BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Karimi M, Ghasemi A, Sahandi Zangabad P, Rahighi R, Moosavi Basri SM, Mirshekari H, Amiri M, Shafaei Pishabad Z, Aslani A, Bozorgomid M, Ghosh D, Beyzavi A, Vaseghi A, Aref AR, Haghani L, Bahrami S, Hamblin MR. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev 2016;45:1457-501. [PMID: 26776487 DOI: 10.1039/c5cs00798d] [Cited by in Crossref: 916] [Cited by in F6Publishing: 949] [Article Influence: 130.9] [Reference Citation Analysis]
Number Citing Articles
1 Souri M, Kiani Shahvandi M, Chiani M, Moradi Kashkooli F, Farhangi A, Mehrabi MR, Rahmim A, Savage VM, Soltani M. Stimuli-sensitive nano-drug delivery with programmable size changes to enhance accumulation of therapeutic agents in tumors. Drug Deliv 2023;30:2186312. [PMID: 36895188 DOI: 10.1080/10717544.2023.2186312] [Reference Citation Analysis]
2 O WY, Cui JF, Yu Q, Kung KK, Chung SF, Leung YC, Wong MK. Isoindolium-Based Allenes: Reactivity Studies and Applications in Fluorescence Temperature Sensing and Cysteine Bioconjugation. Angew Chem Int Ed Engl 2023;62:e202218038. [PMID: 36670048 DOI: 10.1002/anie.202218038] [Reference Citation Analysis]
3 Han H, Li S, Xu M, Zhong Y, Fan W, Xu J, Zhou T, Ji J, Ye J, Yao K. Polymer- and lipid-based nanocarriers for ocular drug delivery: Current status and future perspectives. Adv Drug Deliv Rev 2023;196:114770. [PMID: 36894134 DOI: 10.1016/j.addr.2023.114770] [Reference Citation Analysis]
4 Zhang W, Babu A, Yan Y, Park SS, Jo N, Chung I, Ahn S, Park I, Ha C. ROS/GSH dual-responsive selenium-containing mesoporous silica nanoparticles for drug delivery. J Porous Mater 2023. [DOI: 10.1007/s10934-023-01430-6] [Reference Citation Analysis]
5 Luo D, Wang X, Luo X, Wu S. Low-dose of zeolitic imidazolate framework-8 nanoparticle cause energy metabolism disorder through lysosome-mitochondria dysfunction. Toxicology 2023;489:153473. [PMID: 36870412 DOI: 10.1016/j.tox.2023.153473] [Reference Citation Analysis]
6 Nam K, Kim YM, Choi I, Han HS, Kim T, Choi KY, Roh YH. Crystallinity-tuned ultrasoft polymeric DNA networks for controlled release of anticancer drugs. J Control Release 2023;355:7-17. [PMID: 36706839 DOI: 10.1016/j.jconrel.2023.01.056] [Reference Citation Analysis]
7 Moradi Kashkooli F, Jakhmola A, Hornsby TK, Tavakkoli JJ, Kolios MC. Ultrasound-mediated nano drug delivery for treating cancer: Fundamental physics to future directions. J Control Release 2023;355:552-78. [PMID: 36773959 DOI: 10.1016/j.jconrel.2023.02.009] [Reference Citation Analysis]
8 Chen C, Wang S, Wang J, Yao F, Tang X, Guo W. Nanosized drug delivery strategies in osteosarcoma chemotherapy. APL Bioeng 2023;7:011501. [PMID: 36845905 DOI: 10.1063/5.0137026] [Reference Citation Analysis]
9 Pan WT, Liu PM, Ma D, Yang JJ. Advances in photobiomodulation for cognitive improvement by near-infrared derived multiple strategies. J Transl Med 2023;21:135. [PMID: 36814278 DOI: 10.1186/s12967-023-03988-w] [Reference Citation Analysis]
10 Yang H, Duan Z, Liu F, Zhao Z, Liu S. Cucurbit[7]uril-Based Supramolecular DNA Nanogel for Targeted Codelivery of Chemo/Photodynamic Drugs. ACS Macro Lett 2023;12:295-301. [PMID: 36779651 DOI: 10.1021/acsmacrolett.2c00763] [Reference Citation Analysis]
11 Jiao Q, Liu B, Xu X, Huang T, Cao B, Wang L, Wang Q, Du A, Li J, Zhou B, Wang T. Biodegradable porous polymeric drug as a drug delivery system: alleviation of doxorubicin-induced cardiotoxicity via passive targeted release. RSC Adv 2023;13:5444-56. [PMID: 36793291 DOI: 10.1039/d2ra07410a] [Reference Citation Analysis]
12 Chen J, Zhu Y, Wu C, Shi J. Engineering lactate-modulating nanomedicines for cancer therapy. Chem Soc Rev 2023;52:973-1000. [PMID: 36597879 DOI: 10.1039/d2cs00479h] [Reference Citation Analysis]
13 Cheng J, Zhao H, Li B, Zhang H, Zhao Q, Fu S, Han Y, Lu W, Shi J, Yang X. Photosensitive pro-drug nanoassemblies harboring a chemotherapeutic dormancy function potentiates cancer immunotherapy. Acta Pharm Sin B 2023;13:879-96. [PMID: 36873187 DOI: 10.1016/j.apsb.2022.06.008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Younis MR, He Y, Yao X, He G, Liu H, Huang P, Lin J. Acidity/carbon dioxide-sensitive triblock polymer-grafted photoactivated vesicles for programmed release of chemotherapeutic drugs against glioblastoma. Acta Biomater 2023;157:442-50. [PMID: 36470393 DOI: 10.1016/j.actbio.2022.11.053] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Lukiev IV, Mogelnitskaya YA, Mikhailov IV, Darinskii AA. Chains Stiffness Effect on the Vertical Segregation of Mixed Polymer Brushes in Selective Solvent. Polymers (Basel) 2023;15. [PMID: 36771945 DOI: 10.3390/polym15030644] [Reference Citation Analysis]
16 Liu Q, Zhao Y, Zhou H, Chen C. Ferroptosis: challenges and opportunities for nanomaterials in cancer therapy. Regen Biomater 2023;10:rbad004. [PMID: 36817975 DOI: 10.1093/rb/rbad004] [Reference Citation Analysis]
17 Qi Z, Yan Z, Tan G, Jia T, Geng Y, Shao H, Kundu SC, Lu S. Silk Fibroin Microneedles for Transdermal Drug Delivery: Where Do We Stand and How Far Can We Proceed? Pharmaceutics 2023;15. [PMID: 36839676 DOI: 10.3390/pharmaceutics15020355] [Reference Citation Analysis]
18 Kadhim MM, Taban TZ, Abdullaha SA, Alnasoud N, Hachim SK, Alomar S. Application of zinc oxide nano-tube as drug-delivery vehicles of anticancer drug. J Mol Model 2023;29:47. [PMID: 36656400 DOI: 10.1007/s00894-022-05426-y] [Reference Citation Analysis]
19 Xu DZ, Sun XY, Liang YX, Huang HW, Liu R, Lu ZL, He L. Esterase-Responsive Polymeric Micelles Containing Tetraphenylethene and Poly(ethylene glycol) Moieties for Efficient Doxorubicin Delivery and Tumor Therapy. Bioconjug Chem 2023;34:248-56. [PMID: 36621834 DOI: 10.1021/acs.bioconjchem.2c00545] [Reference Citation Analysis]
20 Liu F, Anton N, Niko Y, Klymchenko AS. Controlled Release and Capture of Aldehydes by Dynamic Imine Chemistry in Nanoemulsions: From Delivery to Detoxification. ACS Appl Bio Mater 2023;6:246-56. [PMID: 36516427 DOI: 10.1021/acsabm.2c00861] [Reference Citation Analysis]
21 Valencia-Lazcano AA, Hassan D, Pourmadadi M, Shamsabadipour A, Behzadmehr R, Rahdar A, Medina DI, Díez-Pascual AM. 5-Fluorouracil nano-delivery systems as a cutting-edge for cancer therapy. Eur J Med Chem 2023;246:114995. [PMID: 36493619 DOI: 10.1016/j.ejmech.2022.114995] [Reference Citation Analysis]
22 Liu J, Jiang X, Feng X, Lee MJ, Li Y, Mao J, Weichselbaum RR, Lin W. A Three-in-One Nanoscale Coordination Polymer for Potent Chemo-Immunotherapy. Small Methods 2023;:e2201437. [PMID: 36638256 DOI: 10.1002/smtd.202201437] [Reference Citation Analysis]
23 Yan J, Yang G, Zhu B, Zheng R, Cheng S, He K, Yin J. Deformable and Disintegrable Multifunctional Integrated Polyprodrug Amphiphiles for Synergistic Phototherapy and Chemotherapy. Biomacromolecules 2023;24:400-12. [PMID: 36475673 DOI: 10.1021/acs.biomac.2c01215] [Reference Citation Analysis]
24 Gu Z, Wang J, Fu Y, Pan H, He H, Gan Q, Liu C. Smart Biomaterials for Articular Cartilage Repair and Regeneration. Adv Funct Materials 2023. [DOI: 10.1002/adfm.202212561] [Reference Citation Analysis]
25 Khan RU, Shao J, Liao JY, Qian L. pH-triggered cancer-targeting polymers: From extracellular accumulation to intracellular release. Nano Res 2023;:1-14. [PMID: 36618069 DOI: 10.1007/s12274-022-5252-z] [Reference Citation Analysis]
26 Shrestha B, Tang L, Hood RL. Nanotechnology for Personalized Medicine. Nanomedicine 2023. [DOI: 10.1007/978-981-16-8984-0_18] [Reference Citation Analysis]
27 Fathima A, Arafath Y, Hassan S, Prathiviraj R, Kiran GS, Selvin J. Microbial biofilms: A persisting public health challenge. Understanding Microbial Biofilms 2023. [DOI: 10.1016/b978-0-323-99977-9.00004-1] [Reference Citation Analysis]
28 Khalid Q, Tariq F, Minhas MU, Khan MI, Sohail MF, Munir MU. Nanogels for the solubility enhancement of water-insoluble drugs. Nanomedicine 2023. [DOI: 10.1016/b978-0-12-818627-5.00022-1] [Reference Citation Analysis]
29 Upare PP, Shin HS, Lee JH, Park BG. Development of Efficient Strategies for Physical Stimuli-Responsive Programmable Nanotherapeutics. Nanorobotics and Nanodiagnostics in Integrative Biology and Biomedicine 2023. [DOI: 10.1007/978-3-031-16084-4_9] [Reference Citation Analysis]
30 Rasool A, Rizwan M, ur Rehman Qureshi A, Rasheed T, Bilal M. Thermo-responsive functionalized polymeric nanocomposites. Smart Polymer Nanocomposites 2023. [DOI: 10.1016/b978-0-323-91611-0.00013-x] [Reference Citation Analysis]
31 González-méndez I, Sorroza-martínez K, Ruiu A, Rivera E. Carbon nanotubes for anticancer therapy: new trends and innovations. Emerging Applications of Carbon Nanotubes in Drug and Gene Delivery 2023. [DOI: 10.1016/b978-0-323-85199-2.00005-4] [Reference Citation Analysis]
32 Deshmukh MA, Thorat HN, Shirsat MD, Ramanavicius A. Engineered nanostructures: an introduction. Engineered Nanostructures for Therapeutics and Biomedical Applications 2023. [DOI: 10.1016/b978-0-12-821240-0.00002-0] [Reference Citation Analysis]
33 Yang X, Lin M, Wei J, Sun J. A self-crosslinking nanogel scaffold for enhanced catalytic efficiency and stability. Polym Chem 2023. [DOI: 10.1039/d2py01272c] [Reference Citation Analysis]
34 Sahu AK, Kar SS, Kumari P. Agronanobiotechnology: Present and Prospect. Agricultural and Environmental Nanotechnology 2023. [DOI: 10.1007/978-981-19-5454-2_2] [Reference Citation Analysis]
35 Qiu C, Wu Y, Shi Q, Guo Q, Zhang J, Meng Y, Wang C, Xia F, Wang J, Xu C. Advanced strategies for nucleic acids and small-molecular drugs in combined anticancer therapy. Int J Biol Sci 2023;19:789-810. [PMID: 36778126 DOI: 10.7150/ijbs.79328] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Kong X, Qi Y, Wang X, Jiang R, Wang J, Fang Y, Gao J, Chu Hwang K. Nanoparticle Drug Delivery Systems and Their Applications as Targeted Therapies for Triple Negative Breast Cancer. Progress in Materials Science 2023. [DOI: 10.1016/j.pmatsci.2023.101070] [Reference Citation Analysis]
37 Li J, Zhang H, Han Y, Hu Y, Geng Z, Su J. Targeted and responsive biomaterials in osteoarthritis. Theranostics 2023;13:931-54. [PMID: 36793867 DOI: 10.7150/thno.78639] [Reference Citation Analysis]
38 Dahiya S, Dahiya R. Smart drug delivery systems and their clinical potential. Smart Polymeric Nano-Constructs in Drug Delivery 2023. [DOI: 10.1016/b978-0-323-91248-8.00007-6] [Reference Citation Analysis]
39 Yan B, Wang S, Liu C, Wen N, Li H, Zhang Y, Wang H, Xi Z, Lv Y, Fan H, Liu X. Engineering magnetic nano-manipulators for boosting cancer immunotherapy. J Nanobiotechnology 2022;20:547. [PMID: 36587223 DOI: 10.1186/s12951-022-01760-8] [Reference Citation Analysis]
40 Li X, Liu Z, Xu S, Ma X, Zhao Z, Hu H, Deng J, Peng C, Wang Y, Ma S. A drug delivery system constructed by a fusion peptide capturing exosomes targets to titanium implants accurately resulting the enhancement of osseointegration peri-implant. Biomater Res 2022;26:89. [PMID: 36575503 DOI: 10.1186/s40824-022-00331-0] [Reference Citation Analysis]
41 Guo J, Luo Z, Wang F, Gu H, Li M. Responsive hydrogel microfibers for biomedical engineering. Smart Medicine 2022. [DOI: 10.1002/smmd.20220003] [Reference Citation Analysis]
42 Zhong S, Yao S, Zhao Q, Wang Z, Liu Z, Li L, Wang ZL. Electricity‐Assisted Cancer Therapy: From Traditional Clinic Applications to Emerging Methods Integrated with Nanotechnologies. Advanced NanoBiomed Research 2022. [DOI: 10.1002/anbr.202200143] [Reference Citation Analysis]
43 Miclotte MPJ, Varlas S, Reynolds CD, Rashid B, Chapman E, O'Reilly RK. Thermoresponsive Block Copolymer Core-Shell Nanoparticles with Tunable Flow Behavior in Porous Media. ACS Appl Mater Interfaces 2022;14:54182-93. [PMID: 36401811 DOI: 10.1021/acsami.2c15024] [Reference Citation Analysis]
44 Li Y, Yang G, Gerstweiler L, Thang SH, Zhao C. Design of Stimuli‐Responsive Peptides and Proteins. Adv Funct Materials 2022. [DOI: 10.1002/adfm.202210387] [Reference Citation Analysis]
45 Yang Q, Zhao J, Muhammad A, Tian L, Liu Y, Chen L, Yang P. Biopolymer coating for particle surface engineering and their biomedical applications. Materials Today Bio 2022;16:100407. [DOI: 10.1016/j.mtbio.2022.100407] [Reference Citation Analysis]
46 Dong C, Yi Q, Fang W, Zhang J. A Mini Review of Nanomaterials on Photodynamic Therapy. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2022. [DOI: 10.1016/j.jphotochemrev.2022.100568] [Reference Citation Analysis]
47 Dinakar YH, Karole A, Parvez S, Jain V, Mudavath SL. Organ-restricted delivery through stimuli-responsive nanocarriers for lung cancer therapy. Life Sciences 2022;310:121133. [DOI: 10.1016/j.lfs.2022.121133] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
48 Hasanzadeh A, Hamblin MR, Kiani J, Noori H, Hardie JM, Karimi M, Shafiee H. Could artificial intelligence revolutionize the development of nanovectors for gene therapy and mRNA vaccines? Nano Today 2022;47:101665. [DOI: 10.1016/j.nantod.2022.101665] [Reference Citation Analysis]
49 Jia R, Li T, Jiang W, Wang J, Li X, Qu Q, Dang J, Li P. Smart Milli-capsules manipulated by nIR irradiation for controllable drug delivery in-vivo for renal cell carcinoma and neurodegenerative diseases. Materials & Design 2022;224:111287. [DOI: 10.1016/j.matdes.2022.111287] [Reference Citation Analysis]
50 Hosseinalizadeh H, Mahmoodpour M, Razaghi Bahabadi Z, Hamblin MR, Mirzaei H. Neutrophil mediated drug delivery for targeted glioblastoma therapy: A comprehensive review. Biomedicine & Pharmacotherapy 2022;156:113841. [DOI: 10.1016/j.biopha.2022.113841] [Reference Citation Analysis]
51 Eskandani R, Kazempour M, Farahzadi R, Sanaat Z, Eskandani M, Adibkia K, Vandghanooni S, Mokhtarzadeh A. Engineered nanoparticles as emerging gene/drug delivery systems targeting the nuclear factor-κB protein and related signaling pathways in cancer. Biomedicine & Pharmacotherapy 2022;156:113932. [DOI: 10.1016/j.biopha.2022.113932] [Reference Citation Analysis]
52 Gao Q, Lee JS, Kim BS, Gao G. Three-dimensional printing of smart constructs using stimuli-responsive biomaterials: A future direction of precision medicine. Int J Bioprint 2023;9:638. [PMID: 36636137 DOI: 10.18063/ijb.v9i1.638] [Reference Citation Analysis]
53 Yang Z, Lou C, Wang X, Wang C, Shi Z, Niu N. Preparation, characterization, and in-vitro cytotoxicity of nanoliposomes loaded with anti-tubercular drugs and TGF-β1 siRNA for improving spinal tuberculosis therapy. BMC Infect Dis 2022;22:824. [DOI: 10.1186/s12879-022-07791-8] [Reference Citation Analysis]
54 jiang J, Wei Y, Chen Z, Xu J, Zhang H, Dong B. A Movable Drug Carrier with High Affinity to Bacteria for Precise Antibacterial Therapy. Adv Materials Technologies 2022. [DOI: 10.1002/admt.202201195] [Reference Citation Analysis]
55 Zhang Y, Li J, Pu K. Recent advances in dual- and multi-responsive nanomedicines for precision cancer therapy. Biomaterials 2022. [DOI: 10.1016/j.biomaterials.2022.121906] [Reference Citation Analysis]
56 Panzarini E, Leporatti S, Tenuzzo BA, Quarta A, Hanafy NAN, Giannelli G, Moliterni C, Vardanyan D, Sbarigia C, Fidaleo M, Tacconi S, Dini L. Therapeutic Effect of Polymeric Nanomicelles Formulation of LY2157299-Galunisertib on CCl(4)-Induced Liver Fibrosis in Rats. J Pers Med 2022;12. [PMID: 36579532 DOI: 10.3390/jpm12111812] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
57 Choi HW, Lim JH, Kang T, Chung BG. Antioxidant, Enzyme, and H2O2-Triggered Melanoma Targeted Mesoporous Organo-Silica Nanocomposites for Synergistic Cancer Therapy. Antioxidants 2022;11:2137. [DOI: 10.3390/antiox11112137] [Reference Citation Analysis]
58 Sun Y, Chen LG, Fan XM, Pang JL. Ultrasound Responsive Smart Implantable Hydrogels for Targeted Delivery of Drugs: Reviewing Current Practices. Int J Nanomedicine 2022;17:5001-26. [PMID: 36275483 DOI: 10.2147/IJN.S374247] [Reference Citation Analysis]
59 Zhang C, Kang T, Wang X, Song J, Zhang J, Li G. Stimuli-responsive platinum and ruthenium complexes for lung cancer therapy. Front Pharmacol 2022;13:1035217. [DOI: 10.3389/fphar.2022.1035217] [Reference Citation Analysis]
60 Nikolova MP, Kumar EM, Chavali MS. Updates on Responsive Drug Delivery Based on Liposome Vehicles for Cancer Treatment. Pharmaceutics 2022;14:2195. [PMID: 36297630 DOI: 10.3390/pharmaceutics14102195] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
61 Liu Z, Zhou D, Yan X, Xiao L, Wang P, Wei J, Liao L. Gold Nanoparticle-Incorporated Chitosan Nanogels as a Theranostic Nanoplatform for CT Imaging and Tumour Chemotherapy. Int J Nanomedicine 2022;17:4757-72. [PMID: 36238536 DOI: 10.2147/IJN.S375999] [Reference Citation Analysis]
62 Li Z, Zhang S, Liu M, Zhong T, Li H, Wang J, Zhao H, Tian Y, Wang H, Wang J, Xu M, Wang S, Zhang X. Antitumor Activity of the Zinc Oxide Nanoparticles Coated with Low-Molecular-Weight Heparin and Doxorubicin Complex In Vitro and In Vivo. Mol Pharm 2022. [PMID: 36223494 DOI: 10.1021/acs.molpharmaceut.2c00553] [Reference Citation Analysis]
63 Aram E, Moeni M, Abedizadeh R, Sabour D, Sadeghi-abandansari H, Gardy J, Hassanpour A. Smart and Multi-Functional Magnetic Nanoparticles for Cancer Treatment Applications: Clinical Challenges and Future Prospects. Nanomaterials 2022;12:3567. [DOI: 10.3390/nano12203567] [Reference Citation Analysis]
64 Guo HL, Xie XY, Xu M. Application of nanomaterials in combined thermal ablation and immunotherapy for liver tumors. Shijie Huaren Xiaohua Zazhi 2022; 30(19): 829-837 [DOI: 10.11569/wcjd.v30.i19.829] [Reference Citation Analysis]
65 Kumar A, Devi M, Kumar M, Shrivastava A, Sharma R, Dixit T, Singh V, Shehzad K, Xu Y, Singh K, Hu H. Silicon Nanostructures and Nanocomposites for Antibacterial and Theranostic Applications. Sensors and Actuators A: Physical 2022. [DOI: 10.1016/j.sna.2022.113912] [Reference Citation Analysis]
66 Sepasi T, Ghadiri T, Bani F, Ebrahimi-kalan A, Khodakarimi S, Zarebkohan A, Gorji A. Nanotechnology-based approaches in diagnosis and treatment of epilepsy. J Nanopart Res 2022;24. [DOI: 10.1007/s11051-022-05557-6] [Reference Citation Analysis]
67 Behera A, Mohapatra RK. Intelligent Nanomaterials for Medicine. Nanomaterials and Nanotechnology in Medicine 2022. [DOI: 10.1002/9781119558026.ch15] [Reference Citation Analysis]
68 Jayan JS, Rajan R, Appukuttan S, Joseph K. Multifunctional Nanomaterials for Medical Applications. Nanomaterials and Nanotechnology in Medicine 2022. [DOI: 10.1002/9781119558026.ch18] [Reference Citation Analysis]
69 Deng S, Gu J, Jiang Z, Cao Y, Mao F, Xue Y, Wang J, Dai K, Qin L, Liu K, Wu K, He Q, Cai K. Application of nanotechnology in the early diagnosis and comprehensive treatment of gastrointestinal cancer. J Nanobiotechnol 2022;20. [DOI: 10.1186/s12951-022-01613-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
70 Uchida N, Kohata A, Okuro K, Cardellini A, Lionello C, Zizzi EA, Deriu MA, Pavan GM, Tomishige M, Hikima T, Aida T. Reconstitution of microtubule into GTP-responsive nanocapsules. Nat Commun 2022;13. [DOI: 10.1038/s41467-022-33156-5] [Reference Citation Analysis]
71 Newman H, Hoque J, Shih YV, Marushack G, Ko U, Gonzales G, Varghese S. pH-Sensitive nanocarrier assisted delivery of adenosine to treat osteoporotic bone loss. Biomater Sci 2022;10:5340-55. [PMID: 35929516 DOI: 10.1039/d2bm00843b] [Reference Citation Analysis]
72 Tian H, Zhang T, Qin S, Huang Z, Zhou L, Shi J, Nice EC, Xie N, Huang C, Shen Z. Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies. J Hematol Oncol 2022;15:132. [PMID: 36096856 DOI: 10.1186/s13045-022-01320-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
73 Lin H, Zhang Y, Dong S, Cai X, Jiang H, Fan Y, Ying K, Du B, Yu P, Yang W. Targeted Therapy of Ischemic Stroke via Crossing the Blood-Brain Barrier Using Edaravone-Loaded Multiresponsive Microgels. ACS Appl Bio Mater 2022. [PMID: 36083038 DOI: 10.1021/acsabm.2c00325] [Reference Citation Analysis]
74 Chen J, Yu X, Liu X, Ni J, Yang G, Zhang K. Advances in nanobiotechnology-propelled multidrug resistance circumvention of cancer. Nanoscale 2022. [PMID: 36056710 DOI: 10.1039/d2nr04418h] [Reference Citation Analysis]
75 Pereira PA, Serra MES, Serra AC, Coelho JFJ. Application of vinyl polymer‐based materials as nucleic acids carriers in cancer therapy. WIREs Nanomed Nanobiotechnol 2022;14. [DOI: 10.1002/wnan.1820] [Reference Citation Analysis]
76 Dludla SBK, Mashabela LT, Ng’andwe B, Makoni PA, Witika BA. Current Advances in Nano-Based and Polymeric Stimuli-Responsive Drug Delivery Targeting the Ocular Microenvironment: A Review and Envisaged Future Perspectives. Polymers 2022;14:3580. [DOI: 10.3390/polym14173580] [Reference Citation Analysis]
77 Hu B, Zhang Y, Zhang G, Li Z, Jing Y, Yao J, Sun S. Research progress of bone-targeted drug delivery system on metastatic bone tumors. J Control Release 2022;350:377-88. [PMID: 36007681 DOI: 10.1016/j.jconrel.2022.08.034] [Reference Citation Analysis]
78 Saini P, Shende P. Stimuli-responsive PEGylated nanoparticulate systems for the treatment of cervical cancer. Materials Technology 2022;37:1532-1540. [DOI: 10.1080/10667857.2021.1959215] [Reference Citation Analysis]
79 Fielder M, Nair AK. Bone tissue growth in ultrasonically stimulated bioinspired scaffolds. Comput Methods Biomech Biomed Engin 2022;:1-6. [PMID: 35971823 DOI: 10.1080/10255842.2022.2109415] [Reference Citation Analysis]
80 Fang T, Cao X, Ibnat M, Chen G. Stimuli-responsive nanoformulations for CRISPR-Cas9 genome editing. J Nanobiotechnology 2022;20:354. [PMID: 35918694 DOI: 10.1186/s12951-022-01570-y] [Reference Citation Analysis]
