BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Liu S, Ko AC, Li W, Zhong W, Xing M. NIR initiated and pH sensitive single-wall carbon nanotubes for doxorubicin intracellular delivery. J Mater Chem B 2014;2:1125. [DOI: 10.1039/c3tb21362e] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 3.9] [Reference Citation Analysis]
Number Citing Articles
1 Federico S, Martorana A, Pitarresi G, Palumbo FS, Fiorica C, Giammona G. Development of stimulus-sensitive electrospun membranes based on novel biodegradable segmented polyurethane as triggered delivery system for doxorubicin. Biomater Adv 2022;136:212769. [PMID: 35929309 DOI: 10.1016/j.bioadv.2022.212769] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Bai X, Zhang H, Lin J, Zhang G. Durable silicon-carbon composites self-assembled from double-protected heterostructure for lithium-ion batteries. J Colloid Interface Sci 2022;615:375-85. [PMID: 35149351 DOI: 10.1016/j.jcis.2022.01.191] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
3 Gonbadi P, Jalal R, Akhlaghinia B, Ghasemzadeh MS. Tannic acid-modified magnetic hydrotalcite-based MgAl nanoparticles for the in vitro targeted delivery of doxorubicin to the estrogen receptor-overexpressing colorectal cancer cells. Journal of Drug Delivery Science and Technology 2022;68:103026. [DOI: 10.1016/j.jddst.2021.103026] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
4 Abdel Fadeel DA, Hanafy MS, Kelany NA, Elywa MA. Novel greenly synthesized titanium dioxide nanoparticles compared to liposomes in drug delivery: in vivo investigation on Ehrlich solid tumor model. Heliyon 2021;7:e07370. [PMID: 34235286 DOI: 10.1016/j.heliyon.2021.e07370] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
5 Sawy AM, Barhoum A, Abdel Gaber SA, El-Hallouty SM, Shousha WG, Maarouf AA, Khalil ASG. Insights of doxorubicin loaded graphene quantum dots: Synthesis, DFT drug interactions, and cytotoxicity. Mater Sci Eng C Mater Biol Appl 2021;122:111921. [PMID: 33641914 DOI: 10.1016/j.msec.2021.111921] [Cited by in Crossref: 3] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
6 Mansouri N, Jalal R, Akhlaghinia B, Abnous K, Jahanshahi R. Design and synthesis of aptamer AS1411-conjugated EG@TiO 2 @Fe 2 O 3 nanoparticles as a drug delivery platform for tumor-targeted therapy. New J Chem 2020;44:15871-86. [DOI: 10.1039/c9nj06445a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
7 Raza A, Hayat U, Rasheed T, Bilal M, Iqbal HM. “Smart” materials-based near-infrared light-responsive drug delivery systems for cancer treatment: A review. Journal of Materials Research and Technology 2019;8:1497-509. [DOI: 10.1016/j.jmrt.2018.03.007] [Cited by in Crossref: 101] [Cited by in F6Publishing: 69] [Article Influence: 33.7] [Reference Citation Analysis]
8 Khezri B, Beladi Mousavi SM, Sofer Z, Pumera M. Recyclable nanographene-based micromachines for the on-the-fly capture of nitroaromatic explosives. Nanoscale 2019;11:8825-34. [DOI: 10.1039/c9nr02211b] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
9 Khezri B, Beladi Mousavi SM, Krejčová L, Heger Z, Sofer Z, Pumera M. Ultrafast Electrochemical Trigger Drug Delivery Mechanism for Nanographene Micromachines. Adv Funct Mater 2019;29:1806696. [DOI: 10.1002/adfm.201806696] [Cited by in Crossref: 58] [Cited by in F6Publishing: 51] [Article Influence: 14.5] [Reference Citation Analysis]
10 Hoseini Shafa M, Jalal R, Kosari N, Rahmani F. Efficacy of metformin in mediating cellular uptake and inducing apoptosis activity of doxorubicin. Regul Toxicol Pharmacol 2018;99:200-12. [PMID: 30266241 DOI: 10.1016/j.yrtph.2018.09.023] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
