BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Jiang Y, Liang M, Svejkar D, Hart-smith G, Lu H, Scarano W, Stenzel MH. Albumin-micelles via a one-pot technology platform for the delivery of drugs. Chem Commun 2014;50:6394. [DOI: 10.1039/c4cc00616j] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 4.2] [Reference Citation Analysis]
Number Citing Articles
1 Eras A, Castillo D, Suárez M, Vispo NS, Albericio F, Rodriguez H. Chemical Conjugation in Drug Delivery Systems. Front Chem 2022;10:889083. [DOI: 10.3389/fchem.2022.889083] [Reference Citation Analysis]
2 Raveendran R, Dan Xu Y, Joshi N, Stenzel MH. Progress of albumin-polymer conjugates as efficient drug carriers. Pure and Applied Chemistry 2022;0. [DOI: 10.1515/pac-2021-2006] [Reference Citation Analysis]
3 Moad G. Dithioesters in RAFT Polymerization. In: Moad G, Rizzardo E, editors. RAFT Polymerization. Wiley; 2021. pp. 223-358. [DOI: 10.1002/9783527821358.ch8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
4 Atanase LI. Micellar Drug Delivery Systems Based on Natural Biopolymers. Polymers (Basel) 2021;13:477. [PMID: 33540922 DOI: 10.3390/polym13030477] [Cited by in Crossref: 54] [Cited by in F6Publishing: 58] [Article Influence: 27.0] [Reference Citation Analysis]
5 Theodorou A, Mandriotis P, Anastasaki A, Velonia K. Oxygen tolerant, photoinduced controlled radical polymerization approach for the synthesis of giant amphiphiles. Polym Chem 2021;12:2228-35. [DOI: 10.1039/d0py01608j] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
6 Shetab Boushehri MA, Dietrich D, Lamprecht A. Nanotechnology as a Platform for the Development of Injectable Parenteral Formulations: A Comprehensive Review of the Know-Hows and State of the Art. Pharmaceutics 2020;12:E510. [PMID: 32503171 DOI: 10.3390/pharmaceutics12060510] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 5.7] [Reference Citation Analysis]
7 Saha S, Kundu J, Verma RJ, Chowdhury PK. Albumin coated polymer nanoparticles loaded with plant extract derived quercetin for modulation of inflammation. Materialia 2020;9:100605. [DOI: 10.1016/j.mtla.2020.100605] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
8 Wang Y, Sun L, Mei Z, Zhang F, He M, Fletcher C, Wang F, Yang J, Bi D, Jiang Y, Liu P. 3D printed biodegradable implants as an individualized drug delivery system for local chemotherapy of osteosarcoma. Materials & Design 2020;186:108336. [DOI: 10.1016/j.matdes.2019.108336] [Cited by in Crossref: 48] [Cited by in F6Publishing: 50] [Article Influence: 16.0] [Reference Citation Analysis]
9 Kim JS, Sirois AR, Vazquez Cegla AJ, Jumai'an E, Murata N, Buck ME, Moore SJ. Protein-Polymer Conjugates Synthesized Using Water-Soluble Azlactone-Functionalized Polymers Enable Receptor-Specific Cellular Uptake toward Targeted Drug Delivery. Bioconjug Chem 2019;30:1220-31. [PMID: 30920802 DOI: 10.1021/acs.bioconjchem.9b00155] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 5.3] [Reference Citation Analysis]
10 Tao C, Chuah YJ, Xu C, Wang DA. Albumin conjugates and assemblies as versatile bio-functional additives and carriers for biomedical applications. J Mater Chem B 2019;7:357-67. [PMID: 32254722 DOI: 10.1039/c8tb02477d] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 8.0] [Reference Citation Analysis]
11 Bao C, Yin Y, Zhang Q. Synthesis and Assembly of Laccase-Polymer Giant Amphiphiles by Self-Catalyzed CuAAC Click Chemistry. Biomacromolecules 2018;19:1539-51. [PMID: 29562131 DOI: 10.1021/acs.biomac.8b00087] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
12 Lee C, Choi JE, Park GY, Lee T, Kim J, An SSA, Song JK, Paik H. Size-tunable protein–polymer hybrid carrier for cell internalization. Reactive and Functional Polymers 2018;124:72-6. [DOI: 10.1016/j.reactfunctpolym.2018.01.006] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
13 Lu H, Stenzel MH. Multicellular Tumor Spheroids (MCTS) as a 3D In Vitro Evaluation Tool of Nanoparticles. Small 2018;14:1702858. [DOI: 10.1002/smll.201702858] [Cited by in Crossref: 109] [Cited by in F6Publishing: 114] [Article Influence: 21.8] [Reference Citation Analysis]