81 Zhu W, Zhao Y, Tang H, Lv F, Zhang Y, Guo S. Drug release behaviors of flexible SiO 2 ‐polyvinyl pyrrolidone electrospun membranes responsive to multiple stimuli. J of Applied Polymer Sci. [DOI: 10.1002/app.52972] [Reference Citation Analysis]
82 Zhang H, He Z, Fu C, Pan P, Zhu Y, Xu M, Deng S, Ying G, Shen Y. Dissociation of polymeric micelle under hemodynamic shearing. Nano Today 2022;45:101517. [DOI: 10.1016/j.nantod.2022.101517] [Reference Citation Analysis]
83 Lv C, Fu J, Wang S, Zhang G, Guo S, He L, Li J, Tao G. Separation and recovery of Th(IV) from rare earth and other cation solutions using pH-responsive ionic liquids at high acidity condition of 1 M HNO3. Hydrometallurgy 2022. [DOI: 10.1016/j.hydromet.2022.105953] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
84 Qiao S, Mamuti M, An H, Wang H. Thermoresponsive Polymer Assemblies: From Molecular Design to Theranostics Application. Progress in Polymer Science 2022;131:101578. [DOI: 10.1016/j.progpolymsci.2022.101578] [Reference Citation Analysis]
85 Zheng L, Seidi F, Liu Y, Wu W, Xiao H. Polymer-based and stimulus-responsive carriers for controlled release of agrochemicals. European Polymer Journal 2022;177:111432. [DOI: 10.1016/j.eurpolymj.2022.111432] [Reference Citation Analysis]
86 Varzandeh M, Labbaf S, Varshosaz J, Laurent S. An overview of the intracellular localization of high-Z nanoradiosensitizers. Progress in Biophysics and Molecular Biology 2022. [DOI: 10.1016/j.pbiomolbio.2022.08.006] [Reference Citation Analysis]
87 Ali M, Chen Y, Cree MJ, Zhang M. In vivo computation with sensor fusion and search acceleration for smart tumor homing. Comput Biol Med 2022;148:105887. [PMID: 35901535 DOI: 10.1016/j.compbiomed.2022.105887] [Reference Citation Analysis]
88 Ansari MJ, Rajendran RR, Mohanto S, Agarwal U, Panda K, Dhotre K, Manne R, Deepak A, Zafar A, Yasir M, Pramanik S. Poly(N-isopropylacrylamide)-Based Hydrogels for Biomedical Applications: A Review of the State-of-the-Art. Gels 2022;8:454. [DOI: 10.3390/gels8070454] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
89 Cui G, Wang H, Long S, Zhang T, Guo X, Chen S, Kakuchi T, Duan Q, Zhao D. Thermo- and Light-Responsive Polymer-Coated Magnetic Nanoparticles as Potential Drug Carriers. Front Bioeng Biotechnol 2022;10:931830. [DOI: 10.3389/fbioe.2022.931830] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
90 Biswas L, Shukla V, Kumar V, Kamra Verma A. Smart Drug-Delivery Systems in the Treatment of Rheumatoid Arthritis: Current, Future Perspectives. Smart Drug Delivery 2022. [DOI: 10.5772/intechopen.99641] [Reference Citation Analysis]
91 Mostafavi E, Zare H. Carbon-based nanomaterials in gene therapy. OpenNano 2022;7:100062. [DOI: 10.1016/j.onano.2022.100062] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
92 Liu N, Wu L, Zuo W, Lin Q, Liu J, Jin Q, Xiao Z, Chen L, Zhao Y, Zhou J, Zhu X. pH/Thermal-Sensitive Nanoplatform Capable of On-Demand Specific Release to Potentiate Drug Delivery and Combinational Hyperthermia/Chemo/Chemodynamic Therapy. ACS Appl Mater Interfaces 2022. [PMID: 35749592 DOI: 10.1021/acsami.2c09685] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
93 Wheeler TT, Cao P, Ghouri MD, Ji T, Nie G, Zhao Y. Nanotechnological strategies for prostate cancer imaging and diagnosis. Sci China Chem . [DOI: 10.1007/s11426-022-1271-0] [Reference Citation Analysis]
94 Pawar S, Duadi H, Fleger Y, Fixler D. Design and Use of a Gold Nanoparticle–Carbon Dot Hybrid for a FLIM-Based IMPLICATION Nano Logic Gate. ACS Omega. [DOI: 10.1021/acsomega.2c02463] [Reference Citation Analysis]
95 Chen Y, Tandon I, Heelan W, Wang Y, Tang W, Hu Q. Proteolysis-targeting chimera (PROTAC) delivery system: advancing protein degraders towards clinical translation. Chem Soc Rev 2022. [PMID: 35713468 DOI: 10.1039/d1cs00762a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
96 Ding H, Tan P, Fu S, Tian X, Zhang H, Ma X, Gu Z, Luo K. Preparation and application of pH-responsive drug delivery systems. J Control Release 2022:S0168-3659(22)00327-3. [PMID: 35660634 DOI: 10.1016/j.jconrel.2022.05.056] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 23.0] [Reference Citation Analysis]
97 Behera A, Nayak D. Smart Material Surface Science and application (SMASSA): A most awaited journey in smart technology. Applied Surface Science Advances 2022;9:100242. [DOI: 10.1016/j.apsadv.2022.100242] [Reference Citation Analysis]
98 Li Q, Wei W, Xue Z, Mu Y, Pan J, Hu J, Wang G. Achieving an electron transfer photochromic complex for switchable white-light emission. Chinese Chemical Letters 2022;33:3203-6. [DOI: 10.1016/j.cclet.2021.10.015] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
99 Zhang T, Lin R, Wu H, Jiang X, Gao J. Mesenchymal stem cells: A living carrier for active tumor-targeted delivery. Adv Drug Deliv Rev 2022;185:114300. [PMID: 35447165 DOI: 10.1016/j.addr.2022.114300] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
100 Fu D, Wang Y, Xu J, Wu H. Hydrazone modified nanoscale metal-organic frameworks as pH responsive nanoplatforms for cancer therapy. Journal of Solid State Chemistry 2022;310:123029. [DOI: 10.1016/j.jssc.2022.123029] [Reference Citation Analysis]
101 Ding H, Yong J, Zhang J, Chen B, Ding B, Wang X. Anchoring Pd nanoparticles on hollow CuS nanoparticles for enhanced NIR induced photothermal effects for chemotherapeutic drug delivery and gastric cancer treatment. Ceramics International 2022;48:16085-90. [DOI: 10.1016/j.ceramint.2022.02.154] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
102 Pandey J, Dubey R, Kate A, Prasad B, Sinha A, Mishra MS. Nanomedicines: A Focus on Nanomaterials as Drug Delivery System with Current Trends and Future Advancement. Drug Res (Stuttg). [DOI: 10.1055/a-1824-4619] [Reference Citation Analysis]
103 Garello F, Svenskaya Y, Parakhonskiy B, Filippi M. Micro/Nanosystems for Magnetic Targeted Delivery of Bioagents. Pharmaceutics 2022;14. [PMID: 35745705 DOI: 10.3390/pharmaceutics14061132] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
104 Kesavan A, Chandrasekhar Reddy U, Kurian J, Muraleedharan KM. Cancer cell uptake and distribution of oxanorbornane-based synthetic lipids and their prospects as novel drug delivery systems. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.103439] [Reference Citation Analysis]
105 Liu R, Luo C, Pang Z, Zhang J, Ruan S, Wu M, Wang L, Sun T, Li N, Han L, Shi J, Huang Y, Guo W, Peng S, Zhou W, Gao H. Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment. Chinese Chemical Letters 2022. [DOI: 10.1016/j.cclet.2022.05.032] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
106 Zamani R, Bizari D, Heiat M. Synthesis and characterization of phase shift dextran stabilized nanodroplets for ultrasound-induced cancer therapy: A novel nanobiotechnology approach. Journal of Biotechnology 2022;350:17-23. [DOI: 10.1016/j.jbiotec.2022.04.003] [Reference Citation Analysis]
107 Li J, Peng HL, Wen C, Xu P, Shen XC, Gao C. NIR-II-Responsive CeO2-x@HA Nanotheranostics for Photoacoustic Imaging-Guided Sonodynamic-Enhanced Synergistic Phototherapy. Langmuir 2022. [PMID: 35470663 DOI: 10.1021/acs.langmuir.2c00067] [Reference Citation Analysis]
108 Pranantyo D, Zhang K, Si Z, Hou Z, Chan-Park MB. Smart Multifunctional Polymer Systems as Alternatives or Supplements of Antibiotics To Overcome Bacterial Resistance. Biomacromolecules 2022. [PMID: 35471022 DOI: 10.1021/acs.biomac.1c01614] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
109 Kamibe T, Guégan R, Kunitake M, Tsukahara T, Idota N, Sugahara Y. Preparation of double-layered nanosheets containing pH-responsive polymer networks in the interlayers and their conversion into single-layered nanosheets through the cleavage of cross-linking points. Dalton Trans 2022;51:6264-74. [PMID: 35377373 DOI: 10.1039/d1dt04355b] [Reference Citation Analysis]
110 Xuan Y, Gao Y, Guan M, Zhang S. Application of "smart" multifunctional nanoprobes in tumor diagnosis and treatment. J Mater Chem B 2022. [PMID: 35437560 DOI: 10.1039/d2tb00326k] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
111 Crintea A, Dutu AG, Sovrea A, Constantin AM, Samasca G, Masalar AL, Ifju B, Linga E, Neamti L, Tranca RA, Fekete Z, Silaghi CN, Craciun AM. Nanocarriers for Drug Delivery: An Overview with Emphasis on Vitamin D and K Transportation. Nanomaterials (Basel) 2022;12:1376. [PMID: 35458084 DOI: 10.3390/nano12081376] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
112 Rao KM, Suneetha M, Kumar DV, Kim HJ, Seok YJ, Han SS. Dual Responsive poly(vinyl caprolactam)-Based Nanogels for Tunable Intracellular Doxorubicin Delivery in Cancer Cells. Pharmaceutics 2022;14:852. [DOI: 10.3390/pharmaceutics14040852] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
113 Chang Y, Liu T, Qi R, Chen S, Guo Y, Yang L, Ma X. Cell-Regulated Hollow Sulfur Nanospheres with Porous Shell: A Dual-Responsive Carrier for Sustained Drug Release. ACS Sustainable Chem Eng 2022;10:5138-47. [DOI: 10.1021/acssuschemeng.1c08423] [Reference Citation Analysis]
114 Liu Z, Zhou D, Liao L. pH/Redox/Lysozyme-Sensitive Hybrid Nanocarriers With Transformable Size for Multistage Drug Delivery. Front Bioeng Biotechnol 2022;10:882308. [DOI: 10.3389/fbioe.2022.882308] [Reference Citation Analysis]
115 Masnabadi N. The study of Letrozole adsorption upon CCT nanotube: A DFT/TD-DFT and spectroscopic (excited states and UV/Vis). MGC 2022. [DOI: 10.3233/mgc-210098] [Reference Citation Analysis]
116 Zhou S, Zeng M, Liu Y, Sui X, Yuan J. Stimuli-Responsive Pickering Emulsions Regulated via Polymerization-Induced Self-Assembly Nanoparticles. Macromol Rapid Commun 2022;:e2200010. [PMID: 35393731 DOI: 10.1002/marc.202200010] [Reference Citation Analysis]
117 Rahman M, Ali A, Sjöholm E, Soindinsalo S, Wilén C, Bansal KK, Rosenholm JM. Significance of Polymers with “Allyl” Functionality in Biomedicine: An Emerging Class of Functional Polymers. Pharmaceutics 2022;14:798. [DOI: 10.3390/pharmaceutics14040798] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
118 Miyata T, Namera T, Liu Y, Kawamura A, Yamaoka T. Photoresponsive behaviour of zwitterionic polymer particles with photodimerizable groups on their surfaces. J Mater Chem B 2022;10:2637-48. [PMID: 35023529 DOI: 10.1039/d1tb02342j] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
119 Pawar SV, Duadi H, Fleger Y, Fixler D. Nano logic gates based on gold nanoparticles- carbon dots hybrid and its FLIM imaging. Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XIX 2022. [DOI: 10.1117/12.2607925] [Reference Citation Analysis]
120 Le M, Huang W, Chen K, Lin C, Cai L, Zhang H, Jia Y. Upper critical solution temperature polymeric drug carriers. Chemical Engineering Journal 2022;432:134354. [DOI: 10.1016/j.cej.2021.134354] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
121 Qi L, Qiao J. Advances in stimuli-responsive polymeric coatings for open-tubular capillary electrochromatography. Journal of Chromatography A 2022. [DOI: 10.1016/j.chroma.2022.462957] [Reference Citation Analysis]
122 Nasseri B, Alizadeh E, Bani F, Davaran S, Akbarzadeh A, Rabiee N, Bahadori A, Ziaei M, Bagherzadeh M, Saeb MR, Mozafari M, Hamblin MR. Nanomaterials for photothermal and photodynamic cancer therapy. Applied Physics Reviews 2022;9:011317. [DOI: 10.1063/5.0047672] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
123 Kailasa SK, Joshi DJ, Kateshiya MR, Koduru JR, Malek NI. Review on the biomedical and sensing applications of nanomaterial-incorporated hydrogels. Materials Today Chemistry 2022;23:100746. [DOI: 10.1016/j.mtchem.2021.100746] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 13.0] [Reference Citation Analysis]
124 López Ruiz A, Ramirez A, Mcennis K. Single and Multiple Stimuli-Responsive Polymer Particles for Controlled Drug Delivery. Pharmaceutics 2022;14:421. [DOI: 10.3390/pharmaceutics14020421] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
125 Sahare P, Alvarez PG, Yanez JMS, Bárcenas JGL, Chakraborty S, Paul S, Estevez M. Engineered titania nanomaterials in advanced clinical applications. Beilstein J Nanotechnol 2022;13:201-18. [DOI: 10.3762/bjnano.13.15] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
126 Zou M, Zhao P, Fan J, Göstl R, Herrmann A. Microgels as drug carriers for sonopharmacology. Journal of Polymer Science. [DOI: 10.1002/pol.20210874] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
127 Cheng B, Ahn H, Nam H, Jiang Z, Gao FJ, Minn I, Pomper MG. A Unique Core–Shell Structured, Glycol Chitosan-Based Nanoparticle Achieves Cancer-Selective Gene Delivery with Reduced Off-Target Effects. Pharmaceutics 2022;14:373. [DOI: 10.3390/pharmaceutics14020373] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
128 Fielder M, Nair AK. Effects of scattering on ultrasound wave transmission through bioinspired scaffolds. J Mech Behav Biomed Mater 2022;126:105065. [PMID: 34974324 DOI: 10.1016/j.jmbbm.2021.105065] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
129 Khan S, Mansoor S, Rafi Z, Kumari B, Shoaib A, Saeed M, Alshehri S, Ghoneim MM, Rahamathulla M, Hani U, Shakeel F. A review on nanotechnology: Properties, applications, and mechanistic insights of cellular uptake mechanisms. Journal of Molecular Liquids 2022;348:118008. [DOI: 10.1016/j.molliq.2021.118008] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
130 Zhang M, Hu W, Cai C, Wu Y, Li J, Dong S. Advanced application of stimuli-responsive drug delivery system for inflammatory arthritis treatment. Materials Today Bio 2022. [DOI: 10.1016/j.mtbio.2022.100223] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
131 Xu X, Shen S, Mo R. Bioresponsive nanogels for protein delivery. VIEW 2022;3:20200136. [DOI: 10.1002/viw.20200136] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
132 Zou M, Zhao P, Huo S, Göstl R, Herrmann A. Activation of Antibiotic-Grafted Polymer Brushes by Ultrasound. ACS Macro Lett 2022;11:15-9. [PMID: 35574800 DOI: 10.1021/acsmacrolett.1c00645] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
133 Hasanzadeh A, Noori H, Jahandideh A, Haeri Moghaddam N, Kamrani Mousavi SM, Nourizadeh H, Saeedi S, Karimi M, Hamblin MR. Smart Strategies for Precise Delivery of CRISPR/Cas9 in Genome Editing. ACS Appl Bio Mater 2022. [PMID: 35040621 DOI: 10.1021/acsabm.1c01112] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
134 Choi HW, Lim JH, Kim CW, Lee E, Kim J, Chang K, Chung BG. Near-Infrared Light-Triggered Generation of Reactive Oxygen Species and Induction of Local Hyperthermia from Indocyanine Green Encapsulated Mesoporous Silica-Coated Graphene Oxide for Colorectal Cancer Therapy. Antioxidants 2022;11:174. [DOI: 10.3390/antiox11010174] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
135 Zhang J, Lin W, Yang L, Zhang A, Zhang Y, Liu J, Liu J. Injectable and pH-responsive self-assembled peptide hydrogel for promoted tumor cell uptake and enhanced cancer chemotherapy. Biomater Sci 2022. [PMID: 35006223 DOI: 10.1039/d1bm01788h] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
136 Pan Z, Yang G, Yuan J, Pan M, Li J, Tan H. Effect of the disulfide bond and polyethylene glycol on the degradation and biophysicochemical properties of polyurethane micelles. Biomater Sci 2022. [PMID: 34988575 DOI: 10.1039/d1bm01422f] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
137 Farmanbar N, Mohseni S, Darroudi M. Green synthesis of chitosan-coated magnetic nanoparticles for drug delivery of oxaliplatin and irinotecan against colorectal cancer cells. Polym Bull . [DOI: 10.1007/s00289-021-04066-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
138 Corma A, Botella P, Rivero-Buceta E. Silica-Based Stimuli-Responsive Systems for Antitumor Drug Delivery and Controlled Release. Pharmaceutics 2022;14:110. [PMID: 35057006 DOI: 10.3390/pharmaceutics14010110] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
139 Poudel I, Annaji M, Arnold RD, Gajbhiye V, Tiwari AK, Babu RJ. Vesicular nanocarrier based stimuli-responsive drug delivery systems. Stimuli-Responsive Nanocarriers 2022. [DOI: 10.1016/b978-0-12-824456-2.00002-3] [Reference Citation Analysis]
140 Kumar P, Salve R, Gajbhiye KR, Gajbhiye V. An overview of stimuli-responsive nanocarriers: State of the art. Stimuli-Responsive Nanocarriers 2022. [DOI: 10.1016/b978-0-12-824456-2.00004-7] [Reference Citation Analysis]
141 Chandna S, Gogde K, Kaur R, Sagar V, Bhaumik J. Nano-biosensors for Plant Biomass: Concept and Applications. Sustainable Plant Nutrition in a Changing World 2022. [DOI: 10.1007/978-3-030-97389-6_9] [Reference Citation Analysis]
142 Bahman F, Butt AM, Ashi L, Mohd Amin MCI, Greish K. Polymeric micelles for oral drug delivery. Polymeric Micelles for Drug Delivery 2022. [DOI: 10.1016/b978-0-323-89868-3.00015-x] [Reference Citation Analysis]
143 Ji W, Li Y, Peng H, Zhao R, Zhang X. Nature-inspired dynamic gene-loaded nanoassemblies for the treatment of brain diseases. Adv Drug Deliv Rev 2022;180:114029. [PMID: 34752841 DOI: 10.1016/j.addr.2021.114029] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
144 Kausar A. Cutting-edge polymer/graphene nanocomposites for biomedical applications. Graphene to Polymer/Graphene Nanocomposites 2022. [DOI: 10.1016/b978-0-323-90937-2.00011-3] [Reference Citation Analysis]
145 Daramola OO, Adara P, Adewuyi BO, Sadiku ER, Kupolati WK. Polymer nanoparticles (nanomedicine) for therapeutic applications. Polymeric Biomaterials for Healthcare Applications 2022. [DOI: 10.1016/b978-0-323-85233-3.00003-3] [Reference Citation Analysis]
146 Raikwar S, Jain A, Saraf S, Tiwari A, Panda PK, Jain SK. Environmental stimuli-sensitive chitosan nanocarriers in therapeutics. Chitosan in Biomedical Applications 2022. [DOI: 10.1016/b978-0-12-821058-1.00007-1] [Reference Citation Analysis]
147 Sharma P, Poonia A, Jangra M, Ankur. Application of Stimuli-Responsive Polymers in Cancer Therapy. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects 2022. [DOI: 10.1007/978-981-16-1247-3_50-1] [Reference Citation Analysis]
148 Liu J, Liew SS, Wang J, Pu K. Bioinspired and Biomimetic Delivery Platforms for Cancer Vaccines. Adv Mater 2022;34:e2103790. [PMID: 34651344 DOI: 10.1002/adma.202103790] [Cited by in Crossref: 35] [Cited by in F6Publishing: 21] [Article Influence: 35.0] [Reference Citation Analysis]
149 Zhao D, Yang N, Xu L, Du J, Yang Y, Wang D. Hollow structures as drug carriers: Recognition, response, and release. Nano Res 2022;15:739-57. [PMID: 34254012 DOI: 10.1007/s12274-021-3595-5] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
150 Gao J, Yuan K, Zhang L. In Vitro Biosensing Using Micro-/Nanomachines. Field-Driven Micro and Nanorobots for Biology and Medicine 2022. [DOI: 10.1007/978-3-030-80197-7_10] [Reference Citation Analysis]
151 Sharma P, Poonia A, Jangra M, Ankur. Application of Stimuli-Responsive Polymers in Cancer Therapy. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects 2022. [DOI: 10.1007/978-981-16-5422-0_50] [Reference Citation Analysis]
152 Bicak B, Gok B, Kecel-gunduz S, Budama-kilinc Y. Molecular Modeling of Nanoparticles. Computer Aided Pharmaceutics and Drug Delivery 2022. [DOI: 10.1007/978-981-16-5180-9_23] [Reference Citation Analysis]
153 Shrestha B, Tang L, Hood RL. Nanotechnology for Personalized Medicine. Nanomedicine 2022. [DOI: 10.1007/978-981-13-9374-7_18-1] [Reference Citation Analysis]
154 Azizi M, Kokabi H, Dianat-moghadam H, Mehrmohammadi M. Nanotechnology for cancer theranostics. Targeted Cancer Imaging 2022. [DOI: 10.1016/b978-0-12-824513-2.00003-6] [Reference Citation Analysis]
155 Rabiee N, Bagherzadeh M, Ghadiri AM, Kiani M, Ahmadi S, Jajarmi V, Fatahi Y, Aldhaher A, Tahriri M, Webster TJ, Mostafavi E. Calcium-based nanomaterials and their interrelation with chitosan: optimization for pCRISPR delivery. J Nanostructure Chem 2022;12:919-32. [PMID: 34580605 DOI: 10.1007/s40097-021-00446-1] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
156 Hao J, Wang J, Pan H, Sang Y, Wang D, Wang Z, Ai J, Lin B, Chen L. pH-redox responsive polymer-doxorubicin prodrug micelles studied by molecular dynamics, dissipative particle dynamics simulations and experiments. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.103136] [Reference Citation Analysis]
157 Kenchegowda M, Rahamathulla M, Hani U, Begum MY, Guruswamy S, Osmani RAM, Gowrav MP, Alshehri S, Ghoneim MM, Alshlowi A, Gowda DV. Smart Nanocarriers as an Emerging Platform for Cancer Therapy: A Review. Molecules 2021;27:146. [PMID: 35011376 DOI: 10.3390/molecules27010146] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
158 Liu R, Peng Y, Lu L, Peng S, Chen T, Zhan M. Near-infrared light-triggered nano-prodrug for cancer gas therapy. J Nanobiotechnology 2021;19:443. [PMID: 34949202 DOI: 10.1186/s12951-021-01078-x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
159 Li X, Montague EC, Pollinzi A, Lofts A, Hoare T. Design of Smart Size-, Surface-, and Shape-Switching Nanoparticles to Improve Therapeutic Efficacy. Small 2021;:e2104632. [PMID: 34936204 DOI: 10.1002/smll.202104632] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
160 Jiang H, Zhang S, Sun G, Li Y, Guan X, Yang C, Ngai T. Engineering hybrid microgels as particulate emulsifiers for reversible Pickering emulsions. Chem Sci 2021;13:39-43. [PMID: 35059148 DOI: 10.1039/d1sc05398a] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
161 Zheng M, Yuan J. Polymeric nanostructures based on azobenzene and their biomedical applications: synthesis, self-assembly and stimuli-responsiveness. Org Biomol Chem 2021. [PMID: 34908082 DOI: 10.1039/d1ob01823j] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