11 Gong P, Ji S, Wang J, Dai D, Wang F, Tian M, Zhang L, Guo F, Liu Z. Fluorescence-switchable ultrasmall fluorinated graphene oxide with high near-infrared absorption for controlled and targeted drug delivery. Chemical Engineering Journal 2018;348:438-46. [DOI: 10.1016/j.cej.2018.04.193] [Cited by in Crossref: 72] [Cited by in F6Publishing: 69] [Article Influence: 18.0] [Reference Citation Analysis]
12 Vashist A, Kaushik A, Vashist A, Sagar V, Ghosal A, Gupta YK, Ahmad S, Nair M. Advances in Carbon Nanotubes-Hydrogel Hybrids in Nanomedicine for Therapeutics. Adv Healthc Mater 2018;7:e1701213. [PMID: 29388356 DOI: 10.1002/adhm.201701213] [Cited by in Crossref: 86] [Cited by in F6Publishing: 70] [Article Influence: 21.5] [Reference Citation Analysis]
13 Rahoui N, Jiang B, Taloub N, Hegazy M, Huang YD. Synthesis and evaluation of water soluble pH sensitive poly (vinyl alcohol)-doxorubicin conjugates. J Biomater Sci Polym Ed 2018;29:1482-97. [PMID: 29661115 DOI: 10.1080/09205063.2018.1466470] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
14 Masoudi M, Mashreghi M, Goharshadi E, Meshkini A. Multifunctional fluorescent titania nanoparticles: green preparation and applications as antibacterial and cancer theranostic agents. Artificial Cells, Nanomedicine, and Biotechnology 2018;46:248-59. [DOI: 10.1080/21691401.2018.1454932] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 2.5] [Reference Citation Analysis]
15 Gao H, Bi Y, Wang X, Wang M, Zhou M, Lu H, Gao J, Chen J, Hu Y. Near-Infrared Guided Thermal-Responsive Nanomedicine against Orthotopic Superficial Bladder Cancer. ACS Biomater Sci Eng 2017;3:3628-34. [DOI: 10.1021/acsbiomaterials.7b00405] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 3.4] [Reference Citation Analysis]
16 Kankala RK, Liu C, Chen A, Wang S, Xu P, Mende LK, Liu C, Lee C, Hu Y. Overcoming Multidrug Resistance through the Synergistic Effects of Hierarchical pH-Sensitive, ROS-Generating Nanoreactors. ACS Biomater Sci Eng 2017;3:2431-42. [DOI: 10.1021/acsbiomaterials.7b00569] [Cited by in Crossref: 79] [Cited by in F6Publishing: 68] [Article Influence: 15.8] [Reference Citation Analysis]
17 Sadaf S, Walder L. Doxorubicin Adsorbed on Carbon Nanotubes: Helical Structure and New Release Trigger. Adv Mater Interfaces 2017;4:1700649. [DOI: 10.1002/admi.201700649] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
18 Zhao Q, Wang X, Yan Y, Wang D, Zhang Y, Jiang T, Wang S. The advantage of hollow mesoporous carbon as a near-infrared absorbing drug carrier in chemo-photothermal therapy compared with IR-820. Eur J Pharm Sci 2017;99:66-74. [PMID: 27916695 DOI: 10.1016/j.ejps.2016.11.031] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
19 Norouzi M, Nazari B, Miller DW. Injectable hydrogel-based drug delivery systems for local cancer therapy. Drug Discov Today 2016;21:1835-49. [PMID: 27423369 DOI: 10.1016/j.drudis.2016.07.006] [Cited by in Crossref: 174] [Cited by in F6Publishing: 216] [Article Influence: 29.0] [Reference Citation Analysis]
20 Gao H, Bi Y, Chen J, Peng L, Wen K, Ji P, Ren W, Li X, Zhang N, Gao J, Chai Z, Hu Y. Near-Infrared Light-Triggered Switchable Nanoparticles for Targeted Chemo/Photothermal Cancer Therapy. ACS Appl Mater Interfaces 2016;8:15103-12. [DOI: 10.1021/acsami.6b03905] [Cited by in Crossref: 37] [Cited by in F6Publishing: 41] [Article Influence: 6.2] [Reference Citation Analysis]