14 Kudarha RR, Sawant KK. Albumin based versatile multifunctional nanocarriers for cancer therapy: Fabrication, surface modification, multimodal therapeutics and imaging approaches. Materials Science and Engineering: C 2017;81:607-26. [DOI: 10.1016/j.msec.2017.08.004] [Cited by in Crossref: 64] [Cited by in F6Publishing: 59] [Article Influence: 10.7] [Reference Citation Analysis]
15 Gil MS, Cho J, Thambi T, Giang Phan V, Kwon I, Lee DS. Bioengineered robust hybrid hydrogels enrich the stability and efficacy of biological drugs. Journal of Controlled Release 2017;267:119-32. [DOI: 10.1016/j.jconrel.2017.04.009] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 4.8] [Reference Citation Analysis]
16 Lu H, Noorani L, Jiang Y, Du AW, Stenzel MH. Penetration and drug delivery of albumin nanoparticles into pancreatic multicellular tumor spheroids. J Mater Chem B 2017;5:9591-9. [PMID: 32264572 DOI: 10.1039/c7tb02902k] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.7] [Reference Citation Analysis]
17 An FF, Zhang XH. Strategies for Preparing Albumin-based Nanoparticles for Multifunctional Bioimaging and Drug Delivery. Theranostics 2017;7:3667-89. [PMID: 29109768 DOI: 10.7150/thno.19365] [Cited by in Crossref: 227] [Cited by in F6Publishing: 261] [Article Influence: 37.8] [Reference Citation Analysis]
18 Breitenbach BB, Schmid I, Wich PR. Amphiphilic Polysaccharide Block Copolymers for pH-Responsive Micellar Nanoparticles. Biomacromolecules 2017;18:2839-48. [DOI: 10.1021/acs.biomac.7b00771] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 6.0] [Reference Citation Analysis]
19 Long S, Lin F, Yao C, Cui D. Highly cis -1,4 Selective Living Polymerization of Unmasked Polar 2-(2-Methylidenebut-3-enyl)Furan and Diels-Alder Addition. Macromol Rapid Commun 2017;38:1700227. [DOI: 10.1002/marc.201700227] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 3.3] [Reference Citation Analysis]
20 Wang L, Liu L, Dong B, Zhao H, Zhang M, Chen W, Hong Y. Multi-stimuli-responsive biohybrid nanoparticles with cross-linked albumin coronae self-assembled by a polymer-protein biodynamer. Acta Biomater 2017;54:259-70. [PMID: 28286038 DOI: 10.1016/j.actbio.2017.03.009] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 3.8] [Reference Citation Analysis]
21 Jiang Y, Wong S, Chen F, Chang T, Lu H, Stenzel MH. Influencing Selectivity to Cancer Cells with Mixed Nanoparticles Prepared from Albumin–Polymer Conjugates and Block Copolymers. Bioconjugate Chem 2017;28:979-85. [DOI: 10.1021/acs.bioconjchem.6b00698] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 6.2] [Reference Citation Analysis]
22 Figueira TN, Palermo LM, Veiga AS, Huey D, Alabi CA, Santos NC, Welsch JC, Mathieu C, Horvat B, Niewiesk S, Moscona A, Castanho MARB, Porotto M. In Vivo Efficacy of Measles Virus Fusion Protein-Derived Peptides Is Modulated by the Properties of Self-Assembly and Membrane Residence. J Virol 2017;91:e01554-16. [PMID: 27733647 DOI: 10.1128/JVI.01554-16] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 4.7] [Reference Citation Analysis]
23 Zhang Y, He L, Wu J, Wang K, Wang J, Dai W, Yuan A, Wu J, Hu Y. Switchable PDT for reducing skin photosensitization by a NIR dye inducing self-assembled and photo-disassembled nanoparticles. Biomaterials 2016;107:23-32. [PMID: 27598652 DOI: 10.1016/j.biomaterials.2016.08.037] [Cited by in Crossref: 61] [Cited by in F6Publishing: 67] [Article Influence: 8.7] [Reference Citation Analysis]
24 Jiang Y, Stenzel M. Drug Delivery Vehicles Based on Albumin-Polymer Conjugates. Macromol Biosci 2016;16:791-802. [DOI: 10.1002/mabi.201500453] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 5.0] [Reference Citation Analysis]
25 Gilmore KA, Lampley MW, Boyer C, Harth E. Matrices for combined delivery of proteins and synthetic molecules. Adv Drug Deliv Rev 2016;98:77-85. [PMID: 26656604 DOI: 10.1016/j.addr.2015.11.018] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 4.0] [Reference Citation Analysis]