162 Wang W, Li PF, Xie R, Ju XJ, Liu Z, Chu LY. Designable Micro-/Nano-Structured Smart Polymeric Materials. Adv Mater 2021;:e2107877. [PMID: 34897843 DOI: 10.1002/adma.202107877] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
163 Wang Y, Lv S, Cao F, Ding Z, Liu J, Chen Q, Gao J, Huang X. Investigations on the influence of the structural flexibility of nanoliposomes on their properties. J Liposome Res 2021;:1-12. [PMID: 34890290 DOI: 10.1080/08982104.2021.1998106] [Reference Citation Analysis]
164 Kubo T, Shimonaka M, Watabe Y, Akiyoshi K, Balachandran J, Otsuka K. Study on magnetic thermal seeds coated with thermal-responsive molecularly imprinted polymers. Nanocomposites 2021;7:215-25. [DOI: 10.1080/20550324.2021.2008206] [Reference Citation Analysis]
165 Kongcharoen H, Coester B, Yu F, Aziz I, Poh WC, Tan MWM, Tonanon P, Ciou JH, Chan B, Webster RD, Lew WS, Lee PS. Magnetically Directed Co-nanoinitiators for Cross-Linking Adhesives and Enhancing Mechanical Properties. ACS Appl Mater Interfaces 2021;13:57851-63. [PMID: 34843200 DOI: 10.1021/acsami.1c08040] [Reference Citation Analysis]
166 Tang C, Liu H, Fan Y, He J, Li F, Wang J, Hou Y. Functional Nanomedicines for Targeted Therapy of Bladder Cancer. Front Pharmacol 2021;12:778973. [PMID: 34867408 DOI: 10.3389/fphar.2021.778973] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
167 Wang Y, Sun H. Polymeric Nanomaterials for Efficient Delivery of Antimicrobial Agents. Pharmaceutics 2021;13:2108. [PMID: 34959388 DOI: 10.3390/pharmaceutics13122108] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
168 Qian C, Al-Hamyari B, Tang X, Hou B, Yang S, Zhang G, Lv H, Yang Z, Wang Z, Shi Y. Interface-Engineered Paclitaxel-Based Hollow Mesoporous Organosilica Nanoplatforms for Photothermal-Enhanced Chemotherapy of Tumor. Mol Pharm 2021;18:4531-42. [PMID: 34739255 DOI: 10.1021/acs.molpharmaceut.1c00735] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
169 Tang N, Ning Q, Wang Z, Tao Y, Zhao X, Tang S. Tumor microenvironment based stimuli-responsive CRISPR/Cas delivery systems: A viable platform for interventional approaches. Colloids Surf B Biointerfaces 2021;210:112257. [PMID: 34894597 DOI: 10.1016/j.colsurfb.2021.112257] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
170 Berillo D, Zharkinbekov Z, Kim Y, Raziyeva K, Temirkhanova K, Saparov A. Stimuli-Responsive Polymers for Transdermal, Transmucosal and Ocular Drug Delivery. Pharmaceutics 2021;13:2050. [PMID: 34959332 DOI: 10.3390/pharmaceutics13122050] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
171 Alves P, Barrias C, Gomes P, Martins M. Smart biomaterial-based systems for intrinsic stimuli-responsive chronic wound management. Materials Today Chemistry 2021;22:100623. [DOI: 10.1016/j.mtchem.2021.100623] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
172 Shariatinia Z. Big family of nano- and microscale drug delivery systems ranging from inorganic materials to polymeric and stimuli-responsive carriers as well as drug-conjugates. Journal of Drug Delivery Science and Technology 2021;66:102790. [DOI: 10.1016/j.jddst.2021.102790] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
173 Zhen W, An S, Wang S, Hu W, Li Y, Jiang X, Li J. Precise Subcellular Organelle Targeting for Boosting Endogenous-Stimuli-Mediated Tumor Therapy. Adv Mater 2021;33:e2101572. [PMID: 34611949 DOI: 10.1002/adma.202101572] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
174 Zhao Y, Li Z, Ma J, Jia Q. Design of a Spiropyran-Based Smart Adsorbent with Dual Response: Focusing on Highly Efficient Enrichment of Phosphopeptides. ACS Appl Mater Interfaces 2021;13:55806-14. [PMID: 34786943 DOI: 10.1021/acsami.1c14739] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
175 Liu X, Zheng K, Li M, Lv H, Ding C. Multifunctional photo-responsive liposomes for tumor imaging and phototherapy to enhance the antitumor efficacy and reduce the hepatotoxicity of methotrexate. Dyes and Pigments 2021;196:109790. [DOI: 10.1016/j.dyepig.2021.109790] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
176 Liu F, Liu X, Chen F, Fu Q. Mussel-inspired chemistry: A promising strategy for natural polysaccharides in biomedical applications. Progress in Polymer Science 2021;123:101472. [DOI: 10.1016/j.progpolymsci.2021.101472] [Cited by in Crossref: 14] [Cited by in F6Publishing: 20] [Article Influence: 7.0] [Reference Citation Analysis]
177 Manikkath J, Subramony JA. Toward closed-loop drug delivery: Integrating wearable technologies with transdermal drug delivery systems. Adv Drug Deliv Rev 2021;179:113997. [PMID: 34634396 DOI: 10.1016/j.addr.2021.113997] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
178 Krishnan N, Fang RH, Zhang L. Engineering of stimuli-responsive self-assembled biomimetic nanoparticles. Adv Drug Deliv Rev 2021;179:114006. [PMID: 34655662 DOI: 10.1016/j.addr.2021.114006] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
179 Yu F, Zhang F. A feasible strategy of fabricating hybrid drugs co-loaded polymer-lipid nanoparticles for the treatment of nasopharyngeal cancer therapy. Process Biochemistry 2021;111:78-86. [DOI: 10.1016/j.procbio.2021.08.027] [Reference Citation Analysis]
180 Song J, Wu C, Zhao Y, Yang M, Yao Q, Gao Y. Bioorthogonal Disassembly of Tetrazine Bearing Supramolecular Assemblies Inside Living Cells. Small 2021;:e2104772. [PMID: 34843166 DOI: 10.1002/smll.202104772] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
181 Álvarez E, González B, Lozano D, Doadrio AL, Colilla M, Izquierdo-Barba I. Nanoantibiotics Based in Mesoporous Silica Nanoparticles: New Formulations for Bacterial Infection Treatment. Pharmaceutics 2021;13:2033. [PMID: 34959315 DOI: 10.3390/pharmaceutics13122033] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
182 Koduru HK, Marinov YG, Scaramuzza N. Review on Microstructural and Ion‐conductivity Properties of Biodegradable Starch‐Based Solid Polymer Electrolyte Membranes. Starch Stärke 2022;74:2100170. [DOI: 10.1002/star.202100170] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
183 Doroudian M, Azhdari MH, Goodarzi N, O'Sullivan D, Donnelly SC. Smart Nanotherapeutics and Lung Cancer. Pharmaceutics 2021;13:1972. [PMID: 34834387 DOI: 10.3390/pharmaceutics13111972] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
184 Hashemzadeh I, Hasanzadeh A, Radmanesh F, Khodadadi Chegeni B, Hosseini ES, Kiani J, Shahbazi A, Naseri M, Fatahi Y, Nourizadeh H, Kheiri Yeghaneh Azar B, Aref AR, Liu Y, Hamblin MR, Karimi M. Polyethylenimine-Functionalized Carbon Dots for Delivery of CRISPR/Cas9 Complexes. ACS Appl Bio Mater 2021;4:7979-7992. [DOI: 10.1021/acsabm.1c00890] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
185 Wu G, Sun J, Zhang Z, Guo D, Liu J, Liu L. Recent advances in biological applications of nanomaterials through defect engineering. Sci Total Environ 2021;:151647. [PMID: 34785228 DOI: 10.1016/j.scitotenv.2021.151647] [Reference Citation Analysis]
186 Pham TC, Nguyen VN, Choi Y, Lee S, Yoon J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem Rev 2021;121:13454-619. [PMID: 34582186 DOI: 10.1021/acs.chemrev.1c00381] [Cited by in Crossref: 141] [Cited by in F6Publishing: 172] [Article Influence: 70.5] [Reference Citation Analysis]
187 Hu W, Su Y, Jiang Y, Fan W, Cheng S, Tong Z, Cen C, Jiang G. Polymer Vesicles with Upper Critical Solution Temperature for Near-infrared Light-triggered Transdermal Delivery of Metformin in Diabetic Rats. Chin J Polym Sci. [DOI: 10.1007/s10118-021-2640-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
188 Liu C, Chen H, Zhou H, Yu S, Wang N, Yao W, Lu AH, Qiao W. Magnetic Resonance Imaging-Guided Multi-Stimulus-Responsive Drug Delivery Strategy for Personalized and Precise Cancer Treatment. ACS Appl Mater Interfaces 2021;13:50716-32. [PMID: 34668377 DOI: 10.1021/acsami.1c13853] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
189 Wang D, Han S, Lu B. Biocompatible Eu doped mesoporous calcium silicate nanospheres for pH-responsive drug release. Inorganic Chemistry Communications 2021;133:108872. [DOI: 10.1016/j.inoche.2021.108872] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
190 Bami MS, Raeisi Estabragh MA, Khazaeli P, Ohadi M, Dehghannoudeh G. pH-responsive drug delivery systems as intelligent carriers for targeted drug therapy: Brief history, properties, synthesis, mechanism and application. Journal of Drug Delivery Science and Technology 2021. [DOI: 10.1016/j.jddst.2021.102987] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
191 Ang MJY, Chan SY, Goh YY, Luo Z, Lau JW, Liu X. Emerging strategies in developing multifunctional nanomaterials for cancer nanotheranostics. Adv Drug Deliv Rev 2021;178:113907. [PMID: 34371084 DOI: 10.1016/j.addr.2021.113907] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 5.5] [Reference Citation Analysis]
192 Chen Z, Lan Y, Ling S, Dong Y, Wang Y, Xu J. Microfluidic‐Generated Biopolymer Microparticles as Cargo Delivery Systems. Adv Materials Technologies 2022;7:2100733. [DOI: 10.1002/admt.202100733] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
193 Chugh V, Vijaya Krishna K, Pandit A. Cell Membrane-Coated Mimics: A Methodological Approach for Fabrication, Characterization for Therapeutic Applications, and Challenges for Clinical Translation. ACS Nano 2021. [PMID: 34699181 DOI: 10.1021/acsnano.1c03800] [Cited by in Crossref: 15] [Cited by in F6Publishing: 20] [Article Influence: 7.5] [Reference Citation Analysis]
194 Vitorino LS, Dos Santos TC, Bessa IAA, Santos ECS, Verçoza BRF, de Oliveira LAS, Rodrigues JCF, Ronconi CM. Amphotericin-B-loaded polymer-functionalized reduced graphene oxides for Leishmania amazonensis chemo-photothermal therapy. Colloids Surf B Biointerfaces 2021;209:112169. [PMID: 34752985 DOI: 10.1016/j.colsurfb.2021.112169] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
195 Naeem M, Hoque MZ, Ovais M, Basheer C, Ahmad I. Stimulus-Responsive Smart Nanoparticles-Based CRISPR-Cas Delivery for Therapeutic Genome Editing. Int J Mol Sci 2021;22:11300. [PMID: 34681959 DOI: 10.3390/ijms222011300] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
196 Mujtaba M, Wang D, Carvalho LB, Oliveira JL, Espirito Santo Pereira AD, Sharif R, Jogaiah S, Paidi MK, Wang L, Ali Q, Fraceto LF. Nanocarrier-Mediated Delivery of miRNA, RNAi, and CRISPR-Cas for Plant Protection: Current Trends and Future Directions. ACS Agric Sci Technol 2021;1:417-35. [DOI: 10.1021/acsagscitech.1c00146] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 7.5] [Reference Citation Analysis]
197 Meng F, Liu F, Lan M, Zou T, Li L, Cai T, Cai Y. Preparation and evaluation of folate-modified albumin baicalin-loaded nanoparticles for the targeted treatment of breast cancer. Journal of Drug Delivery Science and Technology 2021;65:102603. [DOI: 10.1016/j.jddst.2021.102603] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
198 Li X, Li J, Wang R, Rahaman A, Zeng X, Brennan CS. Combined effects of pulsed electric field and ultrasound pretreatments on mass transfer and quality of mushrooms. LWT 2021;150:112008. [DOI: 10.1016/j.lwt.2021.112008] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
199 Hong Q, Huo S, Tang H, Qu X, Yue B. Smart Nanomaterials for Treatment of Biofilm in Orthopedic Implants. Front Bioeng Biotechnol 2021;9:694635. [PMID: 34589470 DOI: 10.3389/fbioe.2021.694635] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
200 Tong T, Guan Y, Gao Y, Xing C, Zhang S, Jiang D, Yang X, Kang Y, Pang J. Smart nanocarriers as therapeutic platforms for bladder cancer. Nano Res 2022;15:2157-76. [DOI: 10.1007/s12274-021-3753-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
201 Cheng X, Wei J, Ge Q, Xing D, Zhou X, Qian Y, Jiang G. The optimized drug delivery systems of treating cancer bone metastatic osteolysis with nanomaterials. Drug Deliv 2021;28:37-53. [PMID: 33336610 DOI: 10.1080/10717544.2020.1856225] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
202 Xiao MF, Zeng C, Li SH, Yuan FL. Applications of nanomaterials in COVID-19 pandemic. Rare Metals 2021;:1-13. [PMID: 34539132 DOI: 10.1007/s12598-021-01789-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
203 Liang J, Yang B, Zhou X, Han Q, Zou J, Cheng L. Stimuli-responsive drug delivery systems for head and neck cancer therapy. Drug Deliv 2021;28:272-84. [PMID: 33501883 DOI: 10.1080/10717544.2021.1876182] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 8.5] [Reference Citation Analysis]
204 Yuan M, Shi S, Luo Y, Yu Y, Wang S, Chen C. Fabrication of Mesoporous SiO2@CaSiO3 Hollow Spheres as Carriers for pH-sensitive Drug Delivery. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1248-6] [Reference Citation Analysis]
205 Pulit-prociak J, Staroń A, Długosz O, Kluz K, Banach M. Preparation of Titanium Oxide-Based Nanoparticles Modified with D-(+)-Mannose and Investigation of their Properties As A Potential Drug Carrier. J Clust Sci 2021;32:1241-1252. [DOI: 10.1007/s10876-020-01889-2] [Reference Citation Analysis]
206 Wang P, Jin Z, Song G, Zhang X. Recent progress and strategies for precise framework structure-enabled drug delivery systems. Materials Today Sustainability 2021;13:100065. [DOI: 10.1016/j.mtsust.2021.100065] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
207 Li Y, Teng X, Wang Y, Yang C, Yan X, Li J. Neutrophil Delivered Hollow Titania Covered Persistent Luminescent Nanosensitizer for Ultrosound Augmented Chemo/Immuno Glioblastoma Therapy. Adv Sci (Weinh) 2021;8:e2004381. [PMID: 34196474 DOI: 10.1002/advs.202004381] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
208 Hao D, Zhang Z, Ji Y. Responsive polymeric drug delivery systems for combination anticancer therapy: experimental design and computational insights. International Journal of Polymeric Materials and Polymeric Biomaterials. [DOI: 10.1080/00914037.2021.1960340] [Reference Citation Analysis]
209 Mirón-Barroso S, Domènech EB, Trigueros S. Nanotechnology-Based Strategies to Overcome Current Barriers in Gene Delivery. Int J Mol Sci 2021;22:8537. [PMID: 34445243 DOI: 10.3390/ijms22168537] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
210 Zhang J, He B, Hu Y, Alam P, Zhang H, Lam JWY, Tang BZ. Stimuli-Responsive AIEgens. Adv Mater 2021;33:e2008071. [PMID: 34137087 DOI: 10.1002/adma.202008071] [Cited by in Crossref: 63] [Cited by in F6Publishing: 66] [Article Influence: 31.5] [Reference Citation Analysis]
211 Rust T, Jung D, Hoppe A, Schoppa T, Langer K, Kuckling D. Backbone-Degradable (Co-)Polymers for Light-Triggered Drug Delivery. ACS Appl Polym Mater 2021;3:3831-42. [DOI: 10.1021/acsapm.1c00411] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
212 Kandoth N, Barman S, Chatterjee A, Sarkar S, Dey AK, Pramanik SK, Das A. Photoactive Lanthanide‐Based Upconverting Nanoclusters for Antimicrobial Applications. Adv Funct Mater 2021;31:2104480. [DOI: 10.1002/adfm.202104480] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
213 Zheng Y, Wang Y, Xia M, Gao Y, Zhang L, Song Y, Zhang C. The combination of nanotechnology and traditional Chinese medicine (TCM) inspires the modernization of TCM: review on nanotechnology in TCM-based drug delivery systems. Drug Deliv Transl Res 2021. [PMID: 34260049 DOI: 10.1007/s13346-021-01029-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
214 Lv C, Gao J, An K, Nie J, Xu J, Du B. Self-assembly of the Thermosensitive and pH-Sensitive Pentablock Copolymer PNIPAM x - b -P( t BA- co -AA) 90 - b -PPO 36 - b -P( t BA- co -AA) 90 - b -PNIPAM x in Dilute Aqueous Solutions. Macromolecules 2021;54:6489-501. [DOI: 10.1021/acs.macromol.1c00627] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
215 Sabir F, Zeeshan M, Laraib U, Barani M, Rahdar A, Cucchiarini M, Pandey S. DNA Based and Stimuli-Responsive Smart Nanocarrier for Diagnosis and Treatment of Cancer: Applications and Challenges. Cancers (Basel) 2021;13:3396. [PMID: 34298610 DOI: 10.3390/cancers13143396] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 13.5] [Reference Citation Analysis]
216 Yu C, Li L, Hu P, Yang Y, Wei W, Deng X, Wang L, Tay FR, Ma J. Recent Advances in Stimulus-Responsive Nanocarriers for Gene Therapy. Adv Sci (Weinh) 2021;8:2100540. [PMID: 34306980 DOI: 10.1002/advs.202100540] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 11.5] [Reference Citation Analysis]
217 Wu D, Xu Z, Li Z, Yuan W, Wang H, Xie X. Reduction and temperature dually-triggered size-shrinkage and drug release of micelles for synergistic photothermal-chemotherapy of cancer. European Polymer Journal 2021;154:110535. [DOI: 10.1016/j.eurpolymj.2021.110535] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
218 Meng Z, Zhang Y, Shen E, Li W, Wang Y, Sathiyamoorthy K, Gao W, C Kolios M, Bai W, Hu B, Wang W, Zheng Y. Marriage of Virus-Mimic Surface Topology and Microbubble-Assisted Ultrasound for Enhanced Intratumor Accumulation and Improved Cancer Theranostics. Adv Sci (Weinh) 2021;8:2004670. [PMID: 34258156 DOI: 10.1002/advs.202004670] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
219 Moramkar N, Bhatt P. Insight into chitosan derived nanotherapeutics for anticancer drug delivery and imaging. European Polymer Journal 2021;154:110540. [DOI: 10.1016/j.eurpolymj.2021.110540] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
220 Chang D, Ma Y, Xu X, Xie J, Ju S. Stimuli-Responsive Polymeric Nanoplatforms for Cancer Therapy. Front Bioeng Biotechnol 2021;9:707319. [PMID: 34249894 DOI: 10.3389/fbioe.2021.707319] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
221 Huerta-López C, Alegre-Cebollada J. Protein Hydrogels: The Swiss Army Knife for Enhanced Mechanical and Bioactive Properties of Biomaterials. Nanomaterials (Basel) 2021;11:1656. [PMID: 34202469 DOI: 10.3390/nano11071656] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
222 Huang Y, Wang T, Tan Q, He D, Wu M, Fan J, Yang J, Zhong C, Li K, Zhang J. Smart Stimuli-Responsive and Mitochondria Targeting Delivery in Cancer Therapy. Int J Nanomedicine 2021;16:4117-46. [PMID: 34163163 DOI: 10.2147/IJN.S315368] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
223 AlSawaftah N, Pitt WG, Husseini GA. Dual-Targeting and Stimuli-Triggered Liposomal Drug Delivery in Cancer Treatment. ACS Pharmacol Transl Sci 2021;4:1028-49. [PMID: 34151199 DOI: 10.1021/acsptsci.1c00066] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
224 Kausch AP, Nelson-vasilchik K, Tilelli M, Hague JP. Maize tissue culture, transformation, and genome editing. In Vitro Cell Dev Biol -Plant 2021;57:653-71. [DOI: 10.1007/s11627-021-10196-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
225 Lin X, Wu X, Chen X, Wang B, Xu W. Intellective and stimuli-responsive drug delivery systems in eyes. Int J Pharm 2021;602:120591. [PMID: 33845152 DOI: 10.1016/j.ijpharm.2021.120591] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
226 Cheng G, Wu D, Wang S, Zhang X, Yu P, Chang J, Chen X. Stimuli-responsive size-changeable strategy for cancer theranostics. Nano Today 2021;38:101208. [DOI: 10.1016/j.nantod.2021.101208] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
227 Odularu AT, Ajibade PA. Challenge of diabetes mellitus and researchers’ contributions to its control. Open Chemistry 2021;19:614-34. [DOI: 10.1515/chem-2020-0153] [Reference Citation Analysis]
228 Herdiana Y, Wathoni N, Shamsuddin S, Joni IM, Muchtaridi M. Chitosan-Based Nanoparticles of Targeted Drug Delivery System in Breast Cancer Treatment. Polymers (Basel) 2021;13:1717. [PMID: 34074020 DOI: 10.3390/polym13111717] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 11.5] [Reference Citation Analysis]
229 Shin Y, Husni P, Kang K, Lee D, Lee S, Lee E, Youn Y, Oh K. Recent Advances in pH- or/and Photo-Responsive Nanovehicles. Pharmaceutics 2021;13:725. [PMID: 34069233 DOI: 10.3390/pharmaceutics13050725] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
230 Chakravarty M, Vora A. Nanotechnology-based antiviral therapeutics. Drug Deliv Transl Res 2021;11:748-87. [PMID: 32748035 DOI: 10.1007/s13346-020-00818-0] [Cited by in Crossref: 64] [Cited by in F6Publishing: 81] [Article Influence: 32.0] [Reference Citation Analysis]
231 Badica P, Batalu ND, Burdusel M, Grigoroscuta MA, Aldica G, Enculescu M, Gradisteanu Pircalabioru G, Popa M, Marutescu LG, Dumitriu BG, Olariu L, Bicu A, Purcareanu B, Operti L, Bonino V, Agostino A, Truccato M, Chifiriuc MC. Antibacterial composite coatings of MgB2 powders embedded in PVP matrix. Sci Rep 2021;11:9591. [PMID: 33953282 DOI: 10.1038/s41598-021-88885-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
232 Ruan S, Zhou Y, Jiang X, Gao H. Rethinking CRITID Procedure of Brain Targeting Drug Delivery: Circulation, Blood Brain Barrier Recognition, Intracellular Transport, Diseased Cell Targeting, Internalization, and Drug Release. Adv Sci (Weinh) 2021;8:2004025. [PMID: 33977060 DOI: 10.1002/advs.202004025] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 19.0] [Reference Citation Analysis]
233 Wang S, Yu G, Yang W, Wang Z, Jacobson O, Tian R, Deng H, Lin L, Chen X. Photodynamic-Chemodynamic Cascade Reactions for Efficient Drug Delivery and Enhanced Combination Therapy. Adv Sci (Weinh) 2021;8:2002927. [PMID: 34026433 DOI: 10.1002/advs.202002927] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 10.5] [Reference Citation Analysis]
234 Abbasi M, Ghoran SH, Niakan MH, Jamali K, Moeini Z, Jangjou A, Izadpanah P, Amani AM. Mesoporous silica nanoparticle: Heralding a brighter future in cancer nanomedicine. Microporous and Mesoporous Materials 2021;319:110967. [DOI: 10.1016/j.micromeso.2021.110967] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
