cystic Fibrosis as an Example. Pharmaceutics 2020;13:47. [PMID: 33396283 DOI: 10.3390/pharmaceutics13010047] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
24 M Ways TM, Ng KW, Lau WM, Khutoryanskiy VV. Silica Nanoparticles in Transmucosal Drug Delivery. Pharmaceutics 2020;12:E751. [PMID: 32785148 DOI: 10.3390/pharmaceutics12080751] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
25 Doura T, Nishio T, Tamanoi F, Nakamura M. Relationship between the glutathione-responsive degradability of thiol-organosilica nanoparticles and the chemical structures. J Mater Res 2019;34:1266-78. [DOI: 10.1557/jmr.2018.501] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
26 Tavano R, Gabrielli L, Lubian E, Fedeli C, Visentin S, Polverino De Laureto P, Arrigoni G, Geffner-Smith A, Chen F, Simberg D, Morgese G, Benetti EM, Wu L, Moghimi SM, Mancin F, Papini E. C1q-Mediated Complement Activation and C3 Opsonization Trigger Recognition of Stealth Poly(2-methyl-2-oxazoline)-Coated Silica Nanoparticles by Human Phagocytes. ACS Nano 2018;12:5834-47. [PMID: 29750504 DOI: 10.1021/acsnano.8b01806] [Cited by in Crossref: 62] [Cited by in F6Publishing: 65] [Article Influence: 12.4] [Reference Citation Analysis]
27 Verbraeken B, Monnery BD, Lava K, Hoogenboom R. The Chemistry of Poly(2-oxazoline)s. Encyclopedia of Polymer Science and Technology 2018. [DOI: 10.1002/0471440264.pst626.pub2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
28 Sahle FF, Gulfam M, Lowe TL. Design strategies for physical-stimuli-responsive programmable nanotherapeutics. Drug Discov Today 2018;23:992-1006. [PMID: 29653291 DOI: 10.1016/j.drudis.2018.04.003] [Cited by in Crossref: 49] [Cited by in F6Publishing: 51] [Article Influence: 9.8] [Reference Citation Analysis]
29 Khutoryanskiy VV. Beyond PEGylation: Alternative surface-modification of nanoparticles with mucus-inert biomaterials. Adv Drug Deliv Rev 2018;124:140-9. [PMID: 28736302 DOI: 10.1016/j.addr.2017.07.015] [Cited by in Crossref: 95] [Cited by in F6Publishing: 100] [Article Influence: 19.0] [Reference Citation Analysis]
30 Hadjesfandiari N, Parambath A. Stealth coatings for nanoparticles. Engineering of Biomaterials for Drug Delivery Systems 2018. [DOI: 10.1016/b978-0-08-101750-0.00013-1] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 6.0] [Reference Citation Analysis]
31 das Neves J, Nunes R, Rodrigues F, Sarmento B. Nanomedicine in the development of anti-HIV microbicides. Adv Drug Deliv Rev 2016;103:57-75. [PMID: 26829288 DOI: 10.1016/j.addr.2016.01.017] [Cited by in Crossref: 44] [Cited by in F6Publishing: 45] [Article Influence: 6.3] [Reference Citation Analysis]