26 Jiang Y, Lu H, Chen F, Callari M, Pourgholami M, Morris DL, Stenzel MH. PEGylated Albumin-Based Polyion Complex Micelles for Protein Delivery. Biomacromolecules 2016;17:808-17. [DOI: 10.1021/acs.biomac.5b01537] [Cited by in Crossref: 47] [Cited by in F6Publishing: 48] [Article Influence: 6.7] [Reference Citation Analysis]
27 Isarov SA, Lee PW, Pokorski JK. “Graft-to” Protein/Polymer Conjugates Using Polynorbornene Block Copolymers. Biomacromolecules 2016;17:641-8. [DOI: 10.1021/acs.biomac.5b01582] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 4.1] [Reference Citation Analysis]
28 Zhao J, Zhou Y, Zhou Y, Zhou N, Pan X, Zhang Z, Zhu X. A straightforward approach for the one-pot synthesis of cyclic polymers from RAFT polymers via thiol–Michael addition. Polym Chem 2016;7:1782-91. [DOI: 10.1039/c5py01861g] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 3.4] [Reference Citation Analysis]
29 Jiang Y, Lu H, Dag A, Hart-smith G, Stenzel MH. Albumin–polymer conjugate nanoparticles and their interactions with prostate cancer cells in 2D and 3D culture: comparison between PMMA and PCL. J Mater Chem B 2016;4:2017-27. [DOI: 10.1039/c5tb02576a] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 5.0] [Reference Citation Analysis]
30 Nguyen D, Oliver S, Adnan NNM, Herbert C, Boyer C. Polymer–protein hybrid scaffolds as carriers for CORM-3: platforms for the delivery of carbon monoxide (CO). RSC Adv 2016;6:92975-80. [DOI: 10.1039/c6ra21703f] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
31 Jiang Y, Wong CK, Stenzel MH. An Oligonucleotide Transfection Vector Based on HSA and PDMAEMA Conjugation: Effect of Polymer Molecular Weight on Cell Proliferation and on Multicellular Tumor Spheroids. Macromol Biosci 2015;15:965-78. [PMID: 25809941 DOI: 10.1002/mabi.201500006] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
32 Dag A, Jiang Y, Karim KJA, Hart-smith G, Scarano W, Stenzel MH. Polymer-Albumin Conjugate for the Facilitated Delivery of Macromolecular Platinum Drugs. Macromol Rapid Commun 2015;36:890-7. [DOI: 10.1002/marc.201400576] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 3.5] [Reference Citation Analysis]
33 Koseva NS, Rydz J, Stoyanova EV, Mitova VA. Hybrid protein-synthetic polymer nanoparticles for drug delivery. Adv Protein Chem Struct Biol 2015;98:93-119. [PMID: 25819277 DOI: 10.1016/bs.apcsb.2014.12.003] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
34 Wong CK, Laos AJ, Soeriyadi AH, Wiedenmann J, Curmi PMG, Gooding JJ, Marquis CP, Stenzel MH, Thordarson P. Polymersomes Prepared from Thermoresponsive Fluorescent Protein-Polymer Bioconjugates: Capture of and Report on Drug and Protein Payloads. Angew Chem 2015;127:5407-12. [DOI: 10.1002/ange.201412406] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.4] [Reference Citation Analysis]
35 Wong CK, Laos AJ, Soeriyadi AH, Wiedenmann J, Curmi PM, Gooding JJ, Marquis CP, Stenzel MH, Thordarson P. Polymersomes prepared from thermoresponsive fluorescent protein-polymer bioconjugates: capture of and report on drug and protein payloads. Angew Chem Int Ed Engl 2015;54:5317-22. [PMID: 25736460 DOI: 10.1002/anie.201412406] [Cited by in Crossref: 76] [Cited by in F6Publishing: 77] [Article Influence: 9.5] [Reference Citation Analysis]
36 Jin W, Yang Q, Zhang Z, Bao Z, Ren Q, Yang Y, Xing H. Self-assembly induced solubilization of drug-like molecules in nanostructured ionic liquids. Chem Commun 2015;51:13170-3. [DOI: 10.1039/c5cc03463a] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 4.3] [Reference Citation Analysis]
37 Kouchakzadeh H, Safavi MS, Shojaosadati SA. Efficient Delivery of Therapeutic Agents by Using Targeted Albumin Nanoparticles. Advances in Protein Chemistry and Structural Biology 2015. [DOI: 10.1016/bs.apcsb.2014.11.002] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 4.1] [Reference Citation Analysis]
38 Jiang Y, Lu H, Khine YY, Dag A, Stenzel MH. Polyion complex micelle based on albumin-polymer conjugates: multifunctional oligonucleotide transfection vectors for anticancer chemotherapeutics. Biomacromolecules 2014;15:4195-205. [PMID: 25290019 DOI: 10.1021/bm501205x] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 4.2] [Reference Citation Analysis]