235 Kumar ARK, Shou Y, Chan B, L K, Tay A. Materials for Improving Immune Cell Transfection. Adv Mater 2021;33:e2007421. [PMID: 33860598 DOI: 10.1002/adma.202007421] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
236 Jiao J, Lu H, Wang S. Photo-responsive prodrug nanoparticles for efficient cytoplasmic delivery and synergistic photodynamic-chemotherapy of metastatic triple-negative breast cancer. Acta Biomater 2021;126:421-32. [PMID: 33774201 DOI: 10.1016/j.actbio.2021.03.045] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
237 Yang R, Hong Y, Wang Y, Zhao L, Shen L, Feng Y. The embodiment of the strategy of “using active chemicals as excipients” in compound preparation. J Pharm Investig 2022;52:1-22. [DOI: 10.1007/s40005-021-00531-1] [Reference Citation Analysis]
238 Ahmadpoor F, Masood A, Feliu N, Parak WJ, Shojaosadati SA. The Effect of Surface Coating of Iron Oxide Nanoparticles on Magnetic Resonance Imaging Relaxivity. Front Nanotechnol 2021;3:644734. [DOI: 10.3389/fnano.2021.644734] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
239 Cai Q, Jiang J, Zhang H, Ge P, Yang L, Zhu W. Reduction-Responsive Anticancer Nanodrug Using a Full Poly(ethylene glycol) Carrier. ACS Appl Mater Interfaces 2021;13:19387-97. [PMID: 33876927 DOI: 10.1021/acsami.1c04648] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
240 Zhao Y, Chen L, Wang Y, Song X, Li K, Yan X, Yu L, He Z. Nanomaterial-based strategies in antimicrobial applications: Progress and perspectives. Nano Res 2021;14:4417-41. [DOI: 10.1007/s12274-021-3417-4] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 10.5] [Reference Citation Analysis]
241 Elamir A, Ajith S, Sawaftah NA, Abuwatfa W, Mukhopadhyay D, Paul V, Al-Sayah MH, Awad N, Husseini GA. Ultrasound-triggered herceptin liposomes for breast cancer therapy. Sci Rep 2021;11:7545. [PMID: 33824356 DOI: 10.1038/s41598-021-86860-5] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 14.0] [Reference Citation Analysis]
242 Kim B, Park JE, Im E, Cho Y, Lee J, Lee HJ, Sim DY, Park WY, Shim BS, Kim SH. Recent Advances in Nanotechnology with Nano-Phytochemicals: Molecular Mechanisms and Clinical Implications in Cancer Progression. Int J Mol Sci 2021;22:3571. [PMID: 33808235 DOI: 10.3390/ijms22073571] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
243 Li L, Tong T, Ji Q, Xu Z, Guan Y, Liang X, Huang H, Kang Y, Pang J. Dual pH- and Glutathione-Responsive CO2-Generating Nanodrug Delivery System for Contrast-Enhanced Ultrasonography and Therapy of Prostate Cancer. ACS Appl Mater Interfaces 2021;13:12899-911. [PMID: 33720701 DOI: 10.1021/acsami.1c00077] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
244 Wei P, Cornel EJ, Du J. Ultrasound-responsive polymer-based drug delivery systems. Drug Deliv Transl Res 2021;11:1323-39. [PMID: 33761101 DOI: 10.1007/s13346-021-00963-0] [Cited by in Crossref: 22] [Cited by in F6Publishing: 30] [Article Influence: 11.0] [Reference Citation Analysis]
245 Franco MS, Gomes ER, Roque MC, Oliveira MC. Triggered Drug Release From Liposomes: Exploiting the Outer and Inner Tumor Environment. Front Oncol 2021;11:623760. [PMID: 33796461 DOI: 10.3389/fonc.2021.623760] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
246 Liu W, Dong X, Liu Y, Sun Y. Photoresponsive materials for intensified modulation of Alzheimer's amyloid-β protein aggregation: A review. Acta Biomater 2021;123:93-109. [PMID: 33465508 DOI: 10.1016/j.actbio.2021.01.018] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
247 Liu F, Niko Y, Bouchaala R, Mercier L, Lefebvre O, Andreiuk B, Vandamme T, Goetz JG, Anton N, Klymchenko A. Drug‐Sponge Lipid Nanocarrier for in Situ Cargo Loading and Release Using Dynamic Covalent Chemistry. Angew Chem Int Ed 2021;60:6573-6580. [DOI: 10.1002/anie.202014259] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
248 El Founi M, Laroui H, Canup BSB, Ametepe JS, Vanderesse R, Acherar S, Babin J, Ferji K, Chevalot I, Six JL. Doxorubicin Intracellular Release Via External UV Irradiation of Dextran-g-poly(o-nitrobenzyl acrylate) Photosensitive Nanoparticles. ACS Appl Bio Mater 2021;4:2742-51. [PMID: 35014313 DOI: 10.1021/acsabm.0c01644] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
249 Zare H, Ahmadi S, Ghasemi A, Ghanbari M, Rabiee N, Bagherzadeh M, Karimi M, Webster TJ, Hamblin MR, Mostafavi E. Carbon Nanotubes: Smart Drug/Gene Delivery Carriers. Int J Nanomedicine 2021;16:1681-706. [PMID: 33688185 DOI: 10.2147/IJN.S299448] [Cited by in Crossref: 57] [Cited by in F6Publishing: 66] [Article Influence: 28.5] [Reference Citation Analysis]
250 Liu W, Dong A, Wang B, Zhang H. Current Advances in Black Phosphorus-Based Drug Delivery Systems for Cancer Therapy. Adv Sci (Weinh) 2021;8:2003033. [PMID: 33717847 DOI: 10.1002/advs.202003033] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 15.5] [Reference Citation Analysis]
251 Pandey P, Ghimire G, Garcia J, Rubfiaro A, Wang X, Tomitaka A, Nair M, Kaushik A, He J. Single-Entity Approach to Investigate Surface Charge Enhancement in Magnetoelectric Nanoparticles Induced by AC Magnetic Field Stimulation. ACS Sens 2021;6:340-7. [PMID: 32449356 DOI: 10.1021/acssensors.0c00664] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
252 Wang Q, Chan KF, Schweizer K, Du X, Jin D, Yu SCH, Nelson BJ, Zhang L. Ultrasound Doppler-guided real-time navigation of a magnetic microswarm for active endovascular delivery. Sci Adv 2021;7:eabe5914. [PMID: 33637532 DOI: 10.1126/sciadv.abe5914] [Cited by in Crossref: 78] [Cited by in F6Publishing: 78] [Article Influence: 39.0] [Reference Citation Analysis]
253 Jia R, Teng L, Gao L, Su T, Fu L, Qiu Z, Bi Y. Advances in Multiple Stimuli-Responsive Drug-Delivery Systems for Cancer Therapy. Int J Nanomedicine 2021;16:1525-51. [PMID: 33658782 DOI: 10.2147/IJN.S293427] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 11.5] [Reference Citation Analysis]
254 Kim T, Nam K, Kim YM, Yang K, Roh YH. DNA-Assisted Smart Nanocarriers: Progress, Challenges, and Opportunities. ACS Nano 2021;15:1942-51. [PMID: 33492127 DOI: 10.1021/acsnano.0c08905] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
255 Jha R, Singh A, Sharma PK, Porwal O, Fuloria NK. Graphene-based nanomaterial system: a boon in the era of smart nanocarriers. J Pharm Investig 2021;51:245-80. [DOI: 10.1007/s40005-021-00513-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
256 Zhou H, He G, Sun Y, Wang J, Wu H, Jin P, Zha Z. Cryptobiosis-inspired assembly of "AND" logic gate platform for potential tumor-specific drug delivery. Acta Pharm Sin B 2021;11:534-43. [PMID: 33643829 DOI: 10.1016/j.apsb.2020.08.007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
257 Zhao Y, Li Q, Chai J, Liu Y. Cargo‐Templated Crosslinked Polymer Nanocapsules and Their Biomedical Applications. Adv NanoBio Res 2021;1:2000078. [DOI: 10.1002/anbr.202000078] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
258 Yang K, Zhang S, He J, Nie Z. Polymers and inorganic nanoparticles: A winning combination towards assembled nanostructures for cancer imaging and therapy. Nano Today 2021;36:101046. [DOI: 10.1016/j.nantod.2020.101046] [Cited by in Crossref: 31] [Cited by in F6Publishing: 15] [Article Influence: 15.5] [Reference Citation Analysis]
259 Li X, Zhao Y, Zhang T, Xing D. Mitochondria-Specific Agents for Photodynamic Cancer Therapy: A Key Determinant to Boost the Efficacy. Adv Healthc Mater 2021;10:e2001240. [PMID: 33236531 DOI: 10.1002/adhm.202001240] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 11.0] [Reference Citation Analysis]
260 Luo C, He L, Chen F, Fu T, Zhang P, Xiao Z, Liu Y, Tan W. Stimulus-responsive nanomaterials containing logic gates for biomedical applications. Cell Reports Physical Science 2021;2:100350. [DOI: 10.1016/j.xcrp.2021.100350] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
261 Liu WK, Song YQ, Ma Y, Li X, Chen P, Luo F, Li JH, Li Z, Yang L, Tan H, Zhou ZG. PEGylated Active Carbon Nanoparticles with Improved Dispersivity in Water and Potential Application in Lymphatic Targeted Therapy of Colorectal Cancer. JNanoR 2021;66:85-102. [DOI: 10.4028/www.scientific.net/jnanor.66.85] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
262 Slor G, Olea AR, Pujals S, Tigrine A, De La Rosa VR, Hoogenboom R, Albertazzi L, Amir RJ. Judging Enzyme-Responsive Micelles by Their Covers: Direct Comparison of Dendritic Amphiphiles with Different Hydrophilic Blocks. Biomacromolecules 2021;22:1197-210. [PMID: 33512161 DOI: 10.1021/acs.biomac.0c01708] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
263 Wu J, Wang Q, Dong X, Xu M, Yang J, Yi X, Chen B, Dong X, Wang Y, Lou X, Xia F, Wang S, Dai J. Biocompatible AIEgen/p-glycoprotein siRNA@reduction-sensitive paclitaxel polymeric prodrug nanoparticles for overcoming chemotherapy resistance in ovarian cancer. Theranostics 2021;11:3710-24. [PMID: 33664857 DOI: 10.7150/thno.53828] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
264 Qi C, He J, Fu LH, He T, Blum NT, Yao X, Lin J, Huang P. Tumor-Specific Activatable Nanocarriers with Gas-Generation and Signal Amplification Capabilities for Tumor Theranostics. ACS Nano 2021;15:1627-39. [PMID: 33356128 DOI: 10.1021/acsnano.0c09223] [Cited by in Crossref: 32] [Cited by in F6Publishing: 35] [Article Influence: 16.0] [Reference Citation Analysis]
265 Varahachalam SP, Lahooti B, Chamaneh M, Bagchi S, Chhibber T, Morris K, Bolanos JF, Kim NY, Kaushik A. Nanomedicine for the SARS-CoV-2: State-of-the-Art and Future Prospects. Int J Nanomedicine 2021;16:539-60. [PMID: 33519200 DOI: 10.2147/IJN.S283686] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 19.5] [Reference Citation Analysis]
266 Hu N, Furgal JC. Photoreversible Loading and Unloading of Q–Silsesquioxane Dynamic Network Sponges. Adv Funct Mater 2021;31:2010114. [DOI: 10.1002/adfm.202010114] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
267 Zhang X, Wang S, Cheng G, Yu P, Chang J, Chen X. Cascade Drug-Release Strategy for Enhanced Anticancer Therapy. Matter 2021;4:26-53. [PMID: 33718863 DOI: 10.1016/j.matt.2020.10.002] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 9.0] [Reference Citation Analysis]
268 Rudzińska M, Daglioglu C, Savvateeva LV, Kaci FN, Antoine R, Zamyatnin AA Jr. Current Status and Perspectives of Protease Inhibitors and Their Combination with Nanosized Drug Delivery Systems for Targeted Cancer Therapy. Drug Des Devel Ther 2021;15:9-20. [PMID: 33442233 DOI: 10.2147/DDDT.S285852] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
269 Phan H, Taresco V, Penelle J, Couturaud B. Polymerisation-induced self-assembly (PISA) as a straightforward formulation strategy for stimuli-responsive drug delivery systems and biomaterials: recent advances. Biomater Sci 2021;9:38-50. [PMID: 33179646 DOI: 10.1039/d0bm01406k] [Cited by in Crossref: 21] [Cited by in F6Publishing: 26] [Article Influence: 10.5] [Reference Citation Analysis]
270 Govardhane S, Shende P. Polymeric-Ceramic Nanocomposites Toxicity. Handbook of Polymer and Ceramic Nanotechnology 2021. [DOI: 10.1007/978-3-030-40513-7_55] [Reference Citation Analysis]
271 Deka SR, Sharma AK, Kumar P. Synthesis and evaluation of Poly(N-isopropylacrylamide)-based stimuli-responsive biodegradable carrier with enhanced loading capacity and controlled release properties. Tetrahedron 2021;80:131887. [DOI: 10.1016/j.tet.2020.131887] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
272 Wang Q, Xiao J, Su Y, Huang J, Li J, Qiu L, Zhan M, He X, Yuan W, Li Y. Fabrication of thermoresponsive magnetic micelles from amphiphilic poly(phenyl isocyanide) and Fe 3 O 4 nanoparticles for controlled drug release and synergistic thermochemotherapy. Polym Chem 2021;12:2132-40. [DOI: 10.1039/d1py00022e] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
273 Yao W, Liu C, Wang N, Zhou H, Chen H, Qiao W. Triple-responsive targeted hybrid liposomes with high MRI performance for tumor diagnosis and therapy. Mater Chem Front 2021;5:6226-43. [DOI: 10.1039/d1qm00788b] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
274 Naziris N, Demetzos C. Advanced Technologies in Health and Neurodegenerative Diseases. Handbook of Computational Neurodegeneration 2021. [DOI: 10.1007/978-3-319-75479-6_37-1] [Reference Citation Analysis]
275 Jung D, Rust T, Völlmecke K, Schoppa T, Langer K, Kuckling D. Backbone vs. side-chain: two light-degradable polyurethanes based on 6-nitropiperonal. Polym Chem 2021;12:4565-4575. [DOI: 10.1039/d1py00442e] [Reference Citation Analysis]
276 Vibhavari R, Kumar G, Rao V, Cheruku SP, Kumar N. Nano-pharmacokinetics: biodistribution and toxicology. Nano-Pharmacokinetics and Theranostics 2021. [DOI: 10.1016/b978-0-323-85050-6.00013-x] [Reference Citation Analysis]
277 Pedro SN, Freire CSR, Silvestre AJD, Freire MG. Advances Brought by Ionic Liquids in the Development of Polymer-Based Drug Delivery Systems. Application of Ionic Liquids in Drug Delivery 2021. [DOI: 10.1007/978-981-16-4365-1_7] [Reference Citation Analysis]
278 Singh A. Nanomedicines: Recent Progress, Impact and Challenges in Applications. Asian J Chem 2021;33:2561-2578. [DOI: 10.14233/ajchem.2021.23350] [Reference Citation Analysis]
279 Seba V, Silva G, Chee BS, Henn JG, de Lima GG, Cao Z, Marins M, Nugent M. Stimuli-responsive biopolymeric systems for drug delivery to cancer cells. Tailor-Made and Functionalized Biopolymer Systems 2021. [DOI: 10.1016/b978-0-12-821437-4.00014-1] [Reference Citation Analysis]
280 Ju C, Zhang C. Preparation and Characterization of pH Sensitive Drug Liposomes. Biomaterial Engineering 2021. [DOI: 10.1007/978-3-662-49320-5_14] [Reference Citation Analysis]
281 Huang Y, Huang Y, Zhu Y, Zhu X, Pang Z. Tumor Microenvironment and Intracellular Signal-Activated Nanocomposites for Anticancer Drug Delivery. Materials Horizons: From Nature to Nanomaterials 2021. [DOI: 10.1007/978-981-33-4753-3_8] [Reference Citation Analysis]
282 Anishiya Chella Daisy E, Vinothini K, Rajan M. pH, thermo- and stimuli-responsive nanotherapy for tuberculosis. A Mechanistic Approach to Medicines for Tuberculosis Nanotherapy 2021. [DOI: 10.1016/b978-0-12-819985-5.00010-3] [Reference Citation Analysis]
283 Das NC, Roy B, Patra R, Choudhury A, Ghosh M, Mukherjee S. Surface-Modified Noble Metal Nanoparticles as Antimicrobial Agents: Biochemical, Molecular and Therapeutic Perspectives. Nanotechnology for Advances in Medical Microbiology 2021. [DOI: 10.1007/978-981-15-9916-3_7] [Reference Citation Analysis]
284 Tian Y, Tang G, Li Y, Zhou Z, Chen X, Gao Y, Niu J, Yang J, Tang J, Zhang Y, Zhang X, Cao Y. A simple preparation process for an efficient nano-formulation: small molecule self-assembly based on spinosad and sulfamic acid. Green Chem 2021;23:4882-91. [DOI: 10.1039/d1gc00971k] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
285 Dangroo NA, Malik AA, Ara T, Ali G. Nanotechnology as an Emerging Field in the Arena of Medicine. Applications of Nanomaterials in Agriculture, Food Science, and Medicine 2021. [DOI: 10.4018/978-1-7998-5563-7.ch006] [Reference Citation Analysis]
286 Denieva ZG, Budanova UA, Sebyakin YL. Vesicle Delivery Systems of Biologically Active Compounds: From Liposomes to Cerasomes. Biochem Moscow Suppl Ser A 2021;15:21-35. [DOI: 10.1134/s1990747820050049] [Reference Citation Analysis]
287 Ma L, Liu Z. MIP as Drug Delivery Systems for Special Application. Molecularly Imprinted Polymers as Advanced Drug Delivery Systems 2021. [DOI: 10.1007/978-981-16-0227-6_9] [Reference Citation Analysis]
288 Vinchhi P, Rawal SU, Patel MM. External stimuli-responsive drug delivery systems. Drug Delivery Devices and Therapeutic Systems 2021. [DOI: 10.1016/b978-0-12-819838-4.00023-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
289 Nair A, Varghese BA, Gopi S, Jacob J. Smart drug delivery systems of natural products for inflammation: From fundamentals to the clinic. Inflammation and Natural Products 2021. [DOI: 10.1016/b978-0-12-819218-4.00013-4] [Reference Citation Analysis]
290 Meng Y, Liu R, Song L, Zhu M, Zhai H, Ren C. Exploring the effect of silicene monolayer on the structure and function of villin headpiece and amyloid fibrils by molecular dynamics simulations. Proteins 2021;89:107-15. [PMID: 32860260 DOI: 10.1002/prot.25998] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
291 Mueller E, Himbert S, Simpson MJ, Bleuel M, Rheinstadter MC, Hoare T. Cationic, Anionic, and Amphoteric Dual pH/Temperature-Responsive Degradable Microgels via Self-Assembly of Functionalized Oligomeric Precursor Polymers. Macromolecules 2021;54:351-63. [DOI: 10.1021/acs.macromol.0c02304] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
292 Zhang Y, Fang C, Carvalho WSP, Gao Y, Serpe MJ. Triggered Small-Molecule Release from Dual-Stimuli Responsive Microgels. ACS Appl Polym Mater 2021;3:410-7. [DOI: 10.1021/acsapm.0c01173] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
293 Pandey M, Choudhury H, Abdul-Aziz A, Bhattamisra SK, Gorain B, Carine T, Wee Toong T, Yi NJ, Win Yi L. Promising Drug Delivery Approaches to Treat Microbial Infections in the Vagina: A Recent Update. Polymers (Basel) 2020;13:E26. [PMID: 33374756 DOI: 10.3390/polym13010026] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
294 Zhang H, Gao T, Zhang S, Zhang P, Li R, Ma N, Wei H, Zhang X. Conductive and Tough Smart Poly( N ‐isopropylacrylamide) Hydrogels Hybridized by Green Deep Eutectic Solvent. Macromol Chem Phys 2021;222:2000301. [DOI: 10.1002/macp.202000301] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
295 de Luis B, Morellá-Aucejo Á, Llopis-Lorente A, Godoy-Reyes TM, Villalonga R, Aznar E, Sancenón F, Martínez-Máñez R. A chemical circular communication network at the nanoscale. Chem Sci 2020;12:1551-9. [PMID: 34163918 DOI: 10.1039/d0sc04743k] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
296 Setapa A, Ahmad N, Mohd Mahali S, Mohd Amin MCI. Mathematical Model for Estimating Parameters of Swelling Drug Delivery Devices in a Two-Phase Release. Polymers (Basel) 2020;12:E2921. [PMID: 33291495 DOI: 10.3390/polym12122921] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
297 Yang Y, Zeng W, Huang P, Zeng X, Mei L. Smart materials for drug delivery and cancer therapy. View 2021;2:20200042. [DOI: 10.1002/viw.20200042] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 11.3] [Reference Citation Analysis]
298 Gao X, Wang Q, Cheng C, Lin S, Lin T, Liu C, Han X. The Application of Prussian Blue Nanoparticles in Tumor Diagnosis and Treatment. Sensors (Basel) 2020;20:E6905. [PMID: 33287186 DOI: 10.3390/s20236905] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
299 Tao Y, Chan HF, Shi B, Li M, Leong KW. Light: A Magical Tool for Controlled Drug Delivery. Adv Funct Mater 2020;30:2005029. [PMID: 34483808 DOI: 10.1002/adfm.202005029] [Cited by in Crossref: 65] [Cited by in F6Publishing: 66] [Article Influence: 21.7] [Reference Citation Analysis]
300 Zhu H, Fang C, Zhao W, Wang J, Li Y. Synthesis and Characterization of Dual-function H2O2-Responsive Nanoparticles for Drug Delivery to Treat Atherosclerosis. Chinese Journal of Analytical Chemistry 2020;48:e20149-57. [DOI: 10.1016/s1872-2040(20)60066-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
301 Wang J, Wang H, Cui H, Sun P, Yang X, Chen Q. Circumvent PEGylation dilemma by implementing matrix metalloproteinase-responsive chemistry for promoted tumor gene therapy. Chinese Chemical Letters 2020;31:3143-8. [DOI: 10.1016/j.cclet.2020.07.027] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
302 Chen L, Chen G, Yang Z, Wang H, Liu N, Liu Y, Fang K, Song Y, Guan X. Enhanced cancer treatment by an acid-sensitive cytotoxic peptide-doxorubicin conjugate. Journal of Drug Delivery Science and Technology 2020;60:102048. [DOI: 10.1016/j.jddst.2020.102048] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
303 Cheng Y, Chen Q, Guo Z, Li M, Yang X, Wan G, Chen H, Zhang Q, Wang Y. An Intelligent Biomimetic Nanoplatform for Holistic Treatment of Metastatic Triple-Negative Breast Cancer via Photothermal Ablation and Immune Remodeling. ACS Nano 2020;14:15161-81. [PMID: 33143424 DOI: 10.1021/acsnano.0c05392] [Cited by in Crossref: 43] [Cited by in F6Publishing: 45] [Article Influence: 14.3] [Reference Citation Analysis]
304 Cook MT, Haddow P, Kirton SB, Mcauley WJ. Polymers Exhibiting Lower Critical Solution Temperatures as a Route to Thermoreversible Gelators for Healthcare. Adv Funct Mater 2021;31:2008123. [DOI: 10.1002/adfm.202008123] [Cited by in Crossref: 51] [Cited by in F6Publishing: 55] [Article Influence: 17.0] [Reference Citation Analysis]
305 Sandeep D, Alsawaftah NM, Husseini GA. Immunoliposomes: Synthesis, Structure, and their Potential as Drug Delivery Carriers. CCTR 2020;16:306-19. [DOI: 10.2174/1573394716666200227095521] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
306 Yoon S, Kim Y, Youn YS, Oh KT, Kim D, Lee ES. Transferrin-Conjugated pH-Responsive γ-Cyclodextrin Nanoparticles for Antitumoral Topotecan Delivery. Pharmaceutics 2020;12:E1109. [PMID: 33218116 DOI: 10.3390/pharmaceutics12111109] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
307 Pérez-López A, Martín-Sabroso C, Torres-Suárez AI, Aparicio-Blanco J. Timeline of Translational Formulation Technologies for Cancer Therapy: Successes, Failures, and Lessons Learned Therefrom. Pharmaceutics 2020;12:E1028. [PMID: 33126622 DOI: 10.3390/pharmaceutics12111028] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