21 Jeong K, Kang CS, Kim Y, Lee Y, Kwon IC, Kim S. Development of highly efficient nanocarrier-mediated delivery approaches for cancer therapy. Cancer Letters 2016;374:31-43. [DOI: 10.1016/j.canlet.2016.01.050] [Cited by in Crossref: 36] [Cited by in F6Publishing: 39] [Article Influence: 6.0] [Reference Citation Analysis]
22 Tian Y, Kong Y, Li X, Wu J, Ko AC, Xing M. Light- and pH-activated intracellular drug release from polymeric mesoporous silica nanoparticles. Colloids and Surfaces B: Biointerfaces 2015;134:147-55. [DOI: 10.1016/j.colsurfb.2015.04.069] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
23 Zhou M, Liu S, Jiang Y, Ma H, Shi M, Wang Q, Zhong W, Liao W, Xing MMQ. Doxorubicin-Loaded Single Wall Nanotube Thermo-Sensitive Hydrogel for Gastric Cancer Chemo-Photothermal Therapy. Adv Funct Mater 2015;25:4730-9. [DOI: 10.1002/adfm.201501434] [Cited by in Crossref: 98] [Cited by in F6Publishing: 80] [Article Influence: 14.0] [Reference Citation Analysis]
24 Kim H, Chung K, Lee S, Kim DH, Lee H. Near-infrared light-responsive nanomaterials for cancer theranostics. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2016;8:23-45. [PMID: 25903643 DOI: 10.1002/wnan.1347] [Cited by in Crossref: 77] [Cited by in F6Publishing: 81] [Article Influence: 11.0] [Reference Citation Analysis]
25 Qin Y, Chen J, Bi Y, Xu X, Zhou H, Gao J, Hu Y, Zhao Y, Chai Z. Near-infrared light remote-controlled intracellular anti-cancer drug delivery using thermo/pH sensitive nanovehicle. Acta Biomater 2015;17:201-9. [PMID: 25644449 DOI: 10.1016/j.actbio.2015.01.026] [Cited by in Crossref: 118] [Cited by in F6Publishing: 111] [Article Influence: 16.9] [Reference Citation Analysis]
26 Dwivedi AD, Dubey SP, Sillanpää M, Kwon Y, Lee C, Varma RS. Fate of engineered nanoparticles: Implications in the environment. Coordination Chemistry Reviews 2015;287:64-78. [DOI: 10.1016/j.ccr.2014.12.014] [Cited by in Crossref: 138] [Cited by in F6Publishing: 113] [Article Influence: 19.7] [Reference Citation Analysis]
27 Yuvaraj S, Karthikeyan K, Vasylechko L, Selvan RK. Hydrothermal synthesis and characterization of Co2.85Si0.15O4 solid solutions and its carbon composite as negative electrodes for Li-ion batteries. Electrochimica Acta 2015;158:446-56. [DOI: 10.1016/j.electacta.2015.01.065] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
28 Suhag D, Bhatia R, Das S, Shakeel A, Ghosh A, Singh A, Sinha OP, Chakrabarti S, Mukherjee M. Physically cross-linked pH-responsive hydrogels with tunable formulations for controlled drug delivery. RSC Adv 2015;5:53963-72. [DOI: 10.1039/c5ra07424j] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 4.3] [Reference Citation Analysis]
29 Xia B, Wang B, Zhang W, Shi J. High loading of doxorubicin into styrene-terminated porous silicon nanoparticles via π-stacking for cancer treatments in vitro. RSC Adv 2015;5:44660-5. [DOI: 10.1039/c5ra04843e] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
30 Shi J, Guobao W, Chen H, Zhong W, Qiu X, Xing MMQ. Schiff based injectable hydrogel for in situ pH-triggered delivery of doxorubicin for breast tumor treatment. Polym Chem 2014;5:6180-9. [DOI: 10.1039/c4py00631c] [Cited by in Crossref: 76] [Cited by in F6Publishing: 69] [Article Influence: 9.5] [Reference Citation Analysis]
31 Andreoli E, Suzuki R, Orbaek AW, Bhutani MS, Hauge RH, Adams W, Fleming JB, Barron AR. Preparation and evaluation of polyethyleneimine-single walled carbon nanotube conjugates as vectors for pancreatic cancer treatment. J Mater Chem B 2014;2:4740. [DOI: 10.1039/c4tb00778f] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 3.0] [Reference Citation Analysis]