308 Xu M, Hu Y, Xiao Y, Zhang Y, Sun K, Wu T, Lv N, Wang W, Ding W, Li F, Qiu B, Li J. Near-Infrared-Controlled Nanoplatform Exploiting Photothermal Promotion of Peroxidase-like and OXD-like Activities for Potent Antibacterial and Anti-biofilm Therapies. ACS Appl Mater Interfaces 2020;12:50260-74. [DOI: 10.1021/acsami.0c14451] [Cited by in Crossref: 43] [Cited by in F6Publishing: 50] [Article Influence: 14.3] [Reference Citation Analysis]
309 Sung B, Kim MH, Abelmann L. Magnetic microgels and nanogels: Physical mechanisms and biomedical applications. Bioeng Transl Med 2021;6:e10190. [PMID: 33532590 DOI: 10.1002/btm2.10190] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
310 Guidotti G, Soccio M, Gazzano M, Salatelli E, Lotti N, Munari A. Micro/nanoparticles fabricated with triblock PLLA-based copolymers containing PEG-like subunit for controlled drug release: Effect of chemical structure and molecular architecture on drug release profile. Polymer Degradation and Stability 2020;180:109306. [DOI: 10.1016/j.polymdegradstab.2020.109306] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
311 Zhang A, Meng K, Liu Y, Pan Y, Qu W, Chen D, Xie S. Absorption, distribution, metabolism, and excretion of nanocarriers in vivo and their influences. Adv Colloid Interface Sci 2020;284:102261. [PMID: 32942181 DOI: 10.1016/j.cis.2020.102261] [Cited by in Crossref: 31] [Cited by in F6Publishing: 24] [Article Influence: 10.3] [Reference Citation Analysis]
312 Sakurai Y, Inada A, Hitotsumatsu M, Oshima T. Development of amphiphilic metal-binding short peptides that change the dispersibility of paclitaxel upon complexation with intermediate metal(II) ions. Journal of Drug Delivery Science and Technology 2020;59:101882. [DOI: 10.1016/j.jddst.2020.101882] [Reference Citation Analysis]
313 Carissimi G, Montalbán MG, Víllora G, Barth A. Direct Quantification of Drug Loading Content in Polymeric Nanoparticles by Infrared Spectroscopy. Pharmaceutics 2020;12:E912. [PMID: 32977658 DOI: 10.3390/pharmaceutics12100912] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
314 Lin Y, Liu J, Bai R, Shi J, Zhu X, Liu J, Guo J, Zhang W, Liu H, Liu Z. Mitochondria-Inspired Nanoparticles with Microenvironment-Adapting Capacities for On-Demand Drug Delivery after Ischemic Injury. ACS Nano 2020;14:11846-59. [PMID: 32880428 DOI: 10.1021/acsnano.0c04727] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 8.0] [Reference Citation Analysis]
315 Ballard M, Shafiee A, Grage E, DeMarco M, Atala A, Ghadiri E. Inkjet Printing of Synthesized Melanin Nanoparticles as a Biocompatible Matrix for Pharmacologic Agents. Nanomaterials (Basel) 2020;10:E1840. [PMID: 32942599 DOI: 10.3390/nano10091840] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
316 Tabish TA, Hamblin MR. Multivalent nanomedicines to treat COVID-19: A slow train coming. Nano Today 2020;35:100962. [PMID: 32922510 DOI: 10.1016/j.nantod.2020.100962] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 8.7] [Reference Citation Analysis]
317 Ma A, Zhang R. Facile synthesis of redox-responsive paclitaxel drug release platform using metal-organic frameworks (ZIF-8) for gastric cancer treatment. Mater Res Express 2020;7:095402. [DOI: 10.1088/2053-1591/abb2ce] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
318 Su S, M Kang P. Recent Advances in Nanocarrier-Assisted Therapeutics Delivery Systems. Pharmaceutics 2020;12:E837. [PMID: 32882875 DOI: 10.3390/pharmaceutics12090837] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 13.3] [Reference Citation Analysis]
319 Han R, Wu S, Tang K, Hou Y. Facilitating drug release in mesoporous silica coated upconversion nanoparticles by photoacid assistance upon near-infrared irradiation. Advanced Powder Technology 2020;31:3860-6. [DOI: 10.1016/j.apt.2020.07.025] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
320 Sun Y, Lu Y, Yin L, Liu Z. The Roles of Nanoparticles in Stem Cell-Based Therapy for Cardiovascular Disease. Front Bioeng Biotechnol 2020;8:947. [PMID: 32923434 DOI: 10.3389/fbioe.2020.00947] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
321 Cai Y, Deng T, Pan Y, Zink JI. Use of Ferritin Capped Mesoporous Silica Nanoparticles for Redox and pH Triggered Drug Release In Vitro and In Vivo. Adv Funct Mater 2020;30:2002043. [DOI: 10.1002/adfm.202002043] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
322 Tsolou A, Angelou E, Didaskalou S, Bikiaris D, Avgoustakis K, Agianian B, Koffa MD. Folate and Pegylated Aliphatic Polyester Nanoparticles for Targeted Anticancer Drug Delivery. Int J Nanomedicine 2020;15:4899-918. [PMID: 32764924 DOI: 10.2147/IJN.S244712] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
323 Du T, Chen S, Zhang J, Li T, Li P, Liu J, Du X, Wang S. Antibacterial Activity of Manganese Dioxide Nanosheets by ROS-Mediated Pathways and Destroying Membrane Integrity. Nanomaterials (Basel) 2020;10:E1545. [PMID: 32784527 DOI: 10.3390/nano10081545] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
324 Li M, Zhao G, Su WK, Shuai Q. Enzyme-Responsive Nanoparticles for Anti-tumor Drug Delivery. Front Chem 2020;8:647. [PMID: 32850662 DOI: 10.3389/fchem.2020.00647] [Cited by in Crossref: 26] [Cited by in F6Publishing: 30] [Article Influence: 8.7] [Reference Citation Analysis]
325 Chauhan G, Madou MJ, Kalra S, Chopra V, Ghosh D, Martinez-Chapa SO. Nanotechnology for COVID-19: Therapeutics and Vaccine Research. ACS Nano 2020;14:7760-82. [PMID: 32571007 DOI: 10.1021/acsnano.0c04006] [Cited by in Crossref: 195] [Cited by in F6Publishing: 208] [Article Influence: 65.0] [Reference Citation Analysis]
326 Shao J, Cao S, Williams DS, Abdelmohsen LKEA, van Hest JCM. Photoactivated Polymersome Nanomotors: Traversing Biological Barriers. Angew Chem Int Ed Engl 2020;59:16918-25. [PMID: 32533754 DOI: 10.1002/anie.202003748] [Cited by in Crossref: 41] [Cited by in F6Publishing: 44] [Article Influence: 13.7] [Reference Citation Analysis]
327 Zein R, Sharrouf W, Selting K. Physical Properties of Nanoparticles That Result in Improved Cancer Targeting. J Oncol 2020;2020:5194780. [PMID: 32765604 DOI: 10.1155/2020/5194780] [Cited by in Crossref: 70] [Cited by in F6Publishing: 76] [Article Influence: 23.3] [Reference Citation Analysis]
328 Wang Y, Gao D, Zhou D, Li Y, Wang X, He P, Zhang Y. Multifunctional Ag/polymer composite nanospheres for drug delivery and cell imaging. J Mater Sci 2020;55:13995-4007. [DOI: 10.1007/s10853-020-04912-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
329 Ahmadi S, Rabiee N, Bagherzadeh M, Elmi F, Fatahi Y, Farjadian F, Baheiraei N, Nasseri B, Rabiee M, Dastjerd NT, Valibeik A, Karimi M, Hamblin MR. Stimulus-Responsive Sequential Release Systems for Drug and Gene Delivery. Nano Today 2020;34:100914. [PMID: 32788923 DOI: 10.1016/j.nantod.2020.100914] [Cited by in Crossref: 75] [Cited by in F6Publishing: 64] [Article Influence: 25.0] [Reference Citation Analysis]
330 Adibfar A, Hosseini S, Baghaban Eslaminejad M. Smart Polymeric Systems: A Biomedical Viewpoint. Adv Exp Med Biol 2020;1298:133-48. [PMID: 32592154 DOI: 10.1007/5584_2020_563] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
331 Sun T, Dasgupta A, Zhao Z, Nurunnabi M, Mitragotri S. Physical triggering strategies for drug delivery. Adv Drug Deliv Rev 2020;158:36-62. [PMID: 32589905 DOI: 10.1016/j.addr.2020.06.010] [Cited by in Crossref: 26] [Cited by in F6Publishing: 30] [Article Influence: 8.7] [Reference Citation Analysis]
332 Yang Z, Yang D, Zeng K, Li D, Qin L, Cai Y, Jin J. Simultaneous Delivery of antimiR-21 and Doxorubicin by Graphene Oxide for Reducing Toxicity in Cancer Therapy. ACS Omega 2020;5:14437-43. [PMID: 32596581 DOI: 10.1021/acsomega.0c01010] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
333 Juthi AZ, Aquib M, Farooq MA, Ghayas S, Khalid F, Boafo GF, Wande DP, Khan DH, Bithi TZ, Bavi R, Wang B. Theranostic applications of smart nanomedicines for tumor-targeted chemotherapy: a review. Environ Chem Lett 2020;18:1509-27. [DOI: 10.1007/s10311-020-01031-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
334 Xie A, Hanif S, Ouyang J, Tang Z, Kong N, Kim NY, Qi B, Patel D, Shi B, Tao W. Stimuli-responsive prodrug-based cancer nanomedicine. EBioMedicine 2020;56:102821. [PMID: 32505922 DOI: 10.1016/j.ebiom.2020.102821] [Cited by in Crossref: 57] [Cited by in F6Publishing: 63] [Article Influence: 19.0] [Reference Citation Analysis]
335 Xu Y, Wei L, Wang H. Progress and perspectives on nanoplatforms for drug delivery to the brain. Journal of Drug Delivery Science and Technology 2020;57:101636. [DOI: 10.1016/j.jddst.2020.101636] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
336 Maleki A, Shahbazi MA, Alinezhad V, Santos HA. The Progress and Prospect of Zeolitic Imidazolate Frameworks in Cancer Therapy, Antibacterial Activity, and Biomineralization. Adv Healthc Mater 2020;9:e2000248. [PMID: 32383250 DOI: 10.1002/adhm.202000248] [Cited by in Crossref: 51] [Cited by in F6Publishing: 55] [Article Influence: 17.0] [Reference Citation Analysis]
337 Schütz MB, Ilyas S, Lê K, Valldor M, Mathur S. Nanoparticle Arrays Having Directed Hybrid Topology via Covalent Self-Assembly of Iron Oxide and Silica Nanoparticles. ACS Appl Nano Mater 2020;3:5936-43. [DOI: 10.1021/acsanm.0c01097] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
338 Jiang Y, Krishnan N, Heo J, Fang RH, Zhang L. Nanoparticle-hydrogel superstructures for biomedical applications. J Control Release 2020;324:505-21. [PMID: 32464152 DOI: 10.1016/j.jconrel.2020.05.041] [Cited by in Crossref: 53] [Cited by in F6Publishing: 54] [Article Influence: 17.7] [Reference Citation Analysis]
339 Parodi A, Rudzinska M, Leporatti S, Anissimov Y, Zamyatnin AA Jr. Smart Nanotheranostics Responsive to Pathological Stimuli. Front Bioeng Biotechnol 2020;8:503. [PMID: 32523946 DOI: 10.3389/fbioe.2020.00503] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
340 Guo J, Huang L. Membrane-core nanoparticles for cancer nanomedicine. Adv Drug Deliv Rev 2020;156:23-39. [PMID: 32450105 DOI: 10.1016/j.addr.2020.05.005] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 9.3] [Reference Citation Analysis]
341 Tao B, Yin Z. Redox-Responsive Coordination Polymers of Dopamine-Modified Hyaluronic Acid with Copper and 6-Mercaptopurine for Targeted Drug Delivery and Improvement of Anticancer Activity against Cancer Cells. Polymers (Basel) 2020;12:E1132. [PMID: 32423174 DOI: 10.3390/polym12051132] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
342 Vretik LO, Noskov YV, Ogurtsov NA, Nikolaeva OA, Shevchenko AV, Marynin AI, Kharchuk MS, Chepurna OM, Ohulchanskyy TY, Pud AA. Thermosensitive ternary core–shell nanocomposites of polystyrene, poly(N-isopropylacrylamide) and polyaniline. Appl Nanosci 2020;10:4951-64. [DOI: 10.1007/s13204-020-01424-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
343 He L, Nan X, Wang T, Bai P. Glutathione and pH serial responsive functional mesoporous silica nanoparticles for drug delivery. Micro & Nano Letters 2020;15:291-5. [DOI: 10.1049/mnl.2019.0317] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
344 Li S, Han M, Liu H. Tuning the PS-b-PAA aggregate morphologies by amines and dyes via liquid/liquid interfacial mass transfer-assisted self-assembly. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020;591:124566. [DOI: 10.1016/j.colsurfa.2020.124566] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
345 Wu H, Lu H, Xiao W, Yang J, Du H, Shen Y, Qu H, Jia B, Manna SK, Ramachandran M, Xue X, Ma Z, Xu X, Wang Z, He Y, Lam KS, Zawadzki RJ, Li Y, Lin TY. Sequential Targeting in Crosslinking Nanotheranostics for Tackling the Multibarriers of Brain Tumors. Adv Mater 2020;32:e1903759. [PMID: 32078198 DOI: 10.1002/adma.201903759] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 5.3] [Reference Citation Analysis]
346 Huang CS, You X, Dai C, Xu QC, Li F, Wang L, Huang XT, Wang JQ, Li SJ, Gao Z, Wu J, Yin XY, Zhao W. Targeting Super-Enhancers via Nanoparticle-Facilitated BRD4 and CDK7 Inhibitors Synergistically Suppresses Pancreatic Ductal Adenocarcinoma. Adv Sci (Weinh) 2020;7:1902926. [PMID: 32274304 DOI: 10.1002/advs.201902926] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 5.7] [Reference Citation Analysis]
347 Badrigilan S, Choupani J, Khanbabaei H, Hoseini-Ghahfarokhi M, Webster TJ, Tayebi L. Bismuth-Based Nanomaterials: Recent Advances in Tumor Targeting and Synergistic Cancer Therapy Techniques. Adv Healthc Mater 2020;9:e1901695. [PMID: 32142225 DOI: 10.1002/adhm.201901695] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
348 Yin S, Gao Y, Zhang Y, Xu J, Zhu J, Zhou F, Gu X, Wang G, Li J. Reduction/Oxidation-Responsive Hierarchical Nanoparticles with Self-Driven Degradability for Enhanced Tumor Penetration and Precise Chemotherapy. ACS Appl Mater Interfaces 2020;12:18273-91. [DOI: 10.1021/acsami.0c00355] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 7.3] [Reference Citation Analysis]
349 Bonetti KA, Murphy M, Brainard RL, Zhong L, Welch JT. Photosensitive Hypervalent Fluorinated Sulfur Containing Polymers for Light Sensitive Applications. Journal of Polymer Science 2020;58:787-791. [DOI: 10.1002/pol.20190104] [Reference Citation Analysis]
350 Kibar G. Spherical shape poly(M‐POSS) micro/nano hybrid latex particles: One‐step synthesis and characterization. J Appl Polym Sci 2020;137:49241. [DOI: 10.1002/app.49241] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
351 Hu J, Wu W, Qin Y, Liu C, Wei P, Hu J, Seeberger PH, Yin J. Fabrication of Glyco‐Metal‐Organic Frameworks for Targeted Interventional Photodynamic/Chemotherapy for Hepatocellular Carcinoma through Percutaneous Transperitoneal Puncture. Adv Funct Mater 2020;30:1910084. [DOI: 10.1002/adfm.201910084] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 10.0] [Reference Citation Analysis]
352 Wang J, Luo Y, Xing F, Jin X, Guo L, Zhai L, Zhang L, Fang W, Sun B. Build 3D Nanoparticles by Using Ultrathin 2D MOF Nanosheets for NIR Light-Triggered Molecular Switching. ACS Appl Mater Interfaces 2020;12:15573-8. [DOI: 10.1021/acsami.0c00324] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
353 Xu X, Liu Y, Fu W, Yao M, Ding Z, Xuan J, Li D, Wang S, Xia Y, Cao M. Poly(N-isopropylacrylamide)-Based Thermoresponsive Composite Hydrogels for Biomedical Applications. Polymers (Basel) 2020;12:E580. [PMID: 32150904 DOI: 10.3390/polym12030580] [Cited by in Crossref: 119] [Cited by in F6Publishing: 126] [Article Influence: 39.7] [Reference Citation Analysis]
354 Abel SB, Rivarola CR, Barbero CA, Molina M. Electromagnetic radiation driving of volume changes in nanocomposites made of a thermosensitive hydrogel polymerized around conducting polymer nanoparticles. RSC Adv 2020;10:9155-64. [PMID: 35496518 DOI: 10.1039/d0ra01329c] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
355 Omersa N, Aden S, Kisovec M, Podobnik M, Anderluh G. Design of Protein Logic Gate System Operating on Lipid Membranes. ACS Synth Biol 2020;9:316-28. [PMID: 31995709 DOI: 10.1021/acssynbio.9b00340] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
356 Farjadian F, Ghasemi S, Andami Z, Tamami B. Thermo-responsive nanocarrier based on poly(N-isopropylacrylamide) serving as a smart doxorubicin delivery system. Iran Polym J 2020;29:197-207. [DOI: 10.1007/s13726-020-00785-w] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 4.7] [Reference Citation Analysis]
357 Xiong Y, Qi L, Niu Y, Lin Y, Xue Q, Zhao Y. Autonomous Drug Release Systems with Disease Symptom‐Associated Triggers. Advanced Intelligent Systems 2020;2:1900124. [DOI: 10.1002/aisy.201900124] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
358 Nicosia A, Vento F, Satriano C, Villari V, Micali N, Cucci LM, Sanfilippo V, Mineo PG. Light-Triggered Polymeric Nanobombs for Targeted Cell Death. ACS Appl Nano Mater 2020;3:1950-60. [DOI: 10.1021/acsanm.9b02552] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
359 Liu X, Wu X, Xing Y, Zhang Y, Zhang X, Pu Q, Wu M, Zhao JX. Reduced Graphene Oxide/Mesoporous Silica Nanocarriers for pH-Triggered Drug Release and Photothermal Therapy. ACS Appl Bio Mater 2020;3:2577-87. [DOI: 10.1021/acsabm.9b01108] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
360 Sarkar S, Levi-Polyachenko N. Conjugated polymer nano-systems for hyperthermia, imaging and drug delivery. Adv Drug Deliv Rev 2020;163-164:40-64. [PMID: 32001326 DOI: 10.1016/j.addr.2020.01.002] [Cited by in Crossref: 48] [Cited by in F6Publishing: 41] [Article Influence: 16.0] [Reference Citation Analysis]
361 Liang J, Peng X, Zhou X, Zou J, Cheng L. Emerging Applications of Drug Delivery Systems in Oral Infectious Diseases Prevention and Treatment. Molecules 2020;25:E516. [PMID: 31991678 DOI: 10.3390/molecules25030516] [Cited by in Crossref: 36] [Cited by in F6Publishing: 39] [Article Influence: 12.0] [Reference Citation Analysis]
362 He Y, Qin L, Huang Y, Ma C. Advances of Nano-Structured Extended-Release Local Anesthetics. Nanoscale Res Lett 2020;15:13. [PMID: 31950284 DOI: 10.1186/s11671-019-3241-2] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 5.7] [Reference Citation Analysis]
363 Guo X, Mei J, Zhang C. Development of Drug Dual-Carriers Delivery System with Mitochondria-Targeted and pH/Heat Responsive Capacity for Synergistic Photothermal-Chemotherapy of Ovarian Cancer. Int J Nanomedicine 2020;15:301-13. [PMID: 32021181 DOI: 10.2147/IJN.S226517] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
364 Maroto-centeno JA, Quesada-pérez M. Coarse-grained simulations of diffusion controlled release of drugs from neutral nanogels: Effect of excluded volume interactions. J Chem Phys 2020;152:024107. [DOI: 10.1063/1.5133900] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
365 Zuo L, Ding J, Li C, Lin F, Chen PR, Wang P, Lu G, Zhang J, Huang LL, Xie HY. Coordinating bioorthogonal reactions with two tumor-microenvironment-responsive nanovehicles for spatiotemporally controlled prodrug activation. Chem Sci 2020;11:2155-60. [PMID: 34123305 DOI: 10.1039/c9sc05036a] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
366 Takahashi R, Miwa S, Rössel C, Fujii S, Lee JH, Schacher FH, Sakurai K. Polymersome formation induced by encapsulation of water-insoluble molecules within ABC triblock terpolymers. Polym Chem 2020;11:3446-52. [DOI: 10.1039/d0py00426j] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
367 Litau E. Combining Nanoparticles with Colloidal Bubbles: A Short Review. Methods in Molecular Biology 2020. [DOI: 10.1007/978-1-0716-0319-2_27] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
368 Jarai BM, Kolewe EL, Stillman ZS, Raman N, Fromen CA. Polymeric Nanoparticles. Nanoparticles for Biomedical Applications 2020. [DOI: 10.1016/b978-0-12-816662-8.00018-7] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
369 Kumari A, Gupta S. Enzyme-responsive nanocontainer for small molecule delivery. Smart Nanocontainers 2020. [DOI: 10.1016/b978-0-12-816770-0.00013-7] [Reference Citation Analysis]
370 Ahmadi M, Madrakian T, Afkhami A. Smart nanogels in cancer therapy. Smart Nanocontainers 2020. [DOI: 10.1016/b978-0-12-816770-0.00011-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
371 Ahmadi M, Madrakian T, Ghoorchian A, Kamalabadi M, Afkhami A. Stimuli-sensitive drug delivery systems. Nanoengineered Biomaterials for Advanced Drug Delivery 2020. [DOI: 10.1016/b978-0-08-102985-5.00003-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
372 Eltohamy M. Mesoporous silica nanoparticles for cancer theranostic applications. Biomaterials for 3D Tumor Modeling 2020. [DOI: 10.1016/b978-0-12-818128-7.00024-1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
373 Jiang L, Lee HW, Loo SCJ. Therapeutic lipid-coated hybrid nanoparticles against bacterial infections. RSC Adv 2020;10:8497-517. [DOI: 10.1039/c9ra10921h] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
374 Zhang YM, Liu YH, Liu Y. Cyclodextrin-Based Multistimuli-Responsive Supramolecular Assemblies and Their Biological Functions. Adv Mater 2020;32:e1806158. [PMID: 30773709 DOI: 10.1002/adma.201806158] [Cited by in Crossref: 160] [Cited by in F6Publishing: 166] [Article Influence: 53.3] [Reference Citation Analysis]
375 Kumar S, Bera S, Nandi SK, Haldar D. Self-assembly pattern directed sustained release from porous microspheres of discotic tripeptides. Mater Adv 2020;1:3565-3571. [DOI: 10.1039/d0ma00691b] [Reference Citation Analysis]
376 Bai H, Peng R, Wang D, Sawyer M, Fu T, Cui C, Tan W. A minireview on multiparameter-activated nanodevices for cancer imaging and therapy. Nanoscale 2020;12:21571-82. [DOI: 10.1039/d0nr04080k] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
377 Rodríguez R, Molina-castillo F, Svensson G. The mediating role of organizational complexity between enterprise resource planning and business model innovation. Industrial Marketing Management 2020;84:328-41. [DOI: 10.1016/j.indmarman.2019.09.007] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
378 Liu J, Li S, Liu L, Zhu Z. A fluorous biphase drug delivery system triggered by low frequency ultrasound: controlled release from perfluorous discoidal porous silicon particles. Nanoscale Adv 2020;2:3561-9. [DOI: 10.1039/d0na00324g] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
379 Govardhane S, Shende P. Polymeric-Ceramic Nanocomposites Toxicity. Handbook of Polymer and Ceramic Nanotechnology 2020. [DOI: 10.1007/978-3-030-10614-0_55-1] [Reference Citation Analysis]
380 Fathei M, Alami-milani M, Salatin S, Sattari S, Montazam H, Fekrat F, Jelvehgari M. Fast Dissolving Sublingual Strips: A Novel Approach for the Delivery of Isosorbide Dinitrate. Pharm Sci 2019;25:311-8. [DOI: 10.15171/ps.2019.34] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
381 Zhang X, Zhao L, Zhai G, Ji J, Liu A. Multifunctional Polyethylene Glycol (PEG)-Poly (Lactic-Co-Glycolic Acid) (PLGA)-Based Nanoparticles Loading Doxorubicin and Tetrahydrocurcumin for Combined Chemoradiotherapy of Glioma. Med Sci Monit 2019;25:9737-51. [PMID: 31856143 DOI: 10.12659/MSM.918899] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
382 Weng Y, Huang Q, Li C, Yang Y, Wang X, Yu J, Huang Y, Liang XJ. Improved Nucleic Acid Therapy with Advanced Nanoscale Biotechnology. Mol Ther Nucleic Acids 2020;19:581-601. [PMID: 31927331 DOI: 10.1016/j.omtn.2019.12.004] [Cited by in Crossref: 50] [Cited by in F6Publishing: 55] [Article Influence: 12.5] [Reference Citation Analysis]
383 Zeng D, Wang L, Tian L, Zhao S, Zhang X, Li H. Synergistic photothermal/photodynamic suppression of prostatic carcinoma by targeted biodegradable MnO2 nanosheets. Drug Deliv 2019;26:661-72. [PMID: 31257941 DOI: 10.1080/10717544.2019.1631409] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 8.3] [Reference Citation Analysis]
384 Sugawara Y, Takei T, Ohashi H, Kuroki H, Miyanishi S, Yamaguchi T. Autonomous Shrinking/Swelling Phenomenon Driven By Macromolecular Interchain Cross-Linking via β-Cyclodextrin–Triazole Complexation. Macromolecules 2019;52:8551-62. [DOI: 10.1021/acs.macromol.9b01627] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
385 Yadigarli A, Song Q, Druzhinin SI, Schönherr H. Probing of local polarity in poly(methyl methacrylate) with the charge transfer transition in Nile red. Beilstein J Org Chem 2019;15:2552-62. [PMID: 31728169 DOI: 10.3762/bjoc.15.248] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
386 Yang Y, Wang L, Wan B, Gu Y, Li X. Optically Active Nanomaterials for Bioimaging and Targeted Therapy. Front Bioeng Biotechnol 2019;7:320. [PMID: 31803728 DOI: 10.3389/fbioe.2019.00320] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 6.3] [Reference Citation Analysis]
387 Ghahremani S, Samadizadeh M, Khaleghian M, Zabarjad Shiraz N. Theoretical study of encapsulation of Floxuridine anticancer drug into BN (9,9-7) nanotube for medical application. Phosphorus, Sulfur, and Silicon and the Related Elements 2020;195:293-306. [DOI: 10.1080/10426507.2019.1687479] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
388 Hosseinzadeh R, Khorsandi K. Photodynamic effect of Zirconium phosphate biocompatible nano-bilayers containing methylene blue on cancer and normal cells. Sci Rep 2019;9:14899. [PMID: 31624290 DOI: 10.1038/s41598-019-51359-7] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
389 Zhao X, Liu Y, Shao C, Nie M, Huang Q, Li J, Sun L, Zhao Y. Photoresponsive Delivery Microcarriers for Tissue Defects Repair. Adv Sci (Weinh) 2019;6:1901280. [PMID: 31637165 DOI: 10.1002/advs.201901280] [Cited by in Crossref: 28] [Cited by in F6Publishing: 32] [Article Influence: 7.0] [Reference Citation Analysis]
390 Wu Y, Song Z, Wang H, Han H. Endogenous stimulus-powered antibiotic release from nanoreactors for a combination therapy of bacterial infections. Nat Commun 2019;10:4464. [PMID: 31578336 DOI: 10.1038/s41467-019-12233-2] [Cited by in Crossref: 66] [Cited by in F6Publishing: 67] [Article Influence: 16.5] [Reference Citation Analysis]
391 Zhao L, Lam YC, Lai CQ. Interaction of ultrasound with microporous polyethylene scaffolds. Applied Acoustics 2019;153:102-9. [DOI: 10.1016/j.apacoust.2019.04.007] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
392 Sun J, Rust T, Kuckling D. Light-Responsive Serinol-Based Polyurethane Nanocarrier for Controlled Drug Release. Macromol Rapid Commun 2019;40:e1900348. [PMID: 31553503 DOI: 10.1002/marc.201900348] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
393 Le NTT, Cao VD, Nguyen TNQ, Le TTH, Tran TT, Hoang Thi TT. Soy Lecithin-Derived Liposomal Delivery Systems: Surface Modification and Current Applications. Int J Mol Sci 2019;20:E4706. [PMID: 31547569 DOI: 10.3390/ijms20194706] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 8.3] [Reference Citation Analysis]
394 Wang D, Zhang T, Wu B, Ye C, Wei Z, Cao Z, Wang G. Reversibly Photoswitchable Dual-Color Fluorescence and Controlled Release Properties of Polymeric Nanoparticles. Macromolecules 2019;52:7130-6. [DOI: 10.1021/acs.macromol.9b01735] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 5.8] [Reference Citation Analysis]
395 Shen X, Wang Y, Xi L, Su F, Li S. Biocompatibility and paclitaxel/cisplatin dual-loading of nanotubes prepared from poly(ethylene glycol)-polylactide-poly(ethylene glycol) triblock copolymers for combination cancer therapy. Saudi Pharm J 2019;27:1025-35. [PMID: 31997910 DOI: 10.1016/j.jsps.2019.08.005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
396 Xiong Q, Lim Y, Li D, Pu K, Liang L, Duan H. Photoactive Nanocarriers for Controlled Delivery. Adv Funct Mater 2019;30:1903896. [DOI: 10.1002/adfm.201903896] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 7.5] [Reference Citation Analysis]
397 Wang T, Chen C. Spatiotemporal Control Release of pH-Responsive Polymeric Micelles via Photochemically Induced Proton Generation. ACS Appl Bio Mater 2019;2:3659-3667. [DOI: 10.1021/acsabm.9b00495] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
398 Guan G, Wu M, Han M. Stimuli‐Responsive Hybridized Nanostructures. Adv Funct Mater 2019;30:1903439. [DOI: 10.1002/adfm.201903439] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 6.0] [Reference Citation Analysis]
399 Jabalera Y, Garcia-Pinel B, Ortiz R, Iglesias G, Cabeza L, Prados J, Jimenez-Lopez C, Melguizo C. Oxaliplatin-Biomimetic Magnetic Nanoparticle Assemblies for Colon Cancer-Targeted Chemotherapy: An In Vitro Study. Pharmaceutics 2019;11:E395. [PMID: 31390773 DOI: 10.3390/pharmaceutics11080395] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
400 Liang P, Wang M, Zhang S, Wang J, Dai C, Quan C. pH-Triggered Conformational Change of Antp-Based Drug Delivery Platform for Tumor Treatment with Combined Photothermal Therapy and Chemotherapy. Adv Healthc Mater 2019;8:e1900306. [PMID: 31211520 DOI: 10.1002/adhm.201900306] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
401 Shahmoradi S, Bahram M, Hoseinpour F. Magnetic mesoporous silica nanoparticles functionalized by pH-sensitive caps for DOX release. J IRAN CHEM SOC 2019;16:1801-1808. [DOI: 10.1007/s13738-019-01652-z] [Reference Citation Analysis]
402 Luo Z, Jiang L, Yang S, Li Z, Soh WMW, Zheng L, Loh XJ, Wu YL. Light-Induced Redox-Responsive Smart Drug Delivery System by Using Selenium-Containing Polymer@MOF Shell/Core Nanocomposite. Adv Healthc Mater 2019;8:e1900406. [PMID: 31183979 DOI: 10.1002/adhm.201900406] [Cited by in Crossref: 63] [Cited by in F6Publishing: 65] [Article Influence: 15.8] [Reference Citation Analysis]
403 Sun B, Luo C, Zhang X, Guo M, Sun M, Yu H, Chen Q, Yang W, Wang M, Zuo S, Chen P, Kan Q, Zhang H, Wang Y, He Z, Sun J. Probing the impact of sulfur/selenium/carbon linkages on prodrug nanoassemblies for cancer therapy. Nat Commun 2019;10:3211. [PMID: 31324811 DOI: 10.1038/s41467-019-11193-x] [Cited by in Crossref: 124] [Cited by in F6Publishing: 134] [Article Influence: 31.0] [Reference Citation Analysis]
404 Patel JM, Saleh KS, Burdick JA, Mauck RL. Bioactive factors for cartilage repair and regeneration: Improving delivery, retention, and activity. Acta Biomater 2019;93:222-38. [PMID: 30711660 DOI: 10.1016/j.actbio.2019.01.061] [Cited by in Crossref: 71] [Cited by in F6Publishing: 66] [Article Influence: 17.8] [Reference Citation Analysis]
405 Li M, Nguyen L, Subramaniyan B, Bio M, Peer CJ, Kindrick J, Figg WD, Woo S, You Y. PBPK modeling-based optimization of site-specific chemo-photodynamic therapy with far-red light-activatable paclitaxel prodrug. J Control Release 2019;308:86-97. [PMID: 31299262 DOI: 10.1016/j.jconrel.2019.07.010] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
406 [DOI: 10.1109/marss.2019.8860936] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
407 Mobaraki M, Abbasi R, Omidian Vandchali S, Ghaffari M, Moztarzadeh F, Mozafari M. Corneal Repair and Regeneration: Current Concepts and Future Directions. Front Bioeng Biotechnol 2019;7:135. [PMID: 31245365 DOI: 10.3389/fbioe.2019.00135] [Cited by in Crossref: 64] [Cited by in F6Publishing: 75] [Article Influence: 16.0] [Reference Citation Analysis]
408 Chen J, Li G, Liu Q, Liang Y, Liu M, Wu H, Gao W. A Photocleavable Amphiphilic Prodrug Self-Assembled Nanoparticles with Effective Anticancer Activity In Vitro. Nanomaterials (Basel) 2019;9:E860. [PMID: 31195730 DOI: 10.3390/nano9060860] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
409 Chen N, Niu J, Li Q, Li J, chen X, Ren Y, Wu G, Liu Y, Shi Y. Development and evaluation of a new gastroretentive drug delivery system: Nanomicelles-loaded floating mucoadhesive beads. Journal of Drug Delivery Science and Technology 2019;51:485-92. [DOI: 10.1016/j.jddst.2019.03.024] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
410 Maruf A, Wang Y, Yin T, Huang J, Wang N, Durkan C, Tan Y, Wu W, Wang G. Atherosclerosis Treatment with Stimuli-Responsive Nanoagents: Recent Advances and Future Perspectives. Adv Healthc Mater 2019;8:e1900036. [PMID: 30945462 DOI: 10.1002/adhm.201900036] [Cited by in Crossref: 33] [Cited by in F6Publishing: 37] [Article Influence: 8.3] [Reference Citation Analysis]
411 Xie H, Bai F, Fu Y, Zhu H, Yan K, Mao K, Chu PK, Liu L, Wu X. Stimulus-responsive electrochemiluminescence from self-assembled block copolymer and nonpolar carbon quantum dot composite nanospheres. Carbon 2019;147:532-9. [DOI: 10.1016/j.carbon.2019.03.032] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
412 Lee GC, Seo D, Kim J, Siddique AB, Park H, Kim HJ, Kang H, Lee JY, Lim J, Kim J, Kim S. Cyclic Hydrazide‐Functionalized Poly(ethylene oxide) Frameworks for the Synthesis of pH‐Cleavable Drug‐Carriers and Their Applications for the Stabilization of Gold Nanoparticles. Macromol Chem Phys 2019;220:1900075. [DOI: 10.1002/macp.201900075] [Reference Citation Analysis]
413 Thang DC, Wang Z, Lu X, Xing B. Precise cell behaviors manipulation through light-responsive nano-regulators: recent advance and perspective. Theranostics 2019;9:3308-40. [PMID: 31244956 DOI: 10.7150/thno.33888] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
414 Jiang W, Guo J, Wen W, Jia YG, Liu S. Nano-Carriers Based on pH-Sensitive Star-Shaped Copolymers for Drug-Controlled Release. Materials (Basel) 2019;12:E1610. [PMID: 31100826 DOI: 10.3390/ma12101610] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
415 Liu X, Xie Z, Shi W, He Z, Liu Y, Su H, Sun Y, Ge D. Polynorepinephrine Nanoparticles: A Novel Photothermal Nanoagent for Chemo-Photothermal Cancer Therapy. ACS Appl Mater Interfaces 2019;11:19763-73. [DOI: 10.1021/acsami.9b03458] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 7.8] [Reference Citation Analysis]
416 Stanislawska I, Liwinska W, Lyp M, Stojek Z, Zabost E. Recent Advances in Degradable Hybrids of Biomolecules and NGs for Targeted Delivery. Molecules 2019;24:E1873. [PMID: 31096669 DOI: 10.3390/molecules24101873] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
417 Pinna R, Filigheddu E, Juliano C, Palmieri A, Manconi M, D'hallewin G, Petretto G, Maioli M, Caddeo C, Manca ML, Solinas G, Bortone A, Campanella V, Milia E. Antimicrobial Effect of Thymus capitatus and Citrus limon var. pompia as Raw Extracts and Nanovesicles. Pharmaceutics 2019;11:E234. [PMID: 31091818 DOI: 10.3390/pharmaceutics11050234] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
418 Wu H, Wang X, Zheng J, Zhang L, Li X, Yuan WE, Liu X. Propranolol-Loaded Mesoporous Silica Nanoparticles for Treatment of Infantile Hemangiomas. Adv Healthc Mater 2019;8:e1801261. [PMID: 30838782 DOI: 10.1002/adhm.201801261] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
419 Zhang T, Zhang K, Jiang F, Zhang J, Song X, Zhao J. Magnetic/pH dual‐responsive nanocomposites loading doxorubicin hydrochloride for cancer therapy. Micro & Nano Letters 2019;14:520-5. [DOI: 10.1049/mnl.2018.5541] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
420 Singh SP, Sirbaiya AK, Mishra A. Bioinspired Smart Nanosystems in Advanced Therapeutic Applications. Pharm Nanotechnol 2019;7:246-56. [PMID: 31020941 DOI: 10.2174/2211738507666190425122822] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
421 Tian J, Huang B, Li H, Cao H, Zhang W. NIR-Activated Polymeric Nanoplatform with Upper Critical Solution Temperature for Image-Guided Synergistic Photothermal Therapy and Chemotherapy. Biomacromolecules 2019;20:2338-49. [DOI: 10.1021/acs.biomac.9b00321] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 8.0] [Reference Citation Analysis]
422 Liu W, Xie Z, Lu Y, Gao M, Zhang W, Gao L. Fabrication and excellent electroresponsive properties of ideal PMMA@BaTiO3 composite particles. RSC Adv 2019;9:12404-14. [PMID: 35515821 DOI: 10.1039/c9ra01174a] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
423 Zhang Q, Yu F, Lei M, Fu H, Yan G, Li L. Synthesis, Characterization, and Evaluation of Disulfide-Containing Polyethylenimine Derivative Functionalized Magnetic Carbon Nanotubes as an Efficient Gene Vector. Journal of Nanomaterials 2019;2019:1-11. [DOI: 10.1155/2019/6026390] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
424 Wang S, Wang Z, Yu G, Zhou Z, Jacobson O, Liu Y, Ma Y, Zhang F, Chen ZY, Chen X. Tumor-Specific Drug Release and Reactive Oxygen Species Generation for Cancer Chemo/Chemodynamic Combination Therapy. Adv Sci (Weinh) 2019;6:1801986. [PMID: 30886808 DOI: 10.1002/advs.201801986] [Cited by in Crossref: 152] [Cited by in F6Publishing: 163] [Article Influence: 38.0] [Reference Citation Analysis]
425 Gu Z, Zhu S, Yan L, Zhao F, Zhao Y. Graphene-Based Smart Platforms for Combined Cancer Therapy. Adv Mater 2019;31:e1800662. [PMID: 30039878 DOI: 10.1002/adma.201800662] [Cited by in Crossref: 164] [Cited by in F6Publishing: 168] [Article Influence: 41.0] [Reference Citation Analysis]
426 Jin Q, Deng Y, Chen X, Ji J. Rational Design of Cancer Nanomedicine for Simultaneous Stealth Surface and Enhanced Cellular Uptake. ACS Nano 2019;13:954-77. [PMID: 30681834 DOI: 10.1021/acsnano.8b07746] [Cited by in Crossref: 50] [Cited by in F6Publishing: 68] [Article Influence: 12.5] [Reference Citation Analysis]
427 Zheng Y, You X, Guan S, Huang J, Wang L, Zhang J, Wu J. Poly(Ferulic Acid) with an Anticancer Effect as a Drug Nanocarrier for Enhanced Colon Cancer Therapy. Adv Funct Mater 2019;29:1808646. [DOI: 10.1002/adfm.201808646] [Cited by in Crossref: 61] [Cited by in F6Publishing: 63] [Article Influence: 15.3] [Reference Citation Analysis]
428 Liu P, Pearce CM, Anastasiadi RM, Resmini M, Castilla AM. Covalently Crosslinked Nanogels: An NMR Study of the Effect of Monomer Reactivity on Composition and Structure. Polymers (Basel) 2019;11:E353. [PMID: 30960337 DOI: 10.3390/polym11020353] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
429 Tang L, Yang Z, Zhou Z, Ma Y, Kiesewetter DO, Wang Z, Fan W, Zhu S, Zhang M, Tian R, Lang L, Niu G, Zhang X, Chen X. A Logic-Gated Modular Nanovesicle Enables Programmable Drug Release for On-Demand Chemotherapy. Theranostics 2019;9:1358-68. [PMID: 30867836 DOI: 10.7150/thno.32106] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
430 Eslami P, Rossi F, Fedeli S. Hybrid Nanogels: Stealth and Biocompatible Structures for Drug Delivery Applications. Pharmaceutics 2019;11:E71. [PMID: 30736486 DOI: 10.3390/pharmaceutics11020071] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 6.0] [Reference Citation Analysis]
431 Murahashi Y, Yano F, Nakamoto H, Maenohara Y, Iba K, Yamashita T, Tanaka S, Ishihara K, Okamura Y, Moro T, Saito T. Multi-layered PLLA-nanosheets loaded with FGF-2 induce robust bone regeneration with controlled release in critical-sized mouse femoral defects. Acta Biomater 2019;85:172-9. [PMID: 30583110 DOI: 10.1016/j.actbio.2018.12.031] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 8.8] [Reference Citation Analysis]
432 Gao J, Wang H, Zhuang J, Thayumanavan S. Tunable enzyme responses in amphiphilic nanoassemblies through alterations in the unimer-aggregate equilibrium. Chem Sci 2019;10:3018-24. [PMID: 30996882 DOI: 10.1039/c8sc04744h] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
433 He W, Jiang Y, Li Q, Zhang D, Li Z, Luan Y. A versatile strategy to create an active tumor-targeted chemo-photothermal therapy nanoplatform: A case of an IR-780 derivative co-assembled with camptothecin prodrug. Acta Biomater 2019;84:356-66. [PMID: 30502480 DOI: 10.1016/j.actbio.2018.11.049] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 4.5] [Reference Citation Analysis]
434 Sun W, Lee J, Zhang S, Benyshek C, Dokmeci MR, Khademhosseini A. Engineering Precision Medicine. Adv Sci (Weinh) 2019;6:1801039. [PMID: 30643715 DOI: 10.1002/advs.201801039] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 9.8] [Reference Citation Analysis]
435 Fuller EG, Sun H, Dhavalikar RD, Unni M, Scheutz GM, Sumerlin BS, Rinaldi C. Externally Triggered Heat and Drug Release from Magnetically Controlled Nanocarriers. ACS Appl Polym Mater 2019;1:211-20. [DOI: 10.1021/acsapm.8b00100] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 9.0] [Reference Citation Analysis]
436 Shan C, Ru J, Zhang M, Cao J, Liu W, Guo H, Tang Y. A novel drug–drug nanohybrid for the self-delivery of porphyrin and cis -platinum. RSC Adv 2019;9:37003-8. [DOI: 10.1039/c9ra07085k] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
437 Mehtani D, Seth A, Sharma P, Maheshwari N, Kapoor D, Shrivastava SK, Tekade RK. Biomaterials for Sustained and Controlled Delivery of Small Drug Molecules. Biomaterials and Bionanotechnology 2019. [DOI: 10.1016/b978-0-12-814427-5.00004-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
438 Herberg A, Yu X, Kuckling D. Responsive polymers as smart carriers in tunable catalytic processes. Smart Polymer Catalysts and Tunable Catalysis 2019. [DOI: 10.1016/b978-0-12-811840-5.00006-x] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
439 Singh AK, Yadav TP, Pandey B, Gupta V, Singh SP. Engineering Nanomaterials for Smart Drug Release. Applications of Targeted Nano Drugs and Delivery Systems 2019. [DOI: 10.1016/b978-0-12-814029-1.00015-6] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
440 Deb PK, Kokaz SF, Abed SN, Paradkar A, Tekade RK. Pharmaceutical and Biomedical Applications of Polymers. Basic Fundamentals of Drug Delivery 2019. [DOI: 10.1016/b978-0-12-817909-3.00006-6] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
441 Vergara-jaque A, Zúñiga M, Poblete H. Computational Methodologies for Exploring Nano-engineered Materials. Nanoengineering Materials for Biomedical Uses 2019. [DOI: 10.1007/978-3-030-31261-9_4] [Reference Citation Analysis]
442 Vhora I, Bardoliwala D, Ranamalla SR, Javia A. Parenteral Controlled and Prolonged Drug Delivery Systems: Therapeutic Needs and Formulation Strategies. Novel Drug Delivery Technologies 2019. [DOI: 10.1007/978-981-13-3642-3_7] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
443 Ji DK, Ménard-Moyon C, Bianco A. Physically-triggered nanosystems based on two-dimensional materials for cancer theranostics. Adv Drug Deliv Rev 2019;138:211-32. [PMID: 30172925 DOI: 10.1016/j.addr.2018.08.010] [Cited by in Crossref: 41] [Cited by in F6Publishing: 43] [Article Influence: 10.3] [Reference Citation Analysis]
444 Ortega G, Reguera E. Biomedical applications of magnetite nanoparticles. Materials for Biomedical Engineering 2019. [DOI: 10.1016/b978-0-12-816913-1.00013-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
445 Jiang Y. The Application of Nucleic Acid Amplification Strategies in Theranostics. Nucleic Acid Amplification Strategies for Biosensing, Bioimaging and Biomedicine 2019. [DOI: 10.1007/978-981-13-7044-1_14] [Reference Citation Analysis]
446 Ribeiro LN, Alcantara AC, Franz-montan M, Couto VM, Nista SV, de Paula E. Nanostructured organic-organic bio-hybrid delivery systems. Biomedical Applications of Nanoparticles 2019. [DOI: 10.1016/b978-0-12-816506-5.00011-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
447 Chen J, Chen L, Xie F, Li X. Material Nature and Physicochemical Properties for High Performance of Carriers. Drug Delivery Applications of Starch Biopolymer Derivatives 2019. [DOI: 10.1007/978-981-13-3657-7_2] [Reference Citation Analysis]
448 Parchur AK, Jagtap JM, Sharma G, Gogineni V, White SB, Joshi A. Remotely Triggered Nanotheranostics. Bioanalysis 2019. [DOI: 10.1007/978-3-030-01775-0_17] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
449 Godoy-reyes TM, Llopis-lorente A, García-fernández A, Gaviña P, Costero AM, Villalonga R, Sancenón F, Martínez-máñez R. A l -glutamate-responsive delivery system based on enzyme-controlled self-immolative arylboronate-gated nanoparticles. Org Chem Front 2019;6:1058-63. [DOI: 10.1039/c9qo00093c] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
450 Bahrami S, Adel M, Esmaeili F, Rezayat SM, Mehravi B, Zahmatkeshan M. Carbohydrate-Based Nanofibers: Applications and Potentials. Handbook of Nanofibers 2019. [DOI: 10.1007/978-3-319-53655-2_28] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
451 Yang Z, Song J, Tang W, Fan W, Dai Y, Shen Z, Lin L, Cheng S, Liu Y, Niu G, Rong P, Wang W, Chen X. Stimuli-Responsive Nanotheranostics for Real-Time Monitoring Drug Release by Photoacoustic Imaging. Theranostics 2019;9:526-36. [PMID: 30809290 DOI: 10.7150/thno.30779] [Cited by in Crossref: 70] [Cited by in F6Publishing: 77] [Article Influence: 17.5] [Reference Citation Analysis]
452 Johnson RP, Preman NK. Dual and multistimuli-responsive block copolymers for drug delivery applications. Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications 2019. [DOI: 10.1016/b978-0-08-101995-5.00011-8] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
453 Wang J, Chen C, He C, Zheng Z, Wang C, Hong D, He X, Luo Y, Sun B. Ultrathin two-dimensional nanosheets meet upconverting nanoparticles: in situ near-infrared triggered molecular switching. J Mater Chem C 2019;7:3965-72. [DOI: 10.1039/c9tc00594c] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
454 Chen J, Chen L, Xie F, Li X. Physiological and Pathological Bases for Designing High Performance Drug Delivery Carriers. Drug Delivery Applications of Starch Biopolymer Derivatives 2019. [DOI: 10.1007/978-981-13-3657-7_1] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
455 Bai RG, Husseini GA. Graphene-based drug delivery systems. Biomimetic Nanoengineered Materials for Advanced Drug Delivery 2019. [DOI: 10.1016/b978-0-12-814944-7.00011-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
456 Costa DF, Mendes LP, Torchilin VP. The effect of low- and high-penetration light on localized cancer therapy. Adv Drug Deliv Rev 2019;138:105-16. [PMID: 30217518 DOI: 10.1016/j.addr.2018.09.004] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 8.8] [Reference Citation Analysis]
457 Pamfil D, Vasile C. Responsive Polymeric Nanotherapeutics. Polymeric Nanomaterials in Nanotherapeutics 2019. [DOI: 10.1016/b978-0-12-813932-5.00002-9] [Cited by in Crossref: 3] [Article Influence: 0.8] [Reference Citation Analysis]
458 García-fernández L, Mora-boza A, Reyes-ortega F. pH-Responsive Polymers: Properties, Synthesis, and Applications. Smart Polymers and their Applications 2019. [DOI: 10.1016/b978-0-08-102416-4.00003-x] [Reference Citation Analysis]
459 Sangeetha J, Sarim KM, Thangadurai D, Gupta A, Renu, Mundaragi A, Sheth BP, Wani SA, Baqual MF, Habib H. Nanoparticle-Mediated Plant Gene Transfer for Precision Farming and Sustainable Agriculture. Nanotechnology for Agriculture 2019. [DOI: 10.1007/978-981-32-9370-0_14] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
460 Ding B, Shao S, Yu C, Teng B, Wang M, Cheng Z, Wong KL, Ma P, Lin J. Large-Pore Mesoporous-Silica-Coated Upconversion Nanoparticles as Multifunctional Immunoadjuvants with Ultrahigh Photosensitizer and Antigen Loading Efficiency for Improved Cancer Photodynamic Immunotherapy. Adv Mater 2018;30:e1802479. [PMID: 30387197 DOI: 10.1002/adma.201802479] [Cited by in Crossref: 187] [Cited by in F6Publishing: 191] [Article Influence: 37.4] [Reference Citation Analysis]
461 Ren K, Zhang Y, Zhang X, Liu Y, Yang M, Ju H. In Situ SiRNA Assembly in Living Cells for Gene Therapy with MicroRNA Triggered Cascade Reactions Templated by Nucleic Acids. ACS Nano 2018;12:10797-806. [PMID: 30354052 DOI: 10.1021/acsnano.8b02403] [Cited by in Crossref: 46] [Cited by in F6Publishing: 46] [Article Influence: 9.2] [Reference Citation Analysis]
462 Pramanik G, Neburkova J, Vanek V, Jani M, Kindermann M, Cigler P. Using Polymers to Enhance the Carbon Nanomaterial Biointerface. Carbon Nanomaterials for Bioimaging, Bioanalysis, and Therapy 2018. [DOI: 10.1002/9781119373476.ch2] [Reference Citation Analysis]
463 Tian G, Sun X, Bai J, Dong J, Zhang B, Gao Z, Wu J. Doxorubicin‑loaded dual‑functional hyaluronic acid nanoparticles: Preparation, characterization and antitumor efficacy in vitro and in vivo. Mol Med Rep 2019;19:133-42. [PMID: 30483793 DOI: 10.3892/mmr.2018.9687] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
464 Yi X, Dai J, Han Y, Xu M, Zhang X, Zhen S, Zhao Z, Lou X, Xia F. A high therapeutic efficacy of polymeric prodrug nano-assembly for a combination of photodynamic therapy and chemotherapy. Commun Biol 2018;1:202. [PMID: 30480103 DOI: 10.1038/s42003-018-0204-6] [Cited by in Crossref: 57] [Cited by in F6Publishing: 61] [Article Influence: 11.4] [Reference Citation Analysis]
465 Farjadian F, Ghasemi A, Gohari O, Roointan A, Karimi M, Hamblin MR. Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine (Lond) 2019;14:93-126. [PMID: 30451076 DOI: 10.2217/nnm-2018-0120] [Cited by in Crossref: 233] [Cited by in F6Publishing: 246] [Article Influence: 46.6] [Reference Citation Analysis]
466 Mauri E, Perale G, Rossi F. Nanogel Functionalization: A Versatile Approach To Meet the Challenges of Drug and Gene Delivery. ACS Appl Nano Mater 2018;1:6525-41. [DOI: 10.1021/acsanm.8b01686] [Cited by in Crossref: 46] [Cited by in F6Publishing: 46] [Article Influence: 9.2] [Reference Citation Analysis]
467 Lin Z, Wu Y, Bi Y. Rapid synthesis of SiO2 by ultrasonic-assisted Stober method as controlled and pH-sensitive drug delivery. J Nanopart Res 2018;20. [DOI: 10.1007/s11051-018-4411-3] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
468 De Schutter G, Lesage K. Active control of properties of concrete: a (p)review. Mater Struct 2018;51:123. [PMID: 30393457 DOI: 10.1617/s11527-018-1256-2] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 6.8] [Reference Citation Analysis]
469 Taghipour YD, Bahramsoltani R, Marques AM, Naseri R, Rahimi R, Haratipour P, Iranpanah A, Panah AI, Farzaei MH, Abdollahi M. A systematic review of nano formulation of natural products for the treatment of inflammatory bowel disease: drug delivery and pharmacological targets. Daru 2018;26:229-39. [PMID: 30382546 DOI: 10.1007/s40199-018-0222-4] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 5.2] [Reference Citation Analysis]
470 Yao H, Li X, Shi X, Qiu G, Lu X. Synthesis and self-assembly of multiple-responsive magnetic nanogels. Polym Adv Technol 2019;30:312-9. [DOI: 10.1002/pat.4467] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
471 Zhang K, Wang S, Zhou C, Cheng L, Gao X, Xie X, Sun J, Wang H, Weir MD, Reynolds MA, Zhang N, Bai Y, Xu HHK. Advanced smart biomaterials and constructs for hard tissue engineering and regeneration. Bone Res. 2018;6:31. [PMID: 30374416 DOI: 10.1038/s41413-018-0032-9] [Cited by in Crossref: 165] [Cited by in F6Publishing: 165] [Article Influence: 33.0] [Reference Citation Analysis]
472 Zhao L, Yuan W, Li J, Yang L, Su Y, Peng J, Chen R, Tham HP, Chen H, Lim WQ, Xiang H, Xing P, Li F, Zhao Y. Independent of EPR Effect: A Smart Delivery Nanosystem for Tracking and Treatment of Nonvascularized Intra‐Abdominal Metastases. Adv Funct Mater 2018;28:1806162. [DOI: 10.1002/adfm.201806162] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 4.2] [Reference Citation Analysis]
473 Restani RB, Pires RF, Tolmatcheva A, Cabral R, Baptista PV, Fernandes AR, Casimiro T, Bonifácio VDB, Aguiar-Ricardo A. POxylated Dendrimer-Based Nano-in-Micro Dry Powder Formulations for Inhalation Chemotherapy. ChemistryOpen 2018;7:772-9. [PMID: 30338202 DOI: 10.1002/open.201800093] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
474 Chang R, Tsai WB. Fabrication of Photothermo-Responsive Drug-Loaded Nanogel for Synergetic Cancer Therapy. Polymers (Basel) 2018;10:E1098. [PMID: 30961023 DOI: 10.3390/polym10101098] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
475 Qin Z, Li Y, Gu N. Progress in Applications of Prussian Blue Nanoparticles in Biomedicine. Adv Healthc Mater 2018;7:e1800347. [PMID: 29974662 DOI: 10.1002/adhm.201800347] [Cited by in Crossref: 108] [Cited by in F6Publishing: 115] [Article Influence: 21.6] [Reference Citation Analysis]
476 Hu X, Li F, Wang S, Xia F, Ling D. Biological Stimulus-Driven Assembly/Disassembly of Functional Nanoparticles for Targeted Delivery, Controlled Activation, and Bioelimination. Adv Healthc Mater 2018;7:e1800359. [PMID: 29782706 DOI: 10.1002/adhm.201800359] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 6.8] [Reference Citation Analysis]
477 Zhang JH, Yang HZ, Zhang J, Liu YH, He X, Xiao YP, Yu XQ. Biodegradable Gene Carriers Containing Rigid Aromatic Linkage with Enhanced DNA Binding and Cell Uptake. Polymers (Basel) 2018;10:E1080. [PMID: 30961005 DOI: 10.3390/polym10101080] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
478 Xiao Y, Shi K, Qu Y, Chu B, Qian Z. Engineering Nanoparticles for Targeted Delivery of Nucleic Acid Therapeutics in Tumor. Mol Ther Methods Clin Dev 2019;12:1-18. [PMID: 30364598 DOI: 10.1016/j.omtm.2018.09.002] [Cited by in Crossref: 87] [Cited by in F6Publishing: 90] [Article Influence: 17.4] [Reference Citation Analysis]
479 Yu Q, Zhang YM, Liu YH, Xu X, Liu Y. Magnetism and photo dual-controlled supramolecular assembly for suppression of tumor invasion and metastasis. Sci Adv 2018;4:eaat2297. [PMID: 30255143 DOI: 10.1126/sciadv.aat2297] [Cited by in Crossref: 60] [Cited by in F6Publishing: 62] [Article Influence: 12.0] [Reference Citation Analysis]
480 Zhao SQ, Hu G, Xu XH, Kang SM, Liu N, Wu ZQ. Synthesis of Redox-Responsive Core Cross-Linked Micelles Carrying Optically Active Helical Poly(phenyl isocyanide) Arms and Their Applications in Drug Delivery. ACS Macro Lett 2018;7:1073-9. [PMID: 35632938 DOI: 10.1021/acsmacrolett.8b00610] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 6.8] [Reference Citation Analysis]
481 Xu C, Li H, Zhang K, Binzel DW, Yin H, Chiu W, Guo P. Photo-controlled release of paclitaxel and model drugs from RNA pyramids. Nano Res 2019;12:41-8. [PMID: 31258852 DOI: 10.1007/s12274-018-2174-x] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 5.0] [Reference Citation Analysis]
482 Fern J, Schulman R. Modular DNA strand-displacement controllers for directing material expansion. Nat Commun 2018;9:3766. [PMID: 30217991 DOI: 10.1038/s41467-018-06218-w] [Cited by in Crossref: 62] [Cited by in F6Publishing: 65] [Article Influence: 12.4] [Reference Citation Analysis]
483 Moon HJ, Ku M, Lee H, Yoon N, Yang J, Bong KW. Implantable Photothermal Agents based on Gold Nanorods-Encapsulated Microcube. Sci Rep 2018;8:13683. [PMID: 30209277 DOI: 10.1038/s41598-018-31793-9] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
484 Zhang Y, Zhang J, Xu W, Xiao G, Ding J, Chen X. Tumor microenvironment-labile polymer-doxorubicin conjugate thermogel combined with docetaxel for in situ synergistic chemotherapy of hepatoma. Acta Biomater 2018;77:63-73. [PMID: 30006312 DOI: 10.1016/j.actbio.2018.07.021] [Cited by in Crossref: 55] [Cited by in F6Publishing: 57] [Article Influence: 11.0] [Reference Citation Analysis]
485 Wang S, Yu G, Wang Z, Jacobson O, Tian R, Lin LS, Zhang F, Wang J, Chen X. Hierarchical Tumor Microenvironment-Responsive Nanomedicine for Programmed Delivery of Chemotherapeutics. Adv Mater 2018;:e1803926. [PMID: 30168612 DOI: 10.1002/adma.201803926] [Cited by in Crossref: 92] [Cited by in F6Publishing: 96] [Article Influence: 18.4] [Reference Citation Analysis]
486 Shi S, Zhang L, Zhu M, Wan G, Li C, Zhang J, Wang Y, Wang Y. Reactive Oxygen Species-Responsive Nanoparticles Based on PEGlated Prodrug for Targeted Treatment of Oral Tongue Squamous Cell Carcinoma by Combining Photodynamic Therapy and Chemotherapy. ACS Appl Mater Interfaces 2018;10:29260-72. [DOI: 10.1021/acsami.8b08269] [Cited by in Crossref: 54] [Cited by in F6Publishing: 54] [Article Influence: 10.8] [Reference Citation Analysis]
487 Lin X, Wu M, Li M, Cai Z, Sun H, Tan X, Li J, Zeng Y, Liu X, Liu J. Photo-responsive hollow silica nanoparticles for light-triggered genetic and photodynamic synergistic therapy. Acta Biomater 2018;76:178-92. [PMID: 30078423 DOI: 10.1016/j.actbio.2018.07.007] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 3.4] [Reference Citation Analysis]
488 Albano JM, Paula ED, Pickholz M. Molecular Dynamics Simulations to Study Drug Delivery Systems. Molecular Dynamics 2018. [DOI: 10.5772/intechopen.75748] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
489 Ma P, Sun Y, Chen J, Li H, Zhu H, Gao X, Bi X, Zhang Y. Enhanced anti-hepatocarcinoma efficacy by GLUT1 targeting and cellular microenvironment-responsive PAMAM-camptothecin conjugate. Drug Deliv 2018;25:153-65. [PMID: 29282992 DOI: 10.1080/10717544.2017.1419511] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
490 Deveci G, Kahveci MU. One-pot one-step synthesis of a photo-cleavable cross-linker via Passerini reaction for fabrication of responsive polymeric particles. Polym Bull 2019;76:1471-87. [DOI: 10.1007/s00289-018-2449-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
491 Bhaw-luximon A, Jhurry D. Redox-responsive Drug Delivery Systems. Stimuli-responsive Drug Delivery Systems 2018. [DOI: 10.1039/9781788013536-00109] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
492 Zhang TT, Xu CH, Zhao W, Gu Y, Li XL, Xu JJ, Chen HY. A redox-activated theranostic nanoagent: toward multi-mode imaging guided chemo-photothermal therapy. Chem Sci 2018;9:6749-57. [PMID: 30310607 DOI: 10.1039/c8sc02446d] [Cited by in Crossref: 49] [Cited by in F6Publishing: 53] [Article Influence: 9.8] [Reference Citation Analysis]
493 Salgarella AR, Zahoranová A, Šrámková P, Majerčíková M, Pavlova E, Luxenhofer R, Kronek J, Lacík I, Ricotti L. Investigation of drug release modulation from poly(2-oxazoline) micelles through ultrasound. Sci Rep 2018;8:9893. [PMID: 29967422 DOI: 10.1038/s41598-018-28140-3] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 5.4] [Reference Citation Analysis]
494 Sun H, Zhang Y, Zhong Z. Reduction-sensitive polymeric nanomedicines: An emerging multifunctional platform for targeted cancer therapy. Adv Drug Deliv Rev 2018;132:16-32. [PMID: 29775625 DOI: 10.1016/j.addr.2018.05.007] [Cited by in Crossref: 75] [Cited by in F6Publishing: 77] [Article Influence: 15.0] [Reference Citation Analysis]
495 Carnevale KJF, Riskowski RA, Strouse GF. A Gold Nanoparticle Bio-Optical Transponder to Dynamically Monitor Intracellular pH. ACS Nano 2018;12:5956-68. [PMID: 29874043 DOI: 10.1021/acsnano.8b02200] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 3.8] [Reference Citation Analysis]
496 Ghasemi A, Rabiee N, Ahmadi S, Hashemzadeh S, Lolasi F, Bozorgomid M, Kalbasi A, Nasseri B, Shiralizadeh Dezfuli A, Aref AR, Karimi M, Hamblin MR. Optical assays based on colloidal inorganic nanoparticles. Analyst 2018;143:3249-83. [PMID: 29924108 DOI: 10.1039/c8an00731d] [Cited by in Crossref: 41] [Cited by in F6Publishing: 43] [Article Influence: 8.2] [Reference Citation Analysis]
497 Li F, Chen C, Yang X, He X, Zhao Z, Li J, Yu Y, Yang X, Wang J. Acetal-Linked Hyperbranched Polyphosphoester Nanocarriers Loaded with Chlorin e6 for pH-Activatable Photodynamic Therapy. ACS Appl Mater Interfaces 2018;10:21198-205. [DOI: 10.1021/acsami.8b06758] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 5.6] [Reference Citation Analysis]
498 Ji J, Li X, Wu T, Feng F. Spiropyran in nanoassemblies as a photosensitizer for photoswitchable ROS generation in living cells. Chem Sci 2018;9:5816-21. [PMID: 30079193 DOI: 10.1039/c8sc01148f] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 7.2] [Reference Citation Analysis]
499 Li P, Han J, Li D, Chen J, Wang W, Xu W. Synthetic Glycopolypeptide Micelle for Targeted Drug Delivery to Hepatic Carcinoma. Polymers (Basel) 2018;10:E611. [PMID: 30966645 DOI: 10.3390/polym10060611] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
500 Gambles MT, Fan B, Borecki A, Gillies ER. Hybrid Polyester Self-Immolative Polymer Nanoparticles for Controlled Drug Release. ACS Omega 2018;3:5002-11. [PMID: 31458713 DOI: 10.1021/acsomega.8b00534] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
501 Abedi-Gaballu F, Dehghan G, Ghaffari M, Yekta R, Abbaspour-Ravasjani S, Baradaran B, Dolatabadi JEN, Hamblin MR. PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy. Appl Mater Today 2018;12:177-90. [PMID: 30511014 DOI: 10.1016/j.apmt.2018.05.002] [Cited by in Crossref: 188] [Cited by in F6Publishing: 198] [Article Influence: 37.6] [Reference Citation Analysis]
502 Lafond M, Watanabe A, Yoshizawa S, Umemura SI, Tachibana K. Cavitation-threshold Determination and Rheological-parameters Estimation of Albumin-stabilized Nanobubbles. Sci Rep 2018;8:7472. [PMID: 29748624 DOI: 10.1038/s41598-018-25913-8] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
503 Zarrintaj P, Bakhshandeh B, Saeb MR, Sefat F, Rezaeian I, Ganjali MR, Ramakrishna S, Mozafari M. Oligoaniline-based conductive biomaterials for tissue engineering. Acta Biomater 2018;72:16-34. [PMID: 29625254 DOI: 10.1016/j.actbio.2018.03.042] [Cited by in Crossref: 104] [Cited by in F6Publishing: 106] [Article Influence: 20.8] [Reference Citation Analysis]
504 Wu W, Luo L, Wang Y, Wu Q, Dai HB, Li JS, Durkan C, Wang N, Wang GX. Endogenous pH-responsive nanoparticles with programmable size changes for targeted tumor therapy and imaging applications. Theranostics 2018;8:3038-58. [PMID: 29896301 DOI: 10.7150/thno.23459] [Cited by in Crossref: 117] [Cited by in F6Publishing: 122] [Article Influence: 23.4] [Reference Citation Analysis]
505 Hameed S, Bhattarai P, Dai Z. Cerasomes and Bicelles: Hybrid Bilayered Nanostructures With Silica-Like Surface in Cancer Theranostics. Front Chem 2018;6:127. [PMID: 29721494 DOI: 10.3389/fchem.2018.00127] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
506 Sahle FF, Gulfam M, Lowe TL. Design strategies for physical-stimuli-responsive programmable nanotherapeutics. Drug Discov Today 2018;23:992-1006. [PMID: 29653291 DOI: 10.1016/j.drudis.2018.04.003] [Cited by in Crossref: 49] [Cited by in F6Publishing: 51] [Article Influence: 9.8] [Reference Citation Analysis]
507 Morey M, Pandit A. Responsive triggering systems for delivery in chronic wound healing. Adv Drug Deliv Rev 2018;129:169-93. [PMID: 29501700 DOI: 10.1016/j.addr.2018.02.008] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 6.6] [Reference Citation Analysis]
508 Behzadi S, Serpooshan V, Tao W, Hamaly MA, Alkawareek MY, Dreaden EC, Brown D, Alkilany AM, Farokhzad OC, Mahmoudi M. Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev 2017;46:4218-44. [PMID: 28585944 DOI: 10.1039/c6cs00636a] [Cited by in Crossref: 1170] [Cited by in F6Publishing: 1226] [Article Influence: 234.0] [Reference Citation Analysis]
509 Zhao L, Ge X, Zhao H, Shi L, Capobianco JA, Jin D, Sun L. Double-Sensitive Drug Release System Based on MnO 2 Assembled Upconversion Nanoconstruct for Double-Model Guided Chemotherapy. ACS Appl Nano Mater 2018;1:1648-56. [DOI: 10.1021/acsanm.8b00134] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 4.2] [Reference Citation Analysis]
510 Kato N, Kondo R. Cellular internalization of polycation-coated microparticles and its dependence on their zeta potential. Jpn J Appl Phys 2018;57:03EK03. [DOI: 10.7567/jjap.57.03ek03] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
511 Zhi D, Bai Y, Yang J, Cui S, Zhao Y, Chen H, Zhang S. A review on cationic lipids with different linkers for gene delivery. Adv Colloid Interface Sci 2018;253:117-40. [PMID: 29454463 DOI: 10.1016/j.cis.2017.12.006] [Cited by in Crossref: 75] [Cited by in F6Publishing: 80] [Article Influence: 15.0] [Reference Citation Analysis]
512 Cardoso VF, Francesko A, Ribeiro C, Bañobre-López M, Martins P, Lanceros-Mendez S. Advances in Magnetic Nanoparticles for Biomedical Applications. Adv Healthc Mater 2018;7. [PMID: 29280314 DOI: 10.1002/adhm.201700845] [Cited by in Crossref: 298] [Cited by in F6Publishing: 305] [Article Influence: 59.6] [Reference Citation Analysis]
513 Zhuang W, He L, Wang K, Ma B, Ge L, Wang Z, Huang J, Wu J, Zhang Q, Ying H. Combined Adsorption and Covalent Linking of Paclitaxel on Functionalized Nano-Graphene Oxide for Inhibiting Cancer Cells. ACS Omega 2018;3:2396-405. [PMID: 30221218 DOI: 10.1021/acsomega.7b02022] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
514 Farjadian F, Moghoofei M, Mirkiani S, Ghasemi A, Rabiee N, Hadifar S, Beyzavi A, Karimi M, Hamblin MR. Bacterial components as naturally inspired nano-carriers for drug/gene delivery and immunization: Set the bugs to work? Biotechnol Adv 2018;36:968-85. [PMID: 29499341 DOI: 10.1016/j.biotechadv.2018.02.016] [Cited by in Crossref: 69] [Cited by in F6Publishing: 74] [Article Influence: 13.8] [Reference Citation Analysis]
515 Lyles Z, Souza Leite IS, Vivero-escoto JL, Salvador Bagnato V, Mayumi Inada N. In vitro evaluation of photodynamic therapy using redox-responsive nanoparticles carrying PpIX. Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy XXVII 2018. [DOI: 10.1117/12.2288831] [Reference Citation Analysis]
516 Zhang D, Wu M, Cai Z, Liao N, Ke K, Liu H, Li M, Liu G, Yang H, Liu X, Liu J. Chemotherapeutic Drug Based Metal-Organic Particles for Microvesicle-Mediated Deep Penetration and Programmable pH/NIR/Hypoxia Activated Cancer Photochemotherapy. Adv Sci (Weinh) 2018;5:1700648. [PMID: 29619314 DOI: 10.1002/advs.201700648] [Cited by in Crossref: 47] [Cited by in F6Publishing: 48] [Article Influence: 9.4] [Reference Citation Analysis]
517 Amjadi M, Sheykhansari S, Nelson BJ, Sitti M. Recent Advances in Wearable Transdermal Delivery Systems. Adv Mater 2018;30. [PMID: 29315905 DOI: 10.1002/adma.201704530] [Cited by in Crossref: 109] [Cited by in F6Publishing: 110] [Article Influence: 21.8] [Reference Citation Analysis]
518 Sun M, Wang K, Oupický D. Advances in Stimulus-Responsive Polymeric Materials for Systemic Delivery of Nucleic Acids. Adv Healthc Mater 2018;7. [PMID: 29227047 DOI: 10.1002/adhm.201701070] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 5.0] [Reference Citation Analysis]
519 Galbis E, Iglesias N, Lucas R, Tinajero-Díaz E, de-Paz MV, Muñoz-Guerra S, Galbis JA. Validation of Smart Nanoparticles as Controlled Drug Delivery Systems: Loading and pH-Dependent Release of Pilocarpine. ACS Omega 2018;3:375-82. [PMID: 30023779 DOI: 10.1021/acsomega.7b01421] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
520 Stewart CA, Finer Y, Hatton BD. Drug self-assembly for synthesis of highly-loaded antimicrobial drug-silica particles. Sci Rep 2018;8:895. [PMID: 29343729 DOI: 10.1038/s41598-018-19166-8] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 7.6] [Reference Citation Analysis]
521 Wang B, Chan KF, Yu J, Wang Q, Yang L, Chiu PWY, Zhang L. Reconfigurable Swarms of Ferromagnetic Colloids for Enhanced Local Hyperthermia. Adv Funct Mater 2018;28:1705701. [DOI: 10.1002/adfm.201705701] [Cited by in Crossref: 77] [Cited by in F6Publishing: 77] [Article Influence: 15.4] [Reference Citation Analysis]
522 Liu Y, Qiao L, Zhang S, Wan G, Chen B, Zhou P, Zhang N, Wang Y. Dual pH-responsive multifunctional nanoparticles for targeted treatment of breast cancer by combining immunotherapy and chemotherapy. Acta Biomater 2018;66:310-24. [PMID: 29129789 DOI: 10.1016/j.actbio.2017.11.010] [Cited by in Crossref: 126] [Cited by in F6Publishing: 118] [Article Influence: 25.2] [Reference Citation Analysis]
523 Darrat Y, Naumenko E, Cavallaro G, Lazzara G, Lvov Y, Fakhrullin R. Tubular Nanocontainers for Drug Delivery. Materials Nanoarchitectonics 2018. [DOI: 10.1002/9783527808311.ch4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
524 Morales D, Teulon L, Palleau E, Alnasser T, Ressier L. Single-Step Binary Electrostatic Directed Assembly of Active Nanogels for Smart Concentration-Dependent Encryption. Langmuir 2018;34:1557-63. [DOI: 10.1021/acs.langmuir.7b03519] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
525 Levchenko I, Bazaka K, Keidar M, Xu S, Fang J. Hierarchical Multicomponent Inorganic Metamaterials: Intrinsically Driven Self-Assembly at the Nanoscale. Adv Mater 2018;30. [PMID: 29152907 DOI: 10.1002/adma.201702226] [Cited by in Crossref: 77] [Cited by in F6Publishing: 77] [Article Influence: 15.4] [Reference Citation Analysis]
526 Mendes M, Sousa J, Pais A, Vitorino C. Clinical applications of nanostructured drug delivery systems. Core-Shell Nanostructures for Drug Delivery and Theranostics 2018. [DOI: 10.1016/b978-0-08-102198-9.00004-1] [Cited by in Crossref: 5] [Article Influence: 1.0] [Reference Citation Analysis]
527 Mofazzal Jahromi MA, Sahandi Zangabad P, Moosavi Basri SM, Sahandi Zangabad K, Ghamarypour A, Aref AR, Karimi M, Hamblin MR. Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing. Adv Drug Deliv Rev 2018;123:33-64. [PMID: 28782570 DOI: 10.1016/j.addr.2017.08.001] [Cited by in Crossref: 216] [Cited by in F6Publishing: 235] [Article Influence: 43.2] [Reference Citation Analysis]
528 Zhou L, Wang H, Li Y. Stimuli-Responsive Nanomedicines for Overcoming Cancer Multidrug Resistance. Theranostics 2018;8:1059-74. [PMID: 29463999 DOI: 10.7150/thno.22679] [Cited by in Crossref: 135] [Cited by in F6Publishing: 144] [Article Influence: 27.0] [Reference Citation Analysis]
529 Martínez-Carmona M, Lozano D, Colilla M, Vallet-Regí M. Lectin-conjugated pH-responsive mesoporous silica nanoparticles for targeted bone cancer treatment. Acta Biomater 2018;65:393-404. [PMID: 29127069 DOI: 10.1016/j.actbio.2017.11.007] [Cited by in Crossref: 125] [Cited by in F6Publishing: 129] [Article Influence: 25.0] [Reference Citation Analysis]
530 Ju C, Zhang C. Preparation and Characterization of pH Sensitive Drug Liposomes. Liposome-Based Drug Delivery Systems 2018. [DOI: 10.1007/978-3-662-49231-4_14-1] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
531 Bahrami S, Adel M, Esmaeili F, Rezayat SM, Mehravi B, Zahmatkeshan M. Carbohydrate-Based Nanofibers: Applications and Potentials. Handbook of Nanofibers 2018. [DOI: 10.1007/978-3-319-42789-8_28-1] [Reference Citation Analysis]
532 Huang Z, Gao Y. Enzyme-Instructed Self-assembly of Small Peptides In Vivo for Biomedical Application. In Vivo Self-Assembly Nanotechnology for Biomedical Applications 2018. [DOI: 10.1007/978-981-10-6913-0_4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
533 Rimondino G, Biglione C, Martinelli M, Alvarez Igarzábal C, Strumia M. Design of Multifunctional Nanogels with Intelligent Behavior. Polymer Gels 2018. [DOI: 10.1007/978-981-10-6086-1_7] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
534 Mele E. Introduction: Smart Materials in Biomedicine. Smart Nanoparticles for Biomedicine 2018. [DOI: 10.1016/b978-0-12-814156-4.00001-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
535 Wang Y, Deng Y, Luo H, Zhu A, Ke H, Yang H, Chen H. Light-Responsive Nanoparticles for Highly Efficient Cytoplasmic Delivery of Anticancer Agents. ACS Nano 2017;11:12134-44. [PMID: 29141151 DOI: 10.1021/acsnano.7b05214] [Cited by in Crossref: 139] [Cited by in F6Publishing: 146] [Article Influence: 23.2] [Reference Citation Analysis]
536 Homyak CC, Fernandez A, Touve MA, Zhao B, Anson F, Hardy JA, Vachet RW, Gianneschi NC, Ross JL, Thayumanavan S. Lipogels for Encapsulation of Hydrophilic Proteins and Hydrophobic Small Molecules. Biomacromolecules 2018;19:132-40. [PMID: 29141403 DOI: 10.1021/acs.biomac.7b01300] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
537 Li D, Gautrot JE. Design of Polymer Brushes for Cell Culture and Cellular Delivery. Polymer and Biopolymer Brushes 2017. [DOI: 10.1002/9781119455042.ch20] [Reference Citation Analysis]
538 Zangabad PS, Mirkiani S, Shahsavari S, Masoudi B, Masroor M, Hamed H, Jafari Z, Taghipour YD, Hashemi H, Karimi M, Hamblin MR. Stimulus-responsive liposomes as smart nanoplatforms for drug delivery applications. Nanotechnol Rev 2018;7:95-122. [PMID: 29404233 DOI: 10.1515/ntrev-2017-0154] [Cited by in Crossref: 63] [Cited by in F6Publishing: 66] [Article Influence: 10.5] [Reference Citation Analysis]
539 Fathi M, Sahandi Zangabad P, Majidi S, Barar J, Erfan-Niya H, Omidi Y. Stimuli-responsive chitosan-based nanocarriers for cancer therapy. Bioimpacts 2017;7:269-77. [PMID: 29435435 DOI: 10.15171/bi.2017.32] [Cited by in Crossref: 43] [Cited by in F6Publishing: 44] [Article Influence: 7.2] [Reference Citation Analysis]
540 Albert K, Huang XC, Hsu HY. Bio-templated silica composites for next-generation biomedical applications. Adv Colloid Interface Sci 2017;249:272-89. [PMID: 28499603 DOI: 10.1016/j.cis.2017.04.011] [Cited by in Crossref: 36] [Cited by in F6Publishing: 40] [Article Influence: 6.0] [Reference Citation Analysis]
541 Awwad S, Mohamed Ahmed AHA, Sharma G, Heng JS, Khaw PT, Brocchini S, Lockwood A. Principles of pharmacology in the eye. Br J Pharmacol 2017;174:4205-23. [PMID: 28865239 DOI: 10.1111/bph.14024] [Cited by in Crossref: 85] [Cited by in F6Publishing: 95] [Article Influence: 14.2] [Reference Citation Analysis]
542 Wu B, Lu ST, Deng K, Yu H, Cui C, Zhang Y, Wu M, Zhuo RX, Xu HB, Huang SW. MRI-guided targeting delivery of doxorubicin with reduction-responsive lipid-polymer hybrid nanoparticles. Int J Nanomedicine 2017;12:6871-82. [PMID: 29066883 DOI: 10.2147/IJN.S143048] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 1.2] [Reference Citation Analysis]
543 Tian B, He X, Xu X, Li X, Wu R, Chen F. Advanced Biotechnologies Toward Engineering a Cell Home for Stem Cell Accommodation. Adv Mater Technol 2017;2:1700022. [DOI: 10.1002/admt.201700022] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
544 Zhang P, Wang Y, Lian J, Shen Q, Wang C, Ma B, Zhang Y, Xu T, Li J, Shao Y, Xu F, Zhu JJ. Engineering the Surface of Smart Nanocarriers Using a pH-/Thermal-/GSH-Responsive Polymer Zipper for Precise Tumor Targeting Therapy In Vivo. Adv Mater 2017;29. [PMID: 28719022 DOI: 10.1002/adma.201702311] [Cited by in Crossref: 77] [Cited by in F6Publishing: 80] [Article Influence: 12.8] [Reference Citation Analysis]
545 Kawatani R, Nishiyama Y, Kamikubo H, Kakiuchi K, Ajiro H. Aggregation Control by Multi-stimuli-Responsive Poly(N-vinylamide) Derivatives in Aqueous System. Nanoscale Res Lett 2017;12:461. [PMID: 28738665 DOI: 10.1186/s11671-017-2221-7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
546 Biabanikhankahdani R, Bayat S, Ho KL, Alitheen NBM, Tan WS. A Simple Add-and-Display Method for Immobilisation of Cancer Drug on His-tagged Virus-like Nanoparticles for Controlled Drug Delivery. Sci Rep 2017;7:5303. [PMID: 28706267 DOI: 10.1038/s41598-017-05525-4] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.8] [Reference Citation Analysis]
547 Palihawadana-arachchige M, Naik VM, Vaishnava PP, Jena BP, Naik R. Gd-Doped Superparamagnetic Magnetite Nanoparticles for Potential Cancer Theranostics. Nanostructured Materials - Fabrication to Applications 2017. [DOI: 10.5772/intechopen.68219] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
548 Kumar A, Montemagno C, Choi HJ. Smart Microparticles with a pH-responsive Macropore for Targeted Oral Drug Delivery. Sci Rep 2017;7:3059. [PMID: 28596597 DOI: 10.1038/s41598-017-03259-x] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 4.0] [Reference Citation Analysis]
549 Wang T, Wang L, Li X, Hu X, Han Y, Luo Y, Wang Z, Li Q, Aldalbahi A, Wang L, Song S, Fan C, Zhao Y, Wang M, Chen N. Size-Dependent Regulation of Intracellular Trafficking of Polystyrene Nanoparticle-Based Drug-Delivery Systems. ACS Appl Mater Interfaces 2017;9:18619-25. [DOI: 10.1021/acsami.7b05383] [Cited by in Crossref: 65] [Cited by in F6Publishing: 66] [Article Influence: 10.8] [Reference Citation Analysis]
550 Ping Y, Ding D, Ramos RANS, Mohanram H, Deepankumar K, Gao J, Tang G, Miserez A. Supramolecular β-Sheets Stabilized Protein Nanocarriers for Drug Delivery and Gene Transfection. ACS Nano 2017;11:4528-41. [PMID: 28423276 DOI: 10.1021/acsnano.6b08393] [Cited by in Crossref: 44] [Cited by in F6Publishing: 46] [Article Influence: 7.3] [Reference Citation Analysis]
551 Cellai F, Munnia A, Viti J, Doumett S, Ravagli C, Ceni E, Mello T, Polvani S, Giese RW, Baldi G, Galli A, Peluso MEM. Magnetic Hyperthermia and Oxidative Damage to DNA of Human Hepatocarcinoma Cells. Int J Mol Sci 2017;18:E939. [PMID: 28468256 DOI: 10.3390/ijms18050939] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
552 Malekzad H, Mirshekari H, Sahandi Zangabad P, Moosavi Basri SM, Baniasadi F, Sharifi Aghdam M, Karimi M, Hamblin MR. Plant protein-based hydrophobic fine and ultrafine carrier particles in drug delivery systems. Crit Rev Biotechnol 2018;38:47-67. [PMID: 28434263 DOI: 10.1080/07388551.2017.1312267] [Cited by in Crossref: 60] [Cited by in F6Publishing: 49] [Article Influence: 10.0] [Reference Citation Analysis]
553 Rizwan M, Yahya R, Hassan A, Yar M, Azzahari AD, Selvanathan V, Sonsudin F, Abouloula CN. pH Sensitive Hydrogels in Drug Delivery: Brief History, Properties, Swelling, and Release Mechanism, Material Selection and Applications. Polymers (Basel) 2017;9:E137. [PMID: 30970818 DOI: 10.3390/polym9040137] [Cited by in Crossref: 264] [Cited by in F6Publishing: 275] [Article Influence: 44.0] [Reference Citation Analysis]
554 Neamtu I, Rusu AG, Diaconu A, Nita LE, Chiriac AP. Basic concepts and recent advances in nanogels as carriers for medical applications. Drug Deliv 2017;24:539-57. [PMID: 28181831 DOI: 10.1080/10717544.2016.1276232] [Cited by in Crossref: 218] [Cited by in F6Publishing: 169] [Article Influence: 36.3] [Reference Citation Analysis]
555 Wang H, Li Y, Zhang M, Wu D, Shen Y, Tang G, Ping Y. Redox-Activatable ATP-Depleting Micelles with Dual Modulation Characteristics for Multidrug-Resistant Cancer Therapy. Adv Healthc Mater 2017;6. [PMID: 28152267 DOI: 10.1002/adhm.201601293] [Cited by in Crossref: 33] [Cited by in F6Publishing: 36] [Article Influence: 5.5] [Reference Citation Analysis]
556 Xiang B, Jia XL, Qi JL, Yang LP, Sun WH, Yan X, Yang SK, Cao DY, Du Q, Qi XR. Enhancing siRNA-based cancer therapy using a new pH-responsive activatable cell-penetrating peptide-modified liposomal system. Int J Nanomedicine 2017;12:2385-405. [PMID: 28405163 DOI: 10.2147/IJN.S129574] [Cited by in Crossref: 42] [Cited by in F6Publishing: 44] [Article Influence: 7.0] [Reference Citation Analysis]
557 Yang Z, Chen X, Xu Z, Xiao M, Hong L, Ngai T. Shear-Assisted Fabrication of Block Copolymer Agglomerates with Various Morphologies in Viscous Medium. Langmuir 2017;33:2829-36. [PMID: 28233501 DOI: 10.1021/acs.langmuir.7b00119] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
558 Karimi M, Sahandi Zangabad P, Baghaee-Ravari S, Ghazadeh M, Mirshekari H, Hamblin MR. Smart Nanostructures for Cargo Delivery: Uncaging and Activating by Light. J Am Chem Soc 2017;139:4584-610. [PMID: 28192672 DOI: 10.1021/jacs.6b08313] [Cited by in Crossref: 266] [Cited by in F6Publishing: 277] [Article Influence: 44.3] [Reference Citation Analysis]
559 Sagar V, Nair M. Near-infrared biophotonics-based nanodrug release systems and their potential application for neuro-disorders. Expert Opin Drug Deliv 2018;15:137-52. [PMID: 28276967 DOI: 10.1080/17425247.2017.1297794] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
560 Figueroa CM, Suárez BN, Molina AM, Fernández JC, Torres Z, Griebenow K. Smart Release Nano-formulation of Cytochrome C and Hyaluronic Acid Induces Apoptosis in Cancer Cells. J Nanomed Nanotechnol 2017;8:427. [PMID: 28706754 DOI: 10.4172/2157-7439.1000427] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 0.5] [Reference Citation Analysis]
561 Chen M, Zhang Y, Chen Z, Xie S, Luo X, Li X. Synergistic antitumor efficacy of redox and pH dually responsive micelleplexes for co-delivery of camptothecin and genes. Acta Biomater 2017;49:444-55. [PMID: 27940163 DOI: 10.1016/j.actbio.2016.12.005] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 6.2] [Reference Citation Analysis]
562 Tang Y, Zeng Z, He X, Wang T, Ning X, Feng X. SiRNA Crosslinked Nanoparticles for the Treatment of Inflammation-induced Liver Injury. Adv Sci (Weinh) 2017;4:1600228. [PMID: 28251047 DOI: 10.1002/advs.201600228] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 2.8] [Reference Citation Analysis]
563 Zhang C, Zhang T, Jin S, Xue X, Yang X, Gong N, Zhang J, Wang PC, Tian JH, Xing J, Liang XJ. Virus-Inspired Self-Assembled Nanofibers with Aggregation-Induced Emission for Highly Efficient and Visible Gene Delivery. ACS Appl Mater Interfaces 2017;9:4425-32. [PMID: 28074644 DOI: 10.1021/acsami.6b11536] [Cited by in Crossref: 33] [Cited by in F6Publishing: 36] [Article Influence: 5.5] [Reference Citation Analysis]
564 Zhang W, Yu ZL, Wu M, Ren JG, Xia HF, Sa GL, Zhu JY, Pang DW, Zhao YF, Chen G. Magnetic and Folate Functionalization Enables Rapid Isolation and Enhanced Tumor-Targeting of Cell-Derived Microvesicles. ACS Nano 2017;11:277-90. [PMID: 28005331 DOI: 10.1021/acsnano.6b05630] [Cited by in Crossref: 95] [Cited by in F6Publishing: 102] [Article Influence: 15.8] [Reference Citation Analysis]
565 Zhang Q, Shen C, Zhao N, Xu F. Redox-Responsive and Drug-Embedded Silica Nanoparticles with Unique Self-Destruction Features for Efficient Gene/Drug Codelivery. Adv Funct Mater 2017;27:1606229. [DOI: 10.1002/adfm.201606229] [Cited by in Crossref: 112] [Cited by in F6Publishing: 112] [Article Influence: 18.7] [Reference Citation Analysis]
566 Wang H, Dai T, Zhou S, Huang X, Li S, Sun K, Zhou G, Dou H. Self-Assembly Assisted Fabrication of Dextran-Based Nanohydrogels with Reduction-Cleavable Junctions for Applications as Efficient Drug Delivery Systems. Sci Rep 2017;7:40011. [PMID: 28071743 DOI: 10.1038/srep40011] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 5.8] [Reference Citation Analysis]
567 de La Torre LG, Sipoli CC, Oliveira AF, Eş I, Pessoa AC, Vitor MT, Vit FF, F. Naves T. Biopolymers for gene delivery applications. Biopolymer-Based Composites 2017. [DOI: 10.1016/b978-0-08-101914-6.00010-7] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
568 Dubey KA, Chaudhari CV, Bhardwaj YK, Varshney L. Polymers, Blends and Nanocomposites for Implants, Scaffolds and Controlled Drug Release Applications. Advanced Structured Materials 2017. [DOI: 10.1007/978-981-10-3328-5_1] [Cited by in Crossref: 9] [Article Influence: 1.5] [Reference Citation Analysis]
569 Haeri A. Combined Approach of Ligand Targeted and Stimuli-triggered Nanocarriers: a State-of-the-art Strategy for Cancer Treatment. Iran J Pharm Res 2017;16:411-2. [PMID: 28979295] [Reference Citation Analysis]
570 Homyak C, Anson F, Thayumanavan S. Supramolecular Polymers in Nanomedicine. Comprehensive Supramolecular Chemistry II 2017. [DOI: 10.1016/b978-0-12-409547-2.12566-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
571 Lin X, Wu M, Liu X. Photo-responsive hollow silica nanoparticles for light triggered gene and photodynamic synergistic therapy. International Conference on Photonics and Imaging in Biology and Medicine 2017. [DOI: 10.1364/pibm.2017.w3a.53] [Reference Citation Analysis]
572 Sun Z, Tian Y, Hom WL, Gang O, Bhatia SR, Grubbs RB. Translating Thermal Response of Triblock Copolymer Assemblies in Dilute Solution to Macroscopic Gelation and Phase Separation. Angew Chem 2017;129:1513-6. [DOI: 10.1002/ange.201609360] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
573 Şenyiğit T, Sonvico F, Rossi A, Tekmen I, Santi P, Colombo P, Nicoli S, Özer Ö. In Vivo Assessment of Clobetasol Propionate-Loaded Lecithin-Chitosan Nanoparticles for Skin Delivery. Int J Mol Sci 2016;18:E32. [PMID: 28035957 DOI: 10.3390/ijms18010032] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 2.9] [Reference Citation Analysis]
574 Malekzad H, Zangabad PS, Mirshekari H, Karimi M, Hamblin MR. Noble metal nanoparticles in biosensors: recent studies and applications. Nanotechnol Rev 2017;6:301-29. [PMID: 29335674 DOI: 10.1515/ntrev-2016-0014] [Cited by in Crossref: 156] [Cited by in F6Publishing: 162] [Article Influence: 22.3] [Reference Citation Analysis]
575 Ding C, Tong L, Feng J, Fu J. Recent Advances in Stimuli-Responsive Release Function Drug Delivery Systems for Tumor Treatment. Molecules 2016;21:E1715. [PMID: 27999414 DOI: 10.3390/molecules21121715] [Cited by in Crossref: 90] [Cited by in F6Publishing: 92] [Article Influence: 12.9] [Reference Citation Analysis]
576 Cicco SR, Vona D, Gristina R, Sardella E, Ragni R, Lo Presti M, Farinola GM. Biosilica from Living Diatoms: Investigations on Biocompatibility of Bare and Chemically Modified Thalassiosira weissflogii Silica Shells. Bioengineering (Basel) 2016;3:E35. [PMID: 28952597 DOI: 10.3390/bioengineering3040035] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 4.4] [Reference Citation Analysis]
577 Feizi S, Malekie S, Rahighi R, Tayyebi A, Ziaie F. Evaluation of dosimetric characteristics of graphene oxide/PVC nanocomposite for gamma radiation applications. Radiochimica Acta 2017;105:161-70. [DOI: 10.1515/ract-2016-2648] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
578 Schön P. Recent advances and applications of redox active macromolecules: Synthetic polymers and biomacromolecules. European Polymer Journal 2016;83:377-379. [DOI: 10.1016/j.eurpolymj.2016.05.018] [Reference Citation Analysis]
579 Duan Y, Waerenborgh JC, Clemente-Juan JM, Giménez-Saiz C, Coronado E. Light-induced decarboxylation in a photo-responsive iron-containing complex based on polyoxometalate and oxalato ligands. Chem Sci 2017;8:305-15. [PMID: 30294411 DOI: 10.1039/c6sc01919f] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.9] [Reference Citation Analysis]
580 Karimi M, Sahandi Zangabad P, Ghasemi A, Amiri M, Bahrami M, Malekzad H, Ghahramanzadeh Asl H, Mahdieh Z, Bozorgomid M, Ghasemi A, Rahmani Taji Boyuk MR, Hamblin MR. Temperature-Responsive Smart Nanocarriers for Delivery Of Therapeutic Agents: Applications and Recent Advances. ACS Appl Mater Interfaces 2016;8:21107-33. [PMID: 27349465 DOI: 10.1021/acsami.6b00371] [Cited by in Crossref: 217] [Cited by in F6Publishing: 228] [Article Influence: 31.0] [Reference Citation Analysis]
581 Timin AS, Gao H, Voronin DV, Gorin DA, Sukhorukov GB. Inorganic/Organic Multilayer Capsule Composition for Improved Functionality and External Triggering. Adv Mater Interfaces 2017;4:1600338. [DOI: 10.1002/admi.201600338] [Cited by in Crossref: 47] [Cited by in F6Publishing: 47] [Article Influence: 6.7] [Reference Citation Analysis]
582 Luo C, Sun J, Liu D, Sun B, Miao L, Musetti S, Li J, Han X, Du Y, Li L, Huang L, He Z. Self-Assembled Redox Dual-Responsive Prodrug-Nanosystem Formed by Single Thioether-Bridged Paclitaxel-Fatty Acid Conjugate for Cancer Chemotherapy. Nano Lett 2016;16:5401-8. [PMID: 27490088 DOI: 10.1021/acs.nanolett.6b01632] [Cited by in Crossref: 265] [Cited by in F6Publishing: 281] [Article Influence: 37.9] [Reference Citation Analysis]
583 Karimi M, Bahrami S, Ravari SB, Zangabad PS, Mirshekari H, Bozorgomid M, Shahreza S, Sori M, Hamblin MR. Albumin nanostructures as advanced drug delivery systems. Expert Opin Drug Deliv 2016;13:1609-23. [PMID: 27216915 DOI: 10.1080/17425247.2016.1193149] [Cited by in Crossref: 163] [Cited by in F6Publishing: 143] [Article Influence: 23.3] [Reference Citation Analysis]
584 Dan N, Department of Chemical and Biological Engineering, Drexel University, 3101 Chestnut St, Philadelphia PA 19104, USA. Bilayer degradation in reactive environments. AIMS Biophysics 2016;4:33-42. [DOI: 10.3934/biophy.2017.1.33] [Reference Citation Analysis]
585 Lavendomme R, Marcélis L, Wouters J, Luhmer M, Jabin I. A nano-sized container for specific encapsulation of isolated water molecules. Chem Commun 2016;52:14109-12. [DOI: 10.1039/c6cc08096k] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
586 Pramanik A, Paikar A, Das T, Maji K, Haldar D. Self-assembled peptide microspheres for sustainable release of sulfamethoxazole. RSC Adv 2016;6:39172-9. [DOI: 10.1039/c6ra07095g